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Abstract. The segmentation problem appears in most medical imaging
applications. Many research groups are pushing toward a whole body
segmentation based on atlases. With a similar objective, we propose a
general framework to segment several structures. Rather than inventing
yet another segmentation algorithm, we introduce inter-structure spa-
tial dependencies to work with existing segmentation algorithms. Rank-
ing the structures according to their dependencies, we end up with a
hierarchical approach that improves each individual segmentation and
provides automatic initializations. The best ordering of the structures
can be learned off-line. We apply this framework to the segmentation of
several structures in brain MR images.

1 Introduction

Different anatomical structures often have strong spatial dependency among each
other. This spatial dependency is usually present in a hierarchical manner, i.e.,
the shape and pose variations of one structure is fully or partially bounded by
those of other more stable structures. We refer to this type of spatial dependency
as ordered spatial dependency due to its ordered nature. Radiologists routinely
rely on ordered spatial dependency to help them locating and identifying struc-
tures that have large variations in shape, pose, and appearance by searching
its presence relative to other structures that are much easier to identify. In this
paper, we would like to take benefit from this inter-structure ordered spatial de-
pendency in an explicit manner by proposing a novel general image segmentation
framework. The proposed framework learns the ordered spatial dependency from
pre-segmented training images and applies the learned model to improve both
the performance and robustness of individual segmentation algorithms utilized.

A key benefit of the proposed framework is that it is not another new seg-
mentation algorithm but a new general framework that could integrate any ex-
isting segmentation algorithms. The motivation of this work arises from the fact
that many powerful and effective segmentation algorithms such as seeded re-
gion growing[1], watershed[16], active contours[9,3], and graph cuts[2,12] have
been proposed and used widely in particular for medical image segmentation
applications. The topic of devising a segmentation framework that combines ex-
isting segmentation algorithms to achieve better results has recently emerged as
a new promising research direction [13]. The work [13] proposed a framework
that computes an improved segmentation result based on optimizing parameter
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values of multiple segmentation algorithms. Similarly, our proposed framework
also improves the segmentation results over the individual algorithms utilized,
but it achieves this in a different way by focusing on segmenting objects in a
hierarchical manner using the ordered spatial dependency.

Observing that structures often have a strong spatial dependency, we define a
new spatial prior based on neighboring structures. This dependency is introduced
by registering the structure of interest to a common reference coordinate system
based on neighboring structures. This can be achieved by computing the elastic
matching of the neighboring structures from one image to a reference one, and
then applying it to the structure of interest. This modeling can be implemented
for each structure, based on the ones already segmented. This leads us to the
definition of a hierarchical segmentation framework.

The proposed work has two important contributions: 1) the explicit modeling
and utilization of ordered spatial dependency for segmentation; 2) the estimation
of the optimal segmentation sequence for segmenting multiple structures. Our
work is closely related to atlas-based segmentation (cf. [5,11,8]), which treats
segmentation as a registration problem by elastically matching a pre-segmented
atlas to the target image. Atlas-based segmentation approaches are generally
better-suited for segmenting structures that are stable over the population of
study. Our proposed framework uses elastic matching to enforce the spatial de-
pendency and restricts the plausible segmentation space rather than using it to
obtain the final segmentation. The actual segmentation of each structure is still
performed using a pre-selected segmentation algorithm.

Other closely related work are the active shape and appearance models [6,7,10],
which assume a statistical correlation between the shape or appearance of the or-
gans over population. Our proposed segmentation framework uses a weaker as-
sumption by modeling the relative locations of the structures between one and
another. It is also worth noting that recent works on joint segmentation and reg-
istration [17,15,14], that also use segmentation and registration in an iterative
manner, are primarily used for segmenting two or more images simultaneously
and do not use ordered dependency. In fact, one could incorporate active shape
and appearance models within our framework as its building blocks like any other
segmentation algorithms.

In the following sections, we detail the proposed segmentation framework and
demonstrate its utility in segmenting multiple structures from MR brain images.

2 Modeling Inter-structure Spatial Dependency

Let {S1, . . . ,SN} be the set of structures of interest in an image. We assume a
dataset of M annotated images to be available. We note {sij ; i = 1, . . . , N, j =
1, . . . ,M} the complete set of structures. Given a manual segmentation s of a
structure S ∈ {S1, . . . ,SN}, we propose a smooth approximation of the condi-
tional probability of an image location x to be inside the structure s:

pS(x|s) ∝ exp(Hε(φ(x)) − 1),
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where φ is the distance transform of s and Hε is a regularized Heaviside func-
tion with ε controlling the level of smoothness [3]. This distribution gives high
probability to voxels inside s and low probability to the ones outside, and the
smoothness of the transition is related to the distance to the interface. Also, we
note the conditional probability of a voxel x to belong to the background of s as
pS̄(x|s):

pS̄(x|s) ∝ exp(−Hε(φ(x))).

Now, if we want to combine all the annotated instances of a structure Si to
define the spatial prior probability of the structure Si, we need to place the
manual segmentations in a common reference1. It is at this point that we con-
sider the ordered spatial dependency, i.e., Si’s dependency on known neighboring
structures. The principle is to align all the instances sij of Si to a common coor-
dinate system using the known structures as anchors. This is done by estimating
a warping between each instance of the anchor structure(s) to a chosen refer-
ence. These warpings are obtained using an image based registration algorithm
[4] applied on level set representations of each structure instance. If several an-
chor structures are available, they are merged to form a single shape composed
of several components. This allows us to constrain even more the deformation
field between the structures.

Then, these warpings are applied to the corresponding structures sij . Let
s̃ij be the segmentation transformed by the warping ψij and φ̃ij be its level
set representation, the spatial prior probability of Si and its background S̄i are
defined in the reference image as the geometric mean of each individual prior:

pSi(x)∝
⎛
⎝

M∏
j=1

exp
(
Hε(φ̃ij(x)) − 1

)⎞
⎠

1
M

, pS̄i
(x) ∝

⎛
⎝

M∏
j=1

exp
(
−Hε(φ̃ij(x))

)⎞
⎠

1
M

Up to now, we did not give any detail about which anchor structures were
considered to estimate the warping. A priori, we do not know which structure Si

is spatially dependent on. We propose to learn these dependencies by defining
the spatial probability of Si with respect to other structures {Sk, k �= i}. We
denote Vi all possible subsets of {Sk, k �= i}, vi ∈ Vi a subset of segmented
structures, and vij the corresponding annotated structures in the training image
j. With these notations, all structure sij are registered to a reference image by
estimating the warpings that align vij to a reference set vir. Therefore, for each
choice of subset vi, we end up with different registrations and hence, a different
spatial prior probability for Si. Since this probability is subject to the selected
subset vi, we will use the notations pSi(x|vi) and pS̄i

(x|vi) to denote respectively
the prior probabilities of a voxel to be inside and outside the structure Si, given
a set of known segmentations vi. The choice of the optimal subset of reference
for each structure is studied in Section 3.2.

1 The common reference is chosen arbitrary in this work. It would be interesting to
study how important this choice is.
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In the following section, we incorporate this spatial prior in a general segmen-
tation framework and we detail the complete framework obtained when a level
set based approach is considered.

3 Integrating Spatial Prior in the Segmentation Process

Given an image I and a set of segmented structures v, we want to extract an-
other structure s of the class S (the class S is one of the classes Si considered
previously). We consider a statistical formulation of this segmentation problem
using a maximum a posteriori estimation. This consists in maximizing the pos-
terior conditional distribution p (s|I, v). Making the assumption that I and v are
not correlated, the optimal structure is the one maximizing

p (s|I, v) = p (s|I) p (s|v).
The first term can be expressed with any statistically defined segmentation al-
gorithm whereas the other one can integrate the spatial prior learned in the
previous section. To incorporate this prior knowledge, we make the assumption
that the prior probabilities of the locations x are independent and identically
distributed. This allows us to incorporate the spatial prior probability term in-
troduced in the previous section:

p (s|v) =
∏

x∈sin

pS(x|v)
∏

x∈sout

p S̄(x|v),

where sin and sout are respectively the parts of the image inside and outside
the structure s. This formulation is very general and any efficient segmentation
approaches like graph-cuts [2,12] and surface evolutions [9,3] can be considered.
In the following, we develop our system using level set based surface evolutions
but this should not be seen as the only possibility.

3.1 Level Set Based Segmentation

In the level set framework, the structure of interest is represented as the zero
crossing of an embedding function φ : Ω → R : s = {x ∈ Ω|φ(x) = 0}. Hence,
the problem of finding the surface s becomes the one of finding a real function
φ that maximizes: p (s|I, v) → p (φ|I, v). Equivalently, the optimal solution can
be obtained from the minimization of the energy:

E(φ) = − log p (φ|I, v) = − log p (φ|I) − log p (φ|v)
We follow [3] to define the first term with a region-based criteria and a regularity
constraint. To use the spatial prior, we first need to register the anchor structures
from the current image to the reference ones used for modeling. Let ψ be the
obtained warping, the whole energy can be written as follows:

E(φ) = −
∫

Ω

(Hφ log pin(I(x)) + (1 −Hφ) log pout(I(x)) + ν|∇Hφ|) dx

− λ

∫

Ω

(Hφ log pS(ψ(x)|v) + (1 −Hφ) log p S̄(ψ(x)|v)) dx,
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where pin and pout are the intensity distributions inside and outside the struc-
tures. They can be estimated on-line or a priori from the learning set. We min-
imize this energy using a gradient descent obtained from the Euler-Lagrange
equations. This gives the following curve evolution:

φt = δ(φ)
(
ν div

( ∇φ
|∇φ|

)
+ log

pin(I)
pout(I)

+ λ log
pS(ψ(x)|v)
p S̄(ψ(x)|v)

)

= δ(φ)

⎛
⎝ν div

( ∇φ
|∇φ|

)
+ log

pin(I)
pout(I)

+
λ

M

M∑
j=1

(
2Hε(φ̃cj(ψ(x))) − 1

)⎞
⎠

where φ̃cj stand for the warpings estimated during the modeling phase for the
current shape. The segmentation of s is obtained by evolving φ according to this
equation until convergence (the initialization is discussed in the next paragraph).
For an efficient implementation,

∑M
j=1

(
2Hε(φ̃cj(x)) − 1

)
can be estimated off-

line, and then warped to the current image domain using ψ.

3.2 Hierarchical Segmentation

For a given ordering, we can run the segmentation algorithm on each structure
successively. This process can be initialized automatically if we are able to seg-
ment the first structure without any spatial prior. In most medical images, this
can be done easily by starting with the envelope of the body. Then, to segment
each structure, we also need to initialize the associated level set. A straightfor-
ward solution is to place seeds inside each structure. Obviously, this would give
a good initialization but it requires user interaction. The spatial prior can be
used to make these initializations automatic by selecting the voxels with a prior
probability greater than a threshold τ . More precisely, the initial level set φ0

i

used to extract the structure Si is set as follow2:
⎧⎨
⎩
φ0

i (x) = +1, if log
pS(ψ(x)|v)
p S̄(ψ(x)|v) ≥ τ,

φ0
i (x) = −1, otherwise.

With this technique, the segmentation of all N structures can be obtained auto-
matically. Only the weights ε, ν, λ and τ must be set before starting the process.

4 Estimation of the Optimal Segmentation Sequence

To learn the subset vi that helps the segmentation of Si the best, we propose
to apply the segmentation on a second set of annotated images. For each vi, we
can measure the quality of the segmentation according to a chosen similarity
measure M between the automatic and “true” segmentation. Assuming that,
2 Once initialized with the spatial prior, the level set is projected to a signed distance

functions. This is repeated after each iteration of the level set evolution.
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Fig. 1. Location priors corresponding to the optimal ordering - From left to
right are the shown the reference image, and the spatial priors of (1) the lateral ventricle
given the skull, (2) the thalamus given the skull and the lateral ventricle, and (3) the
caudate nucleus given all other structures

if Sj depends on Sk, Sk cannot depend on Sj , the objective is to estimate the
best ordering of the structures such that structures classified higher can be used
to extract lower-classified ones. Once all the segmentations obtained for a given
ordering, we measure the overall quality of the process by comparing the re-
sults with the manual segmentations according to a similarity measure M. The
optimal ordering is then given by:

Ô = arg max
O∈O

N∑
i=1

M∑
j=1

M(sij , ŝij(O)),

where O is set of all permissible orderings, and ŝij(O) is the segmentation ob-
tained automatically in the image j for the structure Si using the ordering O. As
for the similarity measure, we use the Dice coefficient. In general the number of
structures to extract is relatively small (<10) and all combinations can be tested.
If we fix the first structure, the number of combinations is equal (N − 1)!. Even
though, this number gets high for N = 10, this is an off-line process and the user
can introduce heuristics to reduce the possible orderings. For example if choosing
a given structure at a high level conducts to a bad segmentation of the next one,
a whole set of possible orderings can be discarded. We are conducting further in-
vestigations to reduce efficiently the possible orderings in a more theoretical way.

5 Hierarchical Segmentation of Brain Structures in MR
Images

We validate this segmentation framework on several structures of the brain in
MR images: the lateral ventricles, the caudate nucleus, the thalamus and the
skull. These structures were annotated manually in 13 different sagittal slices.

The first step is the learning of the optimal ordering. To start this process,
we must be able to segment automatically the first anchor structure. For the
brain image shown in Figure 1, this is relatively simple if we consider the skull.
Initializing the level set with a seed in the background is sufficient to get its
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Fig. 2. Location priors for each possible ordering - Each column shows the spatial
prior obtained for one particular ordering. Priors corresponding to the optimal ordering
are shown in the third column.

Fig. 3. Examples of automatic segmentations - From left to right: segmentation
without prior and with manual initialization, automatic segmentation of the same
image, and three different results obtained with the “optimal” ordering

segmentation. Then, each structure can be initialized automatically by follow-
ing Section 3.2. We set the threshold τ to the maximum value of the location
map J minus 0.1. This guarantees to give a seed inside the structure. Having 4
structures, the number of possible orderings is 6. We have tested our algorithm
for each possible choice. Figure 1 shows the sequence that maximizes the overall
Dice coefficient between the obtained segmentations and the manual ones for the
whole training set. Figure 2 shows the location maps estimated for each ordering.

Once the optimal ordering known, we can validate the approach using a leave-
one-out strategy on the 13 available images. A few results are presented in Figure
3. As quantitative validation, we computed the Dice coefficient for each of the
52 automatically computed segmentation, giving an average above 0.8.

6 Conclusion

We have presented a novel image segmentation framework that learns the or-
dered spatial dependency among structures to be segmented and applies it in a
hierarchical manner to both provide automatic initializations and improve each
individual segmentation algorithm’s performance. We demonstrated the efficacy
of the proposed framework by applying it to the MR brain image segmentation
with level set algorithm as its segmentation algorithm. Future work includes ap-
plying this framework to more applications with more types of segmentation al-
gorithms. We believe that the paradigm of “boosting” segmentation performance
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by combining existing segmentation algorithms into a systematic framework is
a promising research direction and the work presented in this paper is one step
along this direction.
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