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A GENERAL FRAMEWORK FOR HIGH-ACCURACY

PARAMETRIC INTERPOLATION

KNUT MØRKEN AND KARL SCHERER

Abstract. In this paper we establish a general framework for so-called para-
metric, polynomial, interpolation methods for parametric curves. In contrast
to traditional methods, which typically approximate the components of the
curve separately, parametric methods utilize geometric information (which de-
pends on all the components) about the curve to generate the interpolant.
The general framework suggests a multitude of interpolation methods in all
space dimensions, and some of these have been studied by other authors as
independent methods of approximation. Since the approximation methods are
nonlinear, questions of solvability and stability have to be considered. As a
special case of a general result, we prove that four points on a planar curve
can be interpolated by a quadratic with fourth-order accuracy, if the points are
sufficiently close to a point with nonvanishing curvature. We also find that six
points on a planar curve can be interpolated by a cubic, with sixth-order accu-
racy, provided the points are sufficiently close to a point where the curvature
does not have a double zero. In space it turns out that five points sufficiently
close to a point with nonvanishing torsion can be interpolated by a cubic, with
fifth-order accuracy.

1. Introduction

The traditional approach to approximation of parametric curves is to consider
the curve as a vector function and then apply a suitable scheme for approximation
of functions to each component, see for example [7]. Recently, several authors (e.g.,
[2, 3, 4, 5, 6, 8, 11, 13, 14, 15, 18, 19, 20, 21, 22]) have developed schemes which in
the approximation of one component uses information about the other components.
Such methods of approximation are conveniently called parametric approximation
methods. The main motivation for studying such methods is that they often give
better accuracy for the same class of approximating functions. For example, it is
well known that in approximation of functions, cubic polynomials are fourth-order
accurate, while there are cubic parametric schemes that are sixth-order accurate
for plane curves, see e.g. [2] (note that the interpolation scheme studied in [2] was
also used in [11] for the approximation of offset-curves).

In this paper we develop a general framework for high-accuracy, parametric,
polynomial interpolation methods. This unifies a number of seemingly disparate
parametric interpolation schemes that have appeared in the literature, see [2, 11,
13, 18, 19]. Traditional interpolation methods are applied to parametric curves
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238 KNUT MØRKEN AND KARL SCHERER

simply by matching position and/or derivatives at the same parameter values, in
general

p(j)(t) = f (j)(t),(1)

where f (we use boldface type for vectors) is a given curve to be approximated by
p by interpolation at the point t, and the superscript denotes the jth derivative.
Parametric interpolation methods are (implicitly or explicitly) based on the idea
that we can allow p to approximate a reparametrized version of f , i.e., we replace
the interpolation condition (1) by

p(j)(s) = Dj(f ◦ φ)(s),(2)

where the operator D denotes ordinary differentiation and φ is a change of param-
eter, i.e., a strictly increasing real function. Given a change of parameter φ, we can
determine a polynomial p by interpolation of the type above at a suitable number
of points. We can then try to adjust φ, and hence p, such that p satisfies some
desirable condition.

As an example, suppose we search for p among the quintic polynomials. We
can then try to adjust φ so that p is reduced to a cubic polynomial. The scheme
of de Boor, Höllig and Sabin (BHS) can be interpreted in this way; by a suitable
choice of the change of parameter φ, a quintic interpolating polynomial is reduced
to a cubic one, without sacrificing the sixth-order accuracy. For space curves it is in
general not possible to reduce quintics to cubics; however, one can in general reduce
quartics to cubics and hence obtain cubic schemes that are fifth-order accurate.

In §2, we discuss different ways of measuring the error, and define the concept
of approximation order for parametric approximation schemes, while in §3, we con-
sider in detail interpolation conditions of the form (2). In §4 we show how the
ideas of classical interpolation of functions can be generalized to parametric in-
terpolation, while in §5 we prove solvability and stability of the simplest schemes
of this type in each space dimension. §6 is devoted to a detailed study of cubic
schemes in the plane, and we show that these schemes are always solvable and
sixth-order accurate in the neighborhood of a point f(0) on a curve f that satisfies
span{f ′(0),f ′′(0),f ′′′(0)} = R2, i.e., the matrix built from the first three deriva-
tives of f should have rank 2. As a special case we conclude that the BHS-scheme
is solvable and sixth-order accurate under weaker conditions than those given in
[2].

An inherent problem with nonlinear systems of equations is that there are in
general many solutions, and the systems that arise in parametric interpolation are
not exempted from this rule. This and related problems are not considered in this
paper but must be addressed if the schemes that we suggest are to become practical
alternatives for approximation of parametric curves. In [16] some of these questions
are discussed in the special case of quadratic approximation of planar curves.

2. Approximation order and error measures

Given a parametric curve f and an approximation p, both defined on the same
interval I, the traditional way to measure the error in the approximation is to take
some norm of the difference f(t) − p(t) (note that there is no loss of generality in
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assuming the two curves to be defined on the same interval). In the plane one can
for instance use

||f − p|| = max
t∈I

∣∣f(t)− p(t)
∣∣

= max
t∈I

((
f1(t)− p1(t)

)2
+
(
f2(t)− p2(t)

)2)1/2

.
(3)

Here, the functions fi and pi for i = 1, 2 denote the components of f and p. More
generally, one can combine the usual `q and Lr-norms,

||f − p||`q,Lr =
∥∥||f − p||`q∥∥Lr

=

(∫
I

(∣∣f1(t)− p1(t)
∣∣q +

∣∣f2(t)− p2(t)
∣∣q)r/qdt)1/r

,
(4)

||f − p||Lr,`q =
∥∥(||f1 − p1||Lr , ||f2 − p2||Lr

)∥∥
`q
,(5)

see [17], where general approximation theory for such norms is developed. The
norm defined in (3) above clearly corresponds to the special case q = 2 and r =∞
in (4).

The advantage of determining an approximation p that is close to f in the sense
that the norm in (3) is small for all t, is that the point p(t) will be close to f(t).
If we are approximating a path for a camera for example, where t measures time
elapsed along the path, this is important. Often, however, it is only the geometric
object represented by f that is important and not the particular parametrization.
All we want is an approximation p such that the graphs, or point-sets, of p and
f are “close”. A well-known metric for measuring such closeness is the Hausdorff
metric, but unfortunately this metric does not lend itself very well to computations.

To obtain a geometric error measure that is more suitable for practical implemen-
tation on a computer, we use the idea of reparametrization. For purely geometric
purposes it is more natural to compare f(t) with the point on the curve given by
p that is as close as possible, or at least close to the closest point. This will be
a point p(s) with parameter value s. As t varies, we get different values of s, or
s = φ(t) for some function φ. Instead of (3), we therefore use an error measure on
the form

max
t∈I

∣∣f(t)− p
(
φ(t)

)∣∣.
This motivates the following definition of a metric on the set of parametric curves,
see [14] for more details.

Definition 1. Let f and g be two parametric curves in Rd, both defined on the
same parameter interval I = [a, b]. Denote by A the set of infinitely differentiable
increasing functions mapping I onto itself, i.e.,

A =
{
φ ∈ C∞[a, b] | φ(a) = a, φ(b) = b and φ′ > 0

}
.

The distance between f and g is then defined by the metric

d(f , g) = d(f , g)[a,b] = inf
φ∈A

dφ(f , g) = inf
φ∈A

sup
t∈I

∣∣f(t)− g(φ(t))
∣∣,

where | · | denotes Euclidean distance in Rd.
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240 KNUT MØRKEN AND KARL SCHERER

The functions in A will be called allowable changes of parameter in what follows,
and a curve f composed with some φ in A will be called a reparametrization f ◦φ of
f . Which interval the functions in A are defined on will be clear from the context.

Note also that we could just as well have defined the metric by

d(f , g) = inf
ψ∈A

sup
s∈I

∣∣f(ψ(s)) − g(s)
∣∣,

since all the functions in A have inverses in A (the set A is a group under com-
position). That d(f , g) provides a metric on the set of (equivalence classes under
reparametrization of) parametric curves is straightforward, see [14].

Degen ([3, 4]) has used error measures that are very similar to the metric d. In
fact, his normal distance [3] is nothing but dφ(f , g), where the change of parameter
φ is the function that assigns to a parameter value t the parameter value φ(t) such
that the normal at f(t) intersects g at g

(
φ(t)

)
. In [4], he uses a similar change of

parameter which is based on intersection with f ′′(t) instead of the normal at f(t).
Note that in many cases, the Hausdorff distance between f and g will coincide with
Degen’s normal distance and therefore with d(f , g), see [3].

To study the positive effect that the metric d has on error estimates, let V be a
class of vector-valued functions by which we approximate a given curve f defined
on the interval I = [a, b]. Then we obviously have

inf
g∈V

d(f , g) = inf
g∈V

d(f , g),(6)

where V denotes the larger class

V = {g ◦ φ | g ∈ V and φ ∈ A}.(7)

The case where V is a space of polynomial functions (i.e., not vector-valued)
and the change of parameter is restricted to be a polynomial has been studied by
the Bulgarian School of Approximation, see [23, 25].

In our context, the class V can be thought of as a linear Ck-space of polynomial
spline curves in Rd, and V as a space of GCk-splines or β-splines (see [1]), where
the β’s as well as the coefficients are free. We will however only consider methods
for constructing each polynomial piece explicitly, i.e., local interpolation methods.

From (6) and (7) we see that the approximation power of V in the metric d is the
same as that of V . We could therefore search for optimal approximation schemes
B by associating with each curve f a curve g = B(f) in V such that

d(f , B(f)) ≤ C inf
g∈V

d(f , g),

for some constant C independent of f . However, this appears rather complicated.
In this paper our aim will instead be to construct schemes with high convergence
order with respect to the metric d in Definition 1. To do this, we must first make
clear what we mean by convergence order.

Definition 2. Let H be some positive real number, let f be a parametric curve
defined in a neighborhood IH = [t0−H, t0+H] of t0, and let S be an approximation
scheme that assigns to each h < H an approximation Sh(f) to the part of f defined
on the interval Ih. Then the scheme S is said to have (local) convergence order m
at t0 if the inequality

d
(
f , Sh(f)

)
Ih
≤ Chm(8)

holds for some constant C independent of h.
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Throughout this paper we will usually assume that t0 = 0, which causes no loss
of generality.

In function approximation it is usually simple to check that the C in an inequality
of the type

||f −Bh(f)|| ≤ Chm

is independent of h. The typical way of studying approximation order in terms of
the metric d is to establish an inequality of the type

dφh
(
f , Sh(f)

)
≤ max
θ∈(−h,h)

∣∣Dm(f ◦ φh)(θ)
∣∣hm,(9)

for some suitable φh ∈ A. To get from (9) to an inequality of the form (8), it is
therefore important to bound φh and its first m derivatives independently of h.
This motivates the following definition of stability.

Definition 3. A family of parameter changes {φs}s that depend on the parameters
s = (si)

m
i=1 is said to be stable of order r at z if the first r derivatives of φs remain

uniformly bounded as the si coalesce at z. In other words, for stability there must
exist some real number C such that

lim
si→z

i=1,... ,m

max
s∈[s1,sm]

∣∣φ(j)
s (s)

∣∣ ≤ C for j = 0, 1, . . . , r.

We will discuss the problem of stability in more detail in §5.
How can we find schemes that satisfy inequalities of the type (9)? One possibility

is to follow the same recipe as in function approximation, and let Sh be accurate
for polynomials of degree m− 1. Since (9) by definition is equivalent to

max
t∈[−h,h]

∣∣(f ◦ φh)(t)− Sh(f)(t)
∣∣ ≤ max

θ∈(−h,h)

∣∣Dm(f ◦ φh)(θ)
∣∣hm,(10)

this means that Sh must reproduce the degree-m − 1 Taylor expansion of some
reparametrization of f , and that {φh} must be stable of order m as h tends to
zero. But except for stability, the change of parameter φh is arbitrary, and this
illustrates once again the extra flexibility that is gained by employing the metric d.

How can we make use of this extra flexibility? Let φh be some as yet unspec-
ified change of parameter for f on the interval [−h, h]. We then choose Sh(f) =
Th(f ◦φh), where Th is a traditional, linear approximation scheme that reproduces
polynomials of degree m− 1. One possibility is for example to let Th denote inter-
polation at m points in [−h, h]. With Th fixed, we can try to determine a specific
φh that gives Sh(f) some desirable property. In this paper, our aim will be to
determine some φh that reduces the degree of the polynomial Sh(f). For example,
if all the m interpolation points are chosen at t = 0 (Taylor expansion), we will
search for φh such that Dm−i(f ◦ φh)(0) = 0 for i = 1, . . . , `, with ` as large as
possible. Note that these equations do not involve the approximating polynomial
at all.

Rewriting the left-hand side of (10) in the equivalent form

max
s∈[−h,h]

∣∣f(s)− (Sh(f) ◦ φ−1
h )(s)

∣∣,
with φ−1

h the inverse of φh, makes clear the interpretation of the construction of Sh
as approximation from the set V, see also (6). In this form, the determination of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



242 KNUT MØRKEN AND KARL SCHERER

φh and Sh(f) becomes more intertwined. This is the approach taken by Degen [4]
and others.

Another variation of the same principle is to construct parametrization-invariant
schemes by interpolating parametrization-invariant quantities like position, tangent
direction and curvature at a number of points along the curve. Suppose the curve is
given in some parametrization as f ; then the abovementioned quantities are nothing
but position, first and second derivatives of the curve in arc length parametrization.
But since the metric we use to measure the error does not differentiate between
different parametrizations of f , we see that schemes constructed in this way add
nothing new to what we have said already. The scheme in [2] and [11] is indeed
equivalent to a quintic scheme which by reparametrization is reduced to a cubic
scheme.

It should be noted that the advantage of using the metric d, i.e., allowing
reparametrization, is not restricted to polynomials, the class V in (6) is arbitrary.
It does of course remain to be seen how much the quality of the approximation can
be improved in passing from V to V. Here we will try to answer this question for
some polynomial schemes. In [4, 22], rational schemes are discussed.

3. Reparametrized interpolation conditions

Our main interest in this paper is to construct parametric interpolation schemes
with high approximation order. As we have already mentioned, the idea is to replace
a traditional interpolation condition like (1) by the more general condition

p(j)(s) = Dj(f ◦ φ)(s),(11)

and then choose φ in some clever way. Here f is a given curve, the change of
parameter is given by φ, and p is the unknown interpolating polynomial. The
following well-known lemma reveals some of the structure of conditions like (11).

Lemma 4. Let f be a given parametric curve, let (yi) be M distinct interpolation
points, suppose that `i derivatives are to be interpolated at yi, let φ be an allowable
change of parameter, set g = f ◦ φ and let xi be given by yi = φ(xi). Let p denote

a polynomial of degree m − 1, where m =
∑M
i=1 `i, that satisfies the interpolation

conditions

p(j)(xi) = g(j)(xi) for j = 0, 1, . . . , `i − 1 and i = 1, . . . ,M.(12)

The interpolation conditions at xi can then be written as pi = Aif i where

pi =
(
p(xi),p

′(xi), . . . ,p
(`i−1)(xi)

)
and

f i =
(
f(yi),f

′(yi), . . . ,f
(`i−1)(yi)

)
,

and Ai is a lower triangular matrix on the form

Ai =


1 0 0 . . . 0
0 βi,1 0 . . . 0
0 βi,2 β2

i,1 . . . 0
...

...
...

. . .
...

0 βi,`i−1 . . . . . . β`i−1
i,1

(13)

with βi,j = φ(j)(xi).
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A GENERAL FRAMEWORK FOR PARAMETRIC INTERPOLATION 243

The complete interpolation conditions (12) can be enforced by requiring F = AP ,
where

P = (p1, . . . ,pM ) and F = (f1, . . . ,fM),

and A is the block diagonal matrix A = diag(A1, . . . , AM ).

A matrix on the form (13) is called a connection matrix, see [10]. The entries
of a connection matrix are given by Faa di Bruno’s formula, see [12, p. 50]. We
record this in a lemma, and use the formula in a form that can be found in [9].

Lemma 5. Let f be a parametric curve, let φ be a change of parameter, and set
αk = Dk

(
φ(0)

)
. Then

Dk(f ◦ φ)(0) =
k∑
j=1

ak,jf
(j)(0),

where

ak,j =
∑

k1+k2+···+kj=k
kl>0, l=1, ..., j

[
k

k1, k2, . . . , kj

]
αk1αk2 · · ·αkj(14)

and [
k

k1, k2, . . . , kj

]
=

k!

k1!k2! · · ·kj !m1!m2! · · ·mr!
.

For each set of integers k1, . . . , kj, the integer r denotes the number of distinct
integers in the set, and m1, . . . , mr denotes the number of times each of these
distinct integers occurs among k1, . . . , kj.

Lemma 4 reduces the problem of working with φ to that of handling the β-
parameters. Note, however, that the β’s do not determine a change of parameter φ
completely; they just prescribe φ and its first derivatives at the points (xi)

M
i=1. The

next result (which we expect is known) guarantees that if the β’s are reasonable,
then there exists a valid change of parameter φ which interpolates the β’s with
value yi at the xi.

Lemma 6. Suppose that the yi, the xi and the β-parameters are given and satisfy
xi < xi+1 and yi < yi+1 for i = 1, 2, . . . , M − 1, and βi,1 > 0 for i = 1, 2, . . . ,
M . Then there is a C∞ allowable change of parameter φ with φ′(t) > 0 for all
t ∈ [x1, xM ] that satisfies the interpolation conditions

βi,0 = yi = φ(xi),

βi,1 = φ′(xi),

βi,2 = φ′′(xi),

...

βi,`i = φ(`i)(xi)

(15)

for i = 1, 2, . . . , M .

Proof. The lemma simply says that if the data are increasing, then there is also an
increasing C∞-solution to the interpolation problem.

Let φ̂ be a polynomial that satisfies the interpolation conditions (15). If φ̂′(t) > 0

for all t in [x1, xM ] we can clearly set φ = φ̂. Otherwise, there is at least one interval

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



244 KNUT MØRKEN AND KARL SCHERER

Ii = (xi, xi+1) with φ̂′(t) < 0 for some t in Ii. Note however that in a neighborhood

of both xi and xi+1 we have φ̂′ > 0. The idea of the proof is to add to φ̂ a function

ψ with support in (a, b), where xi < a < b < xi+1, such that the sum φ = φ̂ + ψ
satisfies the interpolation conditions (15) and is strictly increasing in Ii.

The monotonicity requirement of φ̂+ψ is equivalent to ψ′(t) > −φ̂′(t) for t ∈ Ii.
Now let a and b be the smallest and largest zeros of φ̂′ in Ii respectively. Since
the C∞-functions are dense in C[a, b] (equipped with the sup-norm) and since

φ̂′(a) = φ̂′(b) = 0, for each positive ε we can find a C∞-function ψ′ with support
in [a, b] such that

−φ̂′(t) < ψ′(t) < −φ̂′(t) + ε

for t ∈ Ii. Moreover, since

0 < φ̂(xi+1)− φ̂(xi) =

∫ xi+1

xi

φ̂′(x) dx,

by choosing ε appropriately we can assume that∫ b

a

ψ′(t) dt = 0.

If we set ψ(t) =
∫ t
xi
ψ′(x) dx, we see that φ = φ̂ + ψ satisfies the interpolation

conditions and is strictly increasing on Ii. This construction can clearly be applied
to other intervals, as required, to obtain a φ ∈ C∞ that satisfies the interpolation
conditions and is strictly increasing on [x1, xM ].

Note that there are many ways to construct the change of parameter φ. The
interpolation conditions (15) only determine it partially; in many cases the unique
polynomial of lowest degree that solves (15) will be an allowable change of param-
eter.

4. A general approach to high-accuracy parametric interpolation

Interpolation by polynomials can conveniently be expressed through the Newton
form and divided differences. Define the sequence (ti)

m
i=1 by

(ti)
m
i=1 = (

`1 times︷ ︸︸ ︷
x1, . . . , x1, . . . ,

`N times︷ ︸︸ ︷
xN , . . . , xN ),

and define (si)
m
i=1 by ti = φ(si) for a given allowable change of parameter φ. From

elementary numerical analysis we then know that the interpolating parametric poly-
nomial curve p of degree m− 1 which interpolates f ◦ φ at (si)

m
i=1 may be written

as

p(s) = (f ◦ φ)(s1) + (s− s1)[s1, s2](f ◦ φ)

+ · · ·+ (s− s1) · · · (s− sm−1)[s1, . . . , sm](f ◦ φ)

= p1(s) + · · ·+ pm−1(s),

where
pi(s) = (s− s1) · · · (s− si−1)[s1, . . . , si](f ◦ φ).

The error can be written as

e(s) = (s− s1) · · · (s− sm)[s1, . . . , sm, s](f ◦ φ).

If we combine this with our concept of stability, see Definition 3, we obtain the
following result, which formalizes the preliminary discussion in §2, cf. (8).
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Theorem 7. Let f be a parametric curve in Rq, defined on the interval [0, h], and
suppose that there is a change of parameter φh with φh(0) = 0 and φh(h) = h, and
a polynomial p of degree n ≤ m− 1 that interpolates f ◦ φ at m points s1, s2, . . . ,
sm in [0, h]. Then

d(p,f) ≤ sup
s∈[0,h]

∣∣p(s)− f
(
φh(s)

)∣∣ ≤ hmq max
1≤j≤q

max
θ∈(0,h)

∣∣Dm(fj ◦ φh)(θ)
∣∣/m !,

(16)

provided that f ∈ Cm. The approximation order is m if in addition the change of
parameter φh is stable of order m at 0.

Proof. The only claim that remains to be proved is the last inequality in (16). This
follows by applying the well-known fact [s1, s2, . . . , sm, s]g = g(m)(θ)/m ! (valid for
sufficiently smooth g) to each component of f ◦ φ. If s ∈ [0, h], then θ ∈ (0, h). If
φh is stable of order m, then the derivatives in (16) will remain bounded as h tends
to zero, so the approximation order will be m.

We are now in a position where we can explain our approach to parametric in-
terpolation in more detail. If we consider φ to be unspecified, we recall from the
previous section that each interpolation condition introduces an arbitrary param-
eter (the β’s). In total we therefore have m parameters which we may utilize to
improve the approximation in one way or another. Note that a linear change of
parametrization does not change the approximation in any essential way so that two
of the free parameters are not of any interest for approximation purposes. This is
in fact the reason why we may assume that s1 = φ(t1) = t1 and sm = φ(tm) = tm.
We are left with m − 2 parameters to play with. In the β-spline paradigm [1],
these are called shape parameters and are given to the curve designer as controls
to obtain a desirable shape.

The alternative which we will pursue here is to choose the β’s in such a way that
the degree of p is reduced. This we do by requiring

[s1, . . . , sm−i](f ◦ φ) = 0,(17)

so that pm−i ≡ 0 for i = 0, 1, . . . , k, with k as large as possible. The number of
such conditions that we can hope to enforce obviously depends on the dimension
of the Euclidean space in which we are working. In the plane, each condition of
type (17) introduces two scalar constraints. Since we have m − 2 free β’s, we can
enforce at most b(m− 2)/2c such conditions. This would reduce the degree of the
interpolant to n = m/2 for even m, and to n = 1 + (m − 1)/2 for odd m. If
this can be carried through in a stable way, we still have the same approximation
order m. In other words, we have a scheme that for polynomials of degree n gives
approximation order 2n. Note, however, that we have no guarantee that this can
be done; the conditions (17) usually involve the β-parameters in a nonlinear way.
We summarize this in a conjecture, see Rababah [18] for a similar conjecture.

Conjecture. Let f ∈ Rd be a parametric curve. Then f can be interpolated at m
points by a polynomial of degree

n0 = m− 1−
⌊
m− 2

d

⌋
.(18)
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Equivalently, a polynomial of degree n can be made to interpolate f at

m0 = n+ 1 +

⌊
n− 1

d− 1

⌋
(19)

points, yielding an approximation order of m0 (the notation bxc denotes the greatest
integer not greater than x).

This conjecture is known to be true in some special cases, and we will extend
these results below, but some conditions on the curve f will be necessary.

As explained above, our schemes amount to choosing some reparametrization of
f which reduces the degree of an interpolating polynomial. The next result shows
that the result is essentially independent of the initial parametrization of f .

Proposition 8. Let f be a given parametric curve defined on the interval I =
[0, h], and let f1 = f ◦ ψ1 and f2 = f ◦ ψ2 be two regular reparametrizations
also defined on I. Let Pin,m denote the set of polynomial curves of degree n that

interpolate some reparametrization of f i at m points in [0, h]. Then P1
n,m = P2

n,m.

Proof. Let p ∈ P1
n,m. Then p interpolates f1 ◦ φ1 for some reparametrization φ1.

Now

f1 ◦ φ1 = f ◦ ψ1 ◦ φ1 = f ◦ ψ2 ◦ ψ−1
2 ◦ ψ1 ◦ φ1 = f2 ◦ φ2,

where φ2 = ψ−1
2 ◦ ψ1 ◦ φ1. From this we conclude that p is also in P2

n,m. This

argument is clearly symmetric, and hence P1
n,m = P2

n,m.

Proposition 8 gives us the freedom to work in whatever parametrization of f
that is most convenient. We can therefore omit the superscript and write Pn,m.
Note, however, that Pn,m may contain many solution curves, or none.

We emphasize that the above conjecture involves two separate, but related prob-
lems. The first is whether the interpolant exists, the other whether the family of pa-
rameter changes φh in Theorem 7, and therefore the interpolant, remains bounded
as the interpolation points tend to a common limit. Both the question of exis-
tence and stability seem to be difficult to answer in general, but in the following
we establish some results that will be useful in studying stability.

The most interesting case of the conjecture is when the floor function is exact,
i.e., when n− 1 = k(d− 1) for some positive integer k. We then have the following
“procedure” to determine the interpolating polynomial.

Procedure 9. Let f be a curve in Rd defined on the interval [0, h], let m be an
integer of the form m = kd + 2 with k a positive integer, and let the integer n
be given by n = k(d − 1) + 1. If t1, t2, . . . , tm are m (not necessarily distinct)
interpolation points in [0, h], then a polynomial curve p of degree n and a change
of parameter φ such that (p ◦ φ−1)(ti) = f(ti) for i = 1, 2, . . . , m can be found by
solving the system of kd = m− 2 equations

[s1, . . . , si](f ◦ φ) = 0 for i = n+ 2, n+ 3, . . . , m,(20)

where si is given by ti = φ(si) for i = 1, 2, . . . , m.

Let us consider some of the interpolation schemes suggested by Procedure 9.
For d = 2 (plane curves) we have m = 2k + 2 and n = k + 1 for some positive
integer k, or m = 2n. The equations (20) can then be interpreted as a reduction
of degree from 2n − 1 to n. The simplest case is k = 1, which corresponds to
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quadratic (n = 2) interpolation at m = 4 points. Any cubic interpolation scheme
for functions therefore becomes a quadratic scheme for planar curves.

The simplest scheme to analyze mathematically is the one where all four points
are equal, which corresponds to the two curves f and p having fourth-order geo-
metric contact at the point. We shall see in the next section that this is possible if
the curvature is nonzero at the point. This Taylor scheme is obviously fourth-order
accurate if it is solvable, since there is no variable change of parameter.

Since the equations that characterize the polynomial approximation depend
smoothly on the interpolation points, quadratic schemes that interpolate four points
are always solvable and fourth-order accurate in a neighborhood of a point with
nonzero curvature (in this case the Jacobian is also nonsingular, cf. the next sec-
tion). For interpolation points spaced further apart, the solvability question must
be treated specially. One way of grouping the four points is by performing Hermite
interpolation of position and tangent directions at two points. It is easy to see
that this classical scheme is solvable provided the two tangent directions are lin-
early independent. As we approach a point with zero curvature, we may still have
solvability, but the change of parameter is not stable and in the limit there is no so-
lution. Another natural scheme is interpolation at four distinct points. Solvability
of this scheme is treated in [13].

Consider next the case where k = 2, so that we have m = 6 interpolation
points and the degree of the interpolant is n = 3, corresponding to quintic schemes,
where the degree is reduced by two. In §6 we show that the Taylor scheme in this
case is always solvable unless the curvature of the curve has a double zero at the
point. We also show that all cubic schemes are sixth-order accurate and solvable
in a neighborhood of such points. As for quadratics, the solvability question must
be treated separately when the points are spaced further apart. Maybe the most
natural scheme is a two-point Hermite scheme where the interpolant has third-
order contact with the curve at two points. This corresponds to interpolation of
position, tangent direction and curvature at two points and has been treated in [2],
see also [11]. Another natural cubic scheme is a three-point Hermite scheme which
interpolates position and tangent direction at three points. Of course, there is also
the possibility of interpolation at six distinct points.

As the value of k increases, we get schemes with increasing accuracy (we gain
two orders of accuracy for each increase in k), but the determining equations of the
schemes also become increasingly difficult, both to solve and to analyze.

In space (d = 3), the simplest schemes correspond to interpolation at m = 5
points by cubic (n = 3) curves, which are degenerate quartic curves. In the next
section we show that the Taylor scheme is always solvable provided the torsion
is nonzero at the point. Because the Jacobian of the equations is nonsingular at
such a point, all cubic schemes in space are fifth-order accurate and solvable in a
neighborhood of the point. If we separate the points, a natural configuration is
interpolation of position and tangent at two points and position at one point in
between. Increasing k to two, we come to quintic curves (n = 5) interpolating at
m = 8 points. For such schemes we have no results.

In arbitrary dimension d, we show that the simplest schemes (k = 1) with
m = d + 2 and n = d are always solvable in the Taylor case provided the highest
curvature is nonzero. By studying the Jacobian, we find that general schemes of
this type are always solvable and (d+ 2)-order accurate in a neighborhood of such
points.
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5. General solvability and stability results

This section is devoted to proving some results about the set of equations (20).
From the previous section we know that the interpolation conditions lead to condi-
tions on the value of φ and its derivatives at the distinct points among s1, . . . , sm,
see (12). In fact, since we have m conditions, we can enforce all the conditions if
we assume that φ is a polynomial of degree m− 1. A convenient way to represent
φ is therefore

φ(s) = α1s+α2s
2/2 + · · ·+ αm−1s

m−1/(m− 1)!,

α1 = 1− α2h/2− · · · − αm−1h
m−2/(m− 1)!.

(21)

Here, the conditions φ(0) = 0 and φ(h) = h have been incorporated, i.e., we
have assumed that s1 = t1 = 0 and sm = tm = h. We see that φ now depends on
m−2 = kd free parameters (αi)

m−1
i=2 , see Procedure 9, which is the minimal number

in order to satisfy the m− 2 constraints in (20).
Having parametrized φ, we can define the real functions Φi,m = Φi : R2m−2 7→ R

by
Φi(α2, . . . , αm−1; s1, . . . , sm) = [s1, . . . , si](f ◦ φ) for 1 ≤ i ≤ m.

The system (20) can then be expressed as

Φi(α2, . . . , αm−1; s1, . . . , sm) = 0 for i = n+ 2, n+ 3, . . . , m.(22)

Note that we ought to let Φi depend on the ti (which are typically given numbers)
and not the si (which we do not know until the parametrization φ is known), but
since we always assume φ to be an allowable change of parameter and therefore
invertible, we can always make the change of variable ti = φ(si).

The following lemma is fundamental in what follows.

Lemma 10. If f is smooth, the function Φi is smooth, and the partial derivative
Dj with respect to αj is given by

DjΦi(α2, . . . , αm−1; s1, . . . , si) = [s1, . . . , si](rj · f ′ ◦ φ),

where the function rj is given by rj(s) = (sj−hj−1)/j! (the · denotes multiplication
so that the function ri · f ′ ◦ φ has the value rj(s)f

′(φ(s)
)

at s). This formula is
also valid for h = 0.

Proof. It is well known that a divided difference depends smoothly on its arguments
provided f is sufficiently smooth. The derivative of Φi with respect to αj is easily
obtained by, for example, taking limits.

From Lemma 10 it is easy to compute the Jacobian matrix of the system of
equations (22) and to give conditions for nonsingularity.

Lemma 11. Let Ψi : Rm−2 7→ Rm−2 denote the restriction of Φi in (22) to the
first m − 2 = kd variables (αi)

m−1
i=2 . The mapping Ψ : Rm−2 7→ Rm−2 given by

Ψ = (Ψm,Ψm−1, . . . ,Ψn+2) has the Jacobian matrix J with rows d(i−1)+1, . . . ,
d i given by (

[s1, . . . , sm−i+1](rj+1 · f ◦ φ)
)m−2

j=1
,

for i = 1, . . . , k. This matrix is nonsingular if and only if the only polynomial r
of the form r(t) =

∑m−1
i=2 ciri(t) that solves the set of equations

[s1, . . . , sm−i+1](r · f ′ ◦ φ) = 0 for i = 1, 2, . . . , k,

is the polynomial r(t) ≡ 0.
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From the implicit function theorem we now have the following proposition.

Proposition 12. Suppose that the system (22) has a solution α∗ for a given set
of interpolation points s∗. If the Jacobian matrix in Lemma 11 with respect to α
is nonsingular at (α∗, s∗), then there is some neighborhood U of s∗ where the set
of equations can be solved for α in terms of s.

This has immediate consequences for stability (cf. Definition 3).

Corollary 13. The system of equations (22) yields a stable change of parameter
φ of order m− 1 as h tends to zero, if the Jacobian matrix of (22) with respect to
α at the point s1 = s2 = · · · = sm = 0 is nonsingular, and the system is solvable at
this point.

Proof. Under the conditions of the corollary the α’s will depend smoothly on the
si. But note that αi = φ(i)(0), so that φ will also depend smoothly on the si.

The problem of stability has now been reduced to the problem of showing that the
Jacobian matrix of (22) is nonsingular when all the interpolation points coalesce.
In addition, we also need to know that the corresponding interpolation problem
has a solution. For the simplest nontrivial schemes in each space dimension these
problems are settled by the following theorem.

Theorem 14. Let f be a curve in Rd. If the first d derivatives at s = 0 span

Rd, i.e., if span
{
f ′(0), . . . ,f (d)(0)

}
= Rd, there is a unique polynomial curve p

of degree d which agrees with f with geometric continuity of order d+ 1 at s = 0,
yielding an approximation order of m = d+2 in a neighborhood of s = 0. Moreover,
there is a neighborhood U of 0 ∈ Rd+2 such that for each set of d+ 2 interpolation
points s = (s1, . . . , sd+2) in U , there is a polynomial of degree d which interpolates
f at the d+ 2 points of s. As the interpolation points tend to 0, the corresponding
interpolant is d+ 2-order accurate.

Proof. Consider first solvability of the problem in the case where all the interpo-
lation points are equal. The equations (22) then reduce to one vector equation of
dimension d, namely Dd+1(f ◦ φ)(0) = 0, with h = 0 or α1 = 1 in (21). From
Lemma 5 we know that this is equivalent to

d+1∑
j=1

ad+1,jf
(j)(0) = 0,(23)

with ad+1,j given by

ad+1,j =
∑

i1+i2+···+ij=d+1
ik>0, k=1, ..., j

[
d+ 1

i1, i2, . . . , ij

]
αi1αi2 · · ·αij ,(24)

where we now have α1 = 1. If we start from the end of the sum in (23), we see

from (24) that ad+1,d+1 = αd+1
1 = 1. Equation (23) can therefore be rewritten as

d∑
j=1

ad+1,jf
(j)(0) = −f (d+1)(0).(25)
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Since ad+1,d requires a sum of length d in (24), we see that ad+1,d = cdα
d−1
1 α2 =

cdα2 for some nonzero constant cd. If we let 〈v1, . . . ,vd〉 denote the determinant
of the d× d-matrix with rows (vi)

d
i=1, we therefore have

α2 = −

〈
f ′(0),f ′′(0), . . . ,f (d−1)(0),f (d+1)(0)

〉
cd
〈
f ′(0),f ′′(0), . . . ,f (d)(0)

〉 ,

provided the denominator is not zero, i.e., provided the first d derivatives span Rd.
In the rest of the proof, we will use the abbreviation κd−1 =

〈
f ′(0),f ′′(0), . . . ,

f (d)(0)
〉
.

Proceeding, we find that ad+1,d−1 = cd−1,1α3α
d−2
1 + cd−1,2α

2
2α

d−1
1 for suitable

constants cd−1,1 and cd−1,2. Since α2 is now known, we can solve for α3 as we did
for α2 provided κd−1 6= 0. In general, we see that in the sum defining ad+1,d−k
there will only be one term that involves only αk+2 and α1, since there is only one
way to write d + 1 as a sum of d − k positive integers with one of them equal to
k + 2, namely as

d+ 1 = (k + 2) +

d−k−1 times︷ ︸︸ ︷
1 + 1 + · · ·+ 1︸ ︷︷ ︸

d−k terms

.

We can therefore determine αk+2, as above, in terms of the already known α’s,
provided κd−1 6= 0. The solution is clearly unique. This completes the proof of
solvability.

For the stability, we use Corollary 13 and consider the d× d Jacobian matrix

J =
[
Dd+1(r2 · f ′ ◦ φ)(0), . . . , Dd+1(rd+1 · f ′ ◦ φ)(0)

]
,

where ri(t) = ti/i! (remember that h = 0 in the formula in Lemma 10). We
differentiate the products using Leibniz’s rule and find

J =
[
bd+1,2D

(d−1)(f ′ ◦ φ)(0),

bd+1,3D
(d−2)(f ′ ◦ φ)(0), . . . , bd+1,dD(f ′ ◦ φ)(0), (f ′ ◦ φ)(0)

]
,

where bd+1,i =
(
d+1
i

)
. If we now consider the determinant of J , we see that column

d − 1 will be a linear combination of f ′(0) and f ′′(0). Since we already have the
vector f ′(0) in column, the determinant does not change if we remove it from
column d−1. In general, column d−k will be a linear combination of the first k+1
derivatives of f , but the first k derivatives already occur in columns d−k+1, . . . , d
and hence do not contribute to the determinant. Note also that the coefficient
multiplying f (k+1)(0) is αk1 = 1. We therefore conclude that

detJ = bd+1,2bd+1,3 · · · bd+1,d

〈
f (d)(0), . . . ,f ′(0)

〉
.

In other words, the determinant is nonzero if κd−1 6= 0. The result now follows
from Corollary 13.

Note that the determinant κd−1(0) is closely related to the highest (d − 1)st
curvature of f at 0, in that the determinant is zero if the highest curvature is zero,
see [10] and [24]. In the plane the highest curvature is the ordinary curvature,

κ =
〈f ′(0),f ′′(0)〉
|f ′(0)|3

,
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while in space the highest curvature is the torsion defined by

τ =
〈f ′(0),f ′′(0),f ′′′(0)〉
|f ′(0)× f ′′(0)|2

.

This gives the following corollary.

Corollary 15. In the plane, quadratic interpolation to four points is always pos-
sible in a neighborhood of a point where the curvature is nonzero, and all such
schemes are fourth-order accurate. In space, cubic interpolation at five points is
always possible in the neighborhood of a point where the torsion is nonzero, and all
such schemes are fifth-order accurate.

As an example of these ideas, consider interpolation of four coalescing points in
the plane with quadratics in some more detail. This scheme will also be important
in our analysis of cubic schemes in the next section.

Example. Quadratic Taylor approximation in the plane. If the parametric
curve is f , and f ◦ φ is some reparametrization, we can approximate f at t = 0 by
Taylor expansions of f ◦ φ, where we may assume that φ(0) = 0. The quadratic
Taylor approximation looks like

f
(
φ(s)

)
= f(0) + α1f

′(0)s+
(
α2f

′(0) + α2
1f
′′(0)

)s2

2
,

where α1 = φ′(0) and α2 = φ′′(0). From this, we see, as expected, that there is no
loss in choosing α1 = 1 (replace the parameter s by s/α1). We also see that it is in
general impossible to reduce a quadratic approximation to a linear one by choosing
α2 in a clever way.

However, it is clear that the cubic Taylor approximation to f ◦ φ reduces to a
quadratic if D3(f ◦ φ)(0) = 0 (see (17)), i.e., if

α3f
′(0) + 3α2f

′′(0) + f ′′′(0) = 0,

where we have assumed that α1 = φ′(0) = 1. Employing the bracket notation used
in the proof of Theorem 14, we find

α2 = − 〈f
′(0),f ′′′(0)〉

3〈f ′(0),f ′′(0)〉
and α3 =

〈f ′′(0),f ′′′(0)〉
〈f ′(0),f ′′(0)〉

.

Since the curvature of f at t = 0 is given by κ(0) = 〈f ′(0),f ′′(0)〉/|f ′(0)|3, this
scheme is only defined when κ(0) 6= 0, in accordance with Theorem 14.

Note that as an extra bonus from determining the quadratic Taylor approxima-
tion we have found a reparametrization g = f ◦ φ of f with the property that
g′′′(0) = 0. This will be useful in the next section.

6. Stability of cubic schemes in the plane

In the previous section we developed some results about the stability of the
parametric interpolation procedure valid in any space dimension. The cubic case in
the plane is an important case that is not covered by these results. To study this in
detail, we start by considering the Taylor case. In what follows some abbreviations
will be useful. The notation f ′ will denote f ′(0), as above the bracket notation
〈a, b〉 will denote the determinant of the matrix with rows a and b, while di,j =

〈f (i),f (j)〉, the determinant of the ith and jth derivative of f at 0.
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The cubic Taylor approximation to f ◦ φ will be sixth-order accurate at t = 0 if
D4(f ◦ φ)(0) = D5(f ◦ φ)(0) = 0, that is, if

α4f
′ + (4α3 + 3α2

2)f ′′ + 6α2f
′′′ + f (4) = 0,(26)

α5f
′ + (10α2α3 + 5α4)f ′′ + (15α2

2 + 10α3)f ′′′ + 10α2f
(4) + f (5) = 0,

(27)

(recall that α1 = φ′(0) = 1 in the Taylor case). The following theorem shows that
this system of equations always has a solution as long as the three vectors f ′, f ′′

and f ′′′ span R2.

Theorem 16. Suppose that f is a curve with the property that span{f ′,f ′′,f ′′′} =
R2 at t = 0. Then the system of equations (26)–(27) has at least one solution, so
there is a cubic polynomial curve that is sixth-order accurate in a neighborhood of
the point t = 0. If the first three derivatives are linearly dependent, the system has
no solution unless the first five derivatives are dependent, in which case f agrees
with a straight line up to sixth-order.

Proof. Suppose first that 〈f ′,f ′′〉 6= 0. Then we can form four scalar equations
from (26) and (27) by taking determinants with f ′ and f ′′,

α4d1,2 − 6α2d2,3 − d2,4 = 0,(28)

(4α3 + 3α2
2)d1,2 + 6α2d1,3 + d1,4 = 0,(29)

α5d1,2 − (15α2
2 + 10α3)d2,3 − 10α2d2,4 − d2,5 = 0,(30)

(10α2α3 + 5α4)d1,2 + (15α2
2 + 10α3)d1,3 + 10α2d1,4 + d1,5 = 0.(31)

We see that α4, α3 and α5 can be found in terms of α2 from (28), (29) and (30),
respectively. If these expressions are substituted in (31), we obtain a cubic equation
in α2 with coefficients that are polynomials in the di,j . In particular, the coefficient
multiplying α3

2 is d2
1,2. Since we have assumed that d1,2 6= 0, this equation, therefore,

always has at least one real solution. The other unknowns can then be found from
α2.

Suppose next that d1,2 = 0, but d1,3 6= 0. Then we take determinants in (26)
and (27) with f ′ and f ′′′ and find

6α2d1,3 + d1,4 = 0,(32)

α4d1,3 + (4α3 + 3α2
2)d2,3 − d3,4 = 0,(33)

(15α2
2 + 10α3)d1,3 + 10α2d1,4 + d1,5 = 0,(34)

α5d1,3 + (10α2α3 + 5α4)d2,3 − 10α2d3,4 + d3,5 = 0.(35)

We see that we can find α2 from (32), then α3 from (34), then α4 from (33) and
finally α5 from (35), all by solving a linear equation, provided d1,3 6= 0.

If the first three derivatives are linearly dependent, i.e., if d1,2 = d1,3 = d2,3 = 0,
it is easy to see that the first five derivatives must be dependent for a solution to
exist. If this is the case, we have infinitely many solutions.

Theorem 16 only tells us that six-fold interpolation at t = 0 is possible, but
the results of the previous section tell us that if the Jacobian of the system of
equations is nonzero at a solution, then there is also a cubic polynomial curve
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that interpolates f at six points in any neighborhood of t = 0. Unfortunately,
the condition span{f ′,f ′′,f ′′′} = R2 is not sufficient to ensure that the Jacobian
is nonzero, but it turns out that even if the Jacobian is zero, interpolation at six
points in a neighborhood of t = 0 is possible.

Theorem 17. Suppose that f is a curve such that span{f ′(0),f ′′(0),f ′′′(0)} =
R2. If |h| is sufficiently small, there is at least one cubic parametric curve that
interpolates f at the six points 0, t1, t2, t3, t4, h, where 0 ≤ |ti| ≤ |h| for 1 ≤ i ≤ 4.
Any cubic approximation scheme that interpolates f in this way is therefore sixth-
order accurate.

Proof. From Theorem 16 we know that the result is true for h = 0; we just have to
show that it is also true when the six interpolation points are in some neighborhood
of t = 0. If the Jacobian determinant of the system of equations is nonzero at the
Taylor solution, we know from Proposition 12 that the equations are also solvable
for six arbitrary interpolation points in a neighborhood of t = 0.

From Lemma 11 we find that the Jacobian of the system of equations with all
interpolation points at zero is

detJ = det

[
6(α2f

′′ + f ′′′) 4f ′′ f ′ 0

10(α3f
′′ + 3α2f

′′′ + f (4)) 10(α2f
′′ + f ′′′) 5f ′′ f ′

]
.

(36)

Suppose first that d1,2 = 0, so that 〈f ′,f ′′〉 = 0 but d1,3 = 〈f ′,f ′′′〉 is nonzero.
Expanding the determinant, we find J = −60d2

1,3, and hence there is a solution for
any set of six interpolation points in some neighborhood of t = 0, and this solution
depends smoothly on the interpolation points.

The case d1,2 = d1,3 = 0 is trivial, as above in Theorem 16, so we assume now
that d1,2 6= 0. We can then reparametrize f so that f ′′′ = 0 by using the change
of parameter that is induced by the quadratic Taylor scheme, see the end of §5. In
this case the equations (28)–(31) become

α4d1,2 − d2,4 = 0,

α5d1,2 − 10α2d2,4 − d2,5 = 0,

(4α3 + 3α2
2)d1,2 + d1,4 = 0,

(10α2α3 + 5α4)d1,2 + 10α2d1,4 + d1,5 = 0.

Now we subtract five times the first equation from the last, thereby eliminating α4.
The determinant detJ∗ of the Jacobian J∗ of this system is not changed by this
operation. For the unknowns α2 and α3 we obtain the reduced system

f1 = (4α3 + 3α2
2)d1,2 + d1,4 = 0,

f2 = 10α2α3d1,2 + 10α2d1,4 + d1,5 + 5d2,4 = 0.

Since the remaining two equations are linear in the only unknowns α4 and α5, we
see that

detJ∗ = d2
1,2 detJf ,
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where Jf is the Jacobian of the reduced system. If we now subtract 5α2 times f1

from 2f2, we obtain the new system

g1 = f1 = (4α3 + 3α2
2)d1,2 + d1,4 = 0,

g2 = 2f2 − 5α2f1 = p(α2) = −15α3
2d1,2 + 15α2d1,4 + 10d2,4 + 2d1,5 = 0.

(37)

The Jacobian Jg of this system satisfies detJg = −d1,2p
′(α2). By the chain rule,

we therefore have

detJ∗ = 2d2
1,2 detJg = 8d3

1,2p
′(α2),

at a solution of the equations. Since p is a cubic polynomial we can always find a
solution for which p′(α2) is nonzero except when p has one real root of multiplicity
three. From (37) we see that this can only happen when

d1,4 = 0,

5d2,4 + d1,5 = 0,
(38)

and the root is α2 = 0. Since then the Jacobian is zero, we have to work harder
to prove the theorem in this case, but it follows from the following sequence of
lemmas.

The idea of the proof in the singular case (38) is via perturbation of the equations
(28)–(31). We write this system in the form

T (α)− d = 0,(39)

where

d = (d2,4,−d1,4, d2,5,−d1,5)(40)

and T (α) denotes the remaining part of the system.
The norm that is being used in this section is the vector max-norm, which for

a vector x = (x1, . . . , xm) is defined by ||x|| = maxi |xi|. Note that in what
follows we always assume that f is parametrized so that f ′′′(0) = 0. We start by a
lemma which shows that general parametric interpolation can be considered to be
a perturbation of parametric Taylor interpolation. Without loss of generality we
assume for the rest of this section that h ≥ 0.

Lemma 18. Let d denote the column vector d = (d2,4,−d1,4, d2,5,−d1,5)T , and let
T : R4 7→ R4 denote the nonlinear mapping so that

T (α)− d = 0

corresponds to the system of equations (28)–(31). Then the general system of equa-
tions

[0, s1, s2, s3, s4](f ◦ φ) = 0,(41)

[0, s1, s2, s3, s4, h](f ◦ φ) = 0(42)

can be written

T (α) + hsh(α) = d,(43)
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where it is assumed that φ is of the form (21), and α = (α2, α3, α4, α5). For any
β and γ in the ball B(w) =

{
x
∣∣ ||x|| ≤ w

}
and any h smaller than some H, the

mapping sh satisfies ∥∥sh(γ)− sh(β)
∥∥ ≤ C1||γ − β||.(44)

Here, the symbol C1 denotes a bounded constant that depends on the derivatives of
f in a neighborhood of [0, h] and the constants w and H.

Proof. Equation (43) has four components, two from each of the vector equations
(41) and (42). Since these two equations are similar, we only consider the first one
in detail.

Recall that by Peano’s representation theorem for divided differences we have

δ4(f) = 4! [0, s1, s2, s3, s4]f ◦ φ =

∫ s4

0

M4(s)
(
f ◦ φ

)(4)
(s) ds,

where M4(s) is the cubic B-spline with knots at (0, s1, s2, s3, s4), normalized to
have unit integral. Write δ4(f) as

δ4(f) = (f ◦ φ)(4)(0) +

∫ s4

0

M4(s)
[
(f ◦ φ)(4)(s)− (f ◦ φ)(4)(0)

]
ds

= (f ◦ φ)(4)(0) + hRh(α),

where

Rh(α) = (1/h)

∫ s4

0

M4(s)

∫ s

0

(f ◦ φα)(5)(u) du ds.

By standard properties of integrals we have

‖Rh(γ)−Rh(β)‖ ≤ max
0≤u≤s4

∥∥∥(f ◦ φγ)(5)(u)− (f ◦ φβ)(5)(u)
∥∥∥ .(45)

From Lemma 10 we know that (f ◦ φα)(5)(u) depends smoothly on α. The mean
value theorem then gives∥∥∥(f ◦ φγ)(5)(u)− (f ◦ φβ)(5)(u)

∥∥∥ ≤ K||γ − β||
for some constant K that only depends on w and H, and values of f (6) in a
neighborhood of [0, h].

A similar argument can be applied to (42), resulting in a similar inequality.
Taking determinants with f ′(0) and f ′′(0) and then assembling gives (44).

From Lemma 18 we see that the system of equations (41)–(42) can be written

T (α) = d− hsh(α).

If we know that the mapping T is invertible in a neighborhood of a solution, this
suggests the fixed point iteration

αk+1 = T−1 (d− hsh(αk))

as a numerical method for finding the solution. To ensure that the iteration con-
verges, we need T to be “nice”, for example to have a nonsingular Jacobian at
the solution. What we did in applying the implicit function theorem is essentially
equivalent to this. However, the one case (38) where we have not proved Theo-
rem 17 is characterized by the fact that the Jacobian is singular, and this is the
reason why the implicit function theorem could not help us. A way out is provided
by the following lemma.
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Lemma 19. Suppose that d1,2 6= 0 and f ′′′(0) = 0, and also that d1,4 = 0 and
5d2,4 + d1,5 = 0. Consider the mapping T h(α) = T (α) + hE(α), where

E(α) =

{
(d1,2α4, 0, 0, 0) if d1,5 6= 0,

(0, 0, 0, d1,2α5) otherwise.

This mapping has an inverse for h < 1. If f (5)(0) 6= 0, this inverse satisfies, for
h > 0, the inequality ∥∥T−1

h (b)− T−1
h (c)

∥∥ ≤ C2h
−2/3‖b− c‖,(46)

for all b and c in a sufficiently small neighborhood of d. Here, the symbol C2

denotes some constant independent of h.

Proof. Suppose that d1,5 6= 0. Then the system T h(γ) = c is

γ4d1,2 + γ4hd1,2 = c1,

(4γ3 + 3γ2
2)d1,2 = c2,

γ5d1,2 − 10γ2d2,4 = c3,

(10γ2γ3 + 5γ4)d1,2 = c4.

(47)

We can determine γ4 from the first equation and solve for γ3 in the second equation,
since d1,2 6= 0. Inserting these values in the last equation, we end up with the cubic
equation

ph(γ2; c) = −15d1,2γ
3
2 + 5γ2c2 + 2(5c1 − c4 − hc4)/(1 + h) = 0

for γ2. From this we can determine γ2, provided h 6= −1 and d1,2 6= 0. When γ2 is
known, we can determine γ5 from the third equation, once again since d1,2 6= 0.

We now study the system in the special case where the right-hand side is given
by d = (d2,4,−d1,4, d2,5,−d1,5). If we denote the vector of unknowns in this case
by α, the cubic equation reduces by (38) to

ph(α2;d) = −15d1,2α
3
2 + 2hd1,5/(1 + h) = 0,(48)

so the solution is

α2,h =

(
2d1,5

15d1,2(1 + h)

)1/3

h1/3 = Khh
1/3,

where Kh remains bounded for h ∈ [0, 1]. From this we see that the derivative of
ph with respect to α2, at the solution α2,h, is

p′h(α2,h;d) = −45d1,2K
2
hh

2/3.

Since this is nonzero, we know from the implicit function theorem that if we vary
the right-hand side of (47) in a small neighborhood of d, then there is always a
solution of the corresponding cubic equation that depends smoothly on the right-
hand side. Therefore, for any right-hand side b in some small ball B(d;w) around
d with radius w, any η sufficiently close to α2,h, and any h ≤ 1, we have

|p′h(η; b)| ≥ K1h
2/3,(49)

for some positive constant K1 independent of h.
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Now let b and c be two vectors in the neighborhood B(d;w), and let β and γ
be vectors such that T h(β) = b and T h(γ) = c. From the above we then have
ph(β2; b) = 0 and ph(γ2; c) = 0, and therefore by the mean value theorem

p′h(η; b)(γ2 − β2) = ph(γ2; b)− ph(β2; b) = ph(γ2; b)− ph(γ2; c),

for some η in (β2, γ2) (or (γ2, β2)). Since ph(γ; c) is a polynomial in the right-hand
side c, we have

‖ph(γ2; b)− ph(γ2; c)‖ ≤ K2 ‖b− c‖
for all b and c in B(d;w), with K2 some constant that only depends on d and w.
Combining this with (49), we find that

|γ2 − β2|h2/3 ≤ (K2/K1)||c− b||.
Since the other variables depend linearly on β2 and γ2, we therefore end up with
(46).

The above argument is clearly dependent on d1,5 being nonzero. If d1,5 = 0,

then d2,4 = 0 also, but if f (5)(0) 6= 0, then d2,5 6= 0. Proceeding as above with the
other definition of E, we end up with the same type of estimates, with d2,5 taking
over the role of d1,5 in (48). If d2,5 = 0 also, we would have d1,4 = d2,4 as well as

d1,5 = d2,5 = 0, and hence f (3) = f (4) = f (5) = 0, see below.

We can now solve the system (43) via fixed point iteration.

Lemma 20. Suppose that d1,4 = 0 and 5d2,4 + d1,5 = 0. If h is sufficiently small
and α0 is sufficiently close to the solution α∗ of the Taylor scheme at t = 0, then
the fixed point iteration

αk+1 = Lh(αk) = T−1
h (d− hsh(αk) + hE(αk))

converges to a solution of the system (43).

Proof. The lemma follows from the Banach fixed point theorem if we can show that
Lh is a contraction. For this we note that for small h,

‖Lh(γ)−Lh(β)‖ ≤ C2h
−2/3 · h ‖sh(γ)− sh(β) +E(β)−E(γ)‖

≤ C̃h1/3‖γ − β‖,

since the mappings sh, E and T−1
h satisfy Lipschitz conditions, see Lemma 18

and Lemma 19. Also, if we let α∗ denote the solution in the Taylor case, so that
T (α∗) = d and T h(α∗) = d+ hE(α∗), we find

‖Lh(γ)−α∗‖ =
∥∥Lh(γ)− T−1

h (T (α∗) + hE(α∗))
∥∥

≤ h1/3 (K1||γ −α∗||+ ||sh(γ)||)
≤ h1/3 (K1||γ −α∗||+K2) ,

for small h, where the last inequality follows since sh(γ) depends smoothly on γ.
Therefore we have

‖Lh(γ)−α∗‖ ≤ ||γ −α∗||
for sufficiently small h, so that Lh maps any sufficiently small neighborhood of α∗

into itself. We therefore conclude that Lh is a contraction for small h and therefore
has a fixed point, which is the solution of (43).
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Proof of Theorem 17. The case where f (i)(0) = 0 for i = 3, 4, 5 is not covered by
the above. But in this case we have

f(t) = f(0) + f ′(0)t+ f ′′(0)t2/2 + f (6)(0)t6/6 + · · ·
so that the initial quadratic part of f will be a sixth-order accurate approximation
in a neighborhood of t = 0.

7. Conclusion

In this paper we have introduced a general framework for parametric interpola-
tion by polynomial curves. This generalizes a number of parametric interpolation
methods that have appeared in recent years and suggests a host of new schemes.
We have proved existence of solution and high-order convergence for the simplest
schemes in each space dimension, and also for cubic schemes in the plane.

From our results here it is easy to make general conjectures. In the plane, the
conjecture is that there is always a polynomial curve of degree n interpolating f with
approximation order 2n in a neighborhood of a point where the first n derivatives
span R2. A completely analogous conjecture can be formulated in general space
dimension.

To prove such a conjecture seems like a very difficult task. One natural approach
is to start with the Taylor case and then use perturbation arguments like we did
here. However, even in the Taylor case the equations very quickly become very
messy. There would be some hope if the polynomial equations could be reduced to
one equation in one unknown of odd degree, as in the cubic case when d1,2 6= 0,
since we then always have a real solution. But experiments in Mathematica with
quartic approximations in the plane show that the equations can only be reduced
to an equation of even degree. The only hope of success seems to be to attack the
problem with other methods. Indeed, the equations can be formulated easily in
terms of divided differences and the conditions for solvability seem simple; there

Figure 1. Cubic Hermite interpolation to the parametric curve
(t, sin t) (dashed) at the points (−3π/4,−3π/4, 0, 0, 3π/4, 3π/4)
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is therefore hope that one can get to a solution without having to consider each
equation in detail. For examples of parametric interpolation methods we refer the
reader to the references, where many nice illustrations can be found. However,
numerical experiments confirm our results, and we include one example which il-
lustrates the potential of the schemes. In Figure 1 we have approximated the curve
(t, sin t) by the cubic Hermite interpolant at three points near the origin. Numer-
ically, we can let all the points approach t = 0, and in this process the error is
reduced by a factor of about 64 each time the length of the interpolation interval
is halved, as is predicted by Theorem 17. Note that the curvature of this curve
satisfies κ(0) = 0, so that 〈f ′(0),f ′′(0)〉 = 0. It is therefore a curve that is not
covered by the convergence analysis in [2].
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