
A General Framework for Incremental Processing of
Multimodal Inputs

Afshin Ameri E., Batu Akan, Baran Çürüklü, Lars Asplund
Mälardalens Högskola, Box 883, 721 23 Västeras, Sweden

afshin.ameri@mdh.se, batu.akan@mdh.se, baran.curuklu@mdh.se, lars.asplund@mdh.se
∗

ABSTRACT

Humans employ different information channels (modalities)
such as speech, pictures and gestures in their communi-
cation. It is believed that some of these modalities are
more error-prone to some specific type of data and therefore
multimodality can help to reduce ambiguities in the inter-
action. There has been numerous efforts in implementing
multimodal interfaces for computers and robots. Yet, there
is no general standard framework for developing them. In
this paper we propose a general framework for implementing
multimodal interfaces. It is designed to perform natural
language understanding, multimodal integration and seman-
tic analysis with an incremental pipeline and includes a
multimodal grammar language which is used for multimodal
presentation and semantic meaning generation.

1. INTRODUCTION
In-person communications between humans is a multi-

modal and incremental process [1]. These two features
benefit the interaction between humans in several ways:

First, some modalities are more error-prone to some
special types of information and can transfer other data
types more precisely [8]. In a multimodal communication,
humans can use the modality which is more reliable for the
information to be transferred.

Second, in a multimodal interaction, different modalities
are complementary to each other. This helps to reduce the
ambiguity in perceived information and removal of vague
data [8].

Third, the incremental nature of communication in hu-
mans helps to start processing of perceived inputs from
different modalities as they are being received and build up
the semantic meaning of them [7] . It means that humans
build up their response or reaction as they perceive the
inputs [7, 1]. In HCI/HRI domain, incremental processing

∗This project is funded by Robotdalen, VINNOVA, Spar-
banksstiftelsen Nya, EU European Regional Development
Fund.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICMI’11, November 14–18, 2011, Alicante, Spain.
Copyright 2011 ACM 978-1-4503-0641-6/11/11 ...$10.00.

helps to improve response times of computer systems.
Multimodal systems should be very responsive, because (if
not) they may lead to repetition of commands from the
user, more ambiguity in the recognition process and user
annoyance [2].

In this paper we propose a framework for rapid develop-
ment of multimodal interfaces. The framework is designed
to perform modality fusion and semantic analysis through
an incremental pipeline. The framework also employs a
new grammar definition language which is called COac-
tive Language Definition (COLD). COLD is responsible
for multimodal grammar definition and semantic analysis
representation.

2. BACKGROUND
Multimodal grammars were proposed in [6, 4] for def-

inition of mixed inputs from different modalities. They
have used unification-based approaches and later, finite-
state transducers (FST) to parse and fuse different modality
inputs [4, 5].

A more dynamic approach compared to FST model is
presented in [10]. The model uses a graph with terminal
and non-terminal nodes for grammar representation. This
approach allows for on fly expansion of graph during the
recognition [10].

A framework which uses spatial ontologies and user
context for multimodal integration is described in [3]. The
grammar is defined as a part of Microsoft Speech API,
which means that object and other modalities’ anchors are
defined as part of the speech grammar. In other words, non-
speech modalities need a specific speech anchor in order to
be integrated into the multimodal interaction.

A framework for rapid development of multimodal appli-
cations is presented in [2]. Although authors accept the fact
that system responsiveness is an important factor in such
systems, they refuse to perform the fusion during the speech
and discuss that such an approach may lead to constraints
on user interaction.

An interesting multimodal system with an incremental
pipeline is presented in [1]. Their system which is called
RISE, can process syntactic and semantic information from
audio/visual inputs incrementally and generates the feed-
back on-the-fly. RISE’s architecture is based on incremental
parsing of speech input with different sub-systems that try
to resolve the references in the speech through visual data
or the context of dialogue.

An abstract model for implementing an incremental di-
alogue manager is proposed in [9]. Although the model is

not designed for multimodal interactions, but it can easily
be modified for that.

Like [3] and [1], we also use object references during fusion.
In order to dismiss the problem of using speech as the main
modality, we have defined a multimodal language (which
we call it COLD) that allows us to define any mixture of
different modalities. Pure non-speech communications are
easily achievable through COLD. We also take a similar
approach as [10] for grammar representation and parsing.
Our contribution is in expanding this model to a more
general one which can represent several modalities in the
same graph.

3. ARCHITECTURE
An important part of the framework is COLD language.

COLD definitions are used to (1) generate separate gram-
mars for each modality, (2) define the fusion pattern, (3)
define the semantic variables and calculations and (4) define
dialogue patterns and dialogue turns.

3.1 COLD Language
In a similar approach to [4]; COLD language is capable

of defining the grammar of multimodal sentences and their
respective semantic representation. We have expanded
Johnston’s grammar to (1) include optional phrases and (2)
support semantic variable handling.

3.1.1 COLD Syntax

A sample of COLD code is shown in Figure 1. COLD’s
syntax can be divided into two subcategories: (1) grammar
definition and (2) semantic representation. Semantic repre-
sentation code is always inside curly braces. It can be any
Prolog code which is syntactically correct. The rest of the
code defines the grammar with the following syntax:

predicate (variable list) --> atom/predicate list

The “-->” sign, separates a predicate from its definition.
Predicates can define variables that will be used in semantic
analysis. Predicate definition is a space-separated list
of atoms or reference to other predicates. In order to
separate atoms for different modalities a colon ’:’ is used.
For example the first definition of “pickup” in Figure 1
means that pickup is the atom for first modality and
singleObjectSelect is an atom for the second modality.

Refernces to other predicates must be enclosed within
“<>” signs with all the variables that should be passed
to them. For example the second definition of pickup in
the sample image refers to object predicate and passes
TargetObj and Props variables to it.

Finally, optional phrases are enclosed in “[]”. They
are atoms or predicates which can be omitted from the
interaction. For example the first definition of putin in
figure 1 contains “[here]”. It means that the user can omit
the word “here” and still get the same response.

3.2 Incremental Multimodal Parsing
To make integration of new modalities easier, COLD

performs parsing of inputs through dedicated parsers for
each modality (unimodal parsers). All of them have access
to a shared copy of the multimodal grammar graph and a
pool of different hypothesis.

Figure 1: Some Sample code of COLD

3.2.1 Multimodal Grammar Graph

Multimodal grammar graph contains all of the data
defined in COLD code. It includes three different type of
nodes: rules, rule references and phrases. Rules contain a list
of all the phrases and rule references that define its grammar.
Rule references are references to other rules and phrases are
atoms that can be matched and parsed by parsers.

Each phrase or rule reference node contains a Prolog code
block object. The Prolog object stores related semantic
code. This allows for incremental semantic analysis through
incremental execution of the code.

Optional phrases are amrked with a boolean property. All
the nodes also include a list of variables that they can access.
Since variable values may be different for different competing
hypotheses, the values are not defined at graph level.

3.2.2 Hypothesis

Hypotheses are objects that include parse related data.
Their most important job is to store values for different
semantic variables during a parse. Each hypothesis also
contains a list of references to graph nodes that build up
that hypothesis. Hypothesis objects have the ability to
expand rule references when needed. This means that if
a rule reference is to be parsed, its representation in the
hypothesis is replaced by the complete representation of
referred rule. In such cases, it may be possible that a rule
expands into several different lists. Therefore, new copies of
the hypothesis object and its related semantic variables are
created and added to the pool.

3.2.3 Incremental Parser

Different components involved in parsing and their rela-
tions are shown in figure 2. Each modality needs an input
registrar. Its job is to capture the data, pack it and send it
to the central parser. The central parser receives data from
registrars and sends it to its respective parser. It also detects
completely parsed hypotheses and fires events in such cases.
Unimodal parsers are only responsible for parsing inputs
that are related to them.

Figure 2 shows the components as they are in our test
setup, but there may be more input registrars and unimodal
parsers for other scenarios.

Figure 2: Different components involved in parsing.

3.3 Modality Fusion
A direct result of using multimodal grammar graph is that

parsers will also contribute to fusion during their parse.
Because different modalities are already represented in a
unified format in the graph; as the incremental parsing goes
forward, the results from different parsers, will be fused
together consequently.

An important factor in modality fusion is synchronization
of different modalities. For example the putin command
(Figure 1) is defined as put it [here]:singleObjectSelect,
but it should not mean that the object selection can only
be accepted after saying the word “here”. Related inputs
from different modalities have a relation in time. This time
relation is reported to be 1000 ms in [10] and between 1000
ms to 2000 ms in [5]. We use a 2000 ms time difference.

In order to account for time relations, parsers are allowed
to postpone a parse request if the next node in the graph
does not have the same modality as the new input. In
such cases, parsers store the information locally and return
a value to the central parser indicating a postponed parse.
Upon arrival of a new input, the central parser first sends the
new input to the respective parser then asks the postponed
parser to check for a new parse. The parser then decides to
(1) accept the data (2) remove the data if the two seconds
time difference does not approve; or (3) request for another
postpone, if the two seconds difference still stands.

3.4 Semantic Analysis
Semantic analysis can be referred to as a search on the

set of possible target objects and actions. In this sense
each phrase of each modality can affect the final outcome
of semantic analysis. An easy way of performing this
search is to define different variables and narrow down their
values based on the inputs from different modalities. Prolog
language has proven to be the language of choice in such
cases for many researchers, mostly due to its ease of use.

The COLD framework supports Prolog predicates and
variables within COLD language. Each phrase or rule
reference can have its related Prolog code and variables.
When they are successfully parsed, the respective Prolog
code is executed and variables are updated. We use SWI-
Prolog as the core Prolog engine in the framework.

Because rule references act like a function call to a rule,
all the variables that are defined within the rule reference
should be passed to the rule. This happens as a call-
by-reference function call. This design helps us to define
semantic variables in the highest level of the grammar and
allow lower parts of it to manipulate them. The final value
of the variable is the semantic representation of that rule.

1
2 SpeechRegisterer :
3 New Input > Input : put , Time

:634412439907006250
4
5 Central Parser : Hypothes is Pool Change
6 cput in (@putin put in (put . i t here

s i n g l eOb j e c t S e l e c t))
7 cput in (@putin put in (put . i t in @object))
8 (G17561 , G17562)
9 (G17564 , G17565)

10
11 SpeechRegisterer :
12 New Input > Input : put i t , Time

:634412439909506250
13
14 Central Parser : Hypothes is Pool Change
15 cput in (@putin put in (put i t . here

s i n g l eOb j e c t S e l e c t))
16 cput in (@putin put in (put i t . in @object))
17 (G17573 , G17574)
18 (G17576 , G17577)
19
20 MouseRegisterer :
21 New Input > Type : s i n g l eOb j e c tS e l e c t ,

Target : object119 ,
22 Time :634412439909662500
23
24 Central Parser : Hypothes is Pool Change
25 cput in (@putin put in (put i t . in @object))
26 cput in (@putin put in (put i t . here

s i n g l eOb j e c t S e l e c t))
27 (G17588 , G17589)
28 (object119 , (ho ld ing (G17602) , put in (G17602

, ob jec t119)))
29
30 SpeechRegisterer :
31 New Input > Input : put i t here , Time

:634412439914818750
32
33 Central Parser : Hypothes is Pool Change
34 cput in (@putin put in (put i t in . @object))
35 cput in (@putin put in (put i t here .

s i n g l eOb j e c t S e l e c t))
36 (G17768 , G17769)
37 (object119 , (ho ld ing (G17782) , put in (G17782

, ob jec t119)))
38
39 Central Parser : Input Recognized
40 (object119 , (ho ld ing (G17743) , put in (G17743

, ob jec t119)))

Figure 3: output of the system while parsing the

sentence “put it here” and a click.

Prolog statements in COLD language are not used for
semantic analysis only, but are also useful for real-time
feedback to the user. For example, the pickup phrase
can contain a predicate that highlights all pickable objects
after receiving the word “pickup” from audio channel. This
happens during the speech by the user and helps the user to
develop a better interaction with the system.

Figure 3 shows system’s output during a parse. In order
to fit the output in the paper, it has been edited. At lines
2 and 3, SpeechRegistrar reports the input: “put”. Central
parser creates two hypothesis based on it (lines 6,7) and

reports their respective semantic representation (lines 8,9).
Note that at this point the semantic representation only
includes empty Prolog variables. After arrival of word “it”,
both hypothesis stand and since the word has no semantic
code assigned to it, nothing changes (lines 11-18). At
line 20, a mouse input arrives and it carries the selected
object (object119) with it. Now the parser can parse the
“singleObjectSelect”node, which belongs to mouse modality
and this leads to a more meaningful semantic representation
(lines 20-28). In this case, the parser did not wait for the
word “here”, because it is defined as an optional phrase in
grammar. After arrival of the word “here”, the parser fires
a recognition event and reports its semantic meaning. The
changes that are made in variable names during different
steps of parse are due to variable copying that was described
before.

4. RESULTS
To demonstrate the use of the proposed framework, we are

presenting a test case. Our setup consists of an ABB IRB140
industrial robot with a gripper and a camera attached to
the 6th joint, therefore the user can view the world through
the robots eyes. The images from the camera are overlaid
with the transparent virtual objects creating an augmented
reality (AR) user interface. Using the mouse, the user can
select objects and give voice commands to pick them up
and to put them in a location. The semantically analysed
voice and mouse commands are converted to simple Prolog
commands such as pickup(ObjectName), which are later
expanded to approach, and grasping patterns and finally
converted to RAPID language (programming language for
ABB robots), and sent to the robot controller for execution.

We used a kitting theme including a palette with empty
places. Red, blue and green colored objects in 3 different
stacks are placed on the workbench. The task is to create
a robot program for re-arranging the colored objects on the
palette. The Prolog statements generated at the end of the
semantic analysis can be saved to a file, and recalled later
on to recreate the robot program.

To assist the user, we highlight possible objects that are
applicable to the given command. For example in the
pickup case, when the user says the words “pickup” all
pickable objects are highlighted. As the user continues
to describe which object he wants the robot to pickup,
irrelevant highlights are removed. In Figure 4 samples of
this highlighting can be seen. The incremental nature of our
system can be used to generate early feedback and assistance
to the user even before the voice commands end. It is also
useful in conditions when user commands are ambiguous;
the feedback can help the user to recognize the ambiguity
before finishing the sentence.

5. CONCLUSION
We have designed and implemented an incremental frame-

work for development of multimodal interactions and tested
it in a kitting scenario. Incremental processing of inputs
allows for in-time interaction between the robot and its
human colleague. As a part of this framework we introduced
COLD language, which we use to define the multimodal
grammar and semantic analysis procedures. Semantic
analysis code is directly written in COLD with a Prolog-
like syntax, making development easier.

Figure 4: AR UI. (a) Blue objects are highlighted after

user says “pickup a blue object”. (b) While the robot

is holding an object, the user says “put”, and all empty

locations are highlighted.

We plan to add context-manager and dialogue manager to
the pipeline in the next steps. The context-manager will try
to resolve inter-dialogue relations. Dialogue manager will
get the outputs of the semantic analysis routines and builds
up a dialogue response for the user.

6. REFERENCES
[1] T. Brick and M. Scheutz. Incremental natural

language processing for HRI. ACM Press, New York,
New York, USA, 2007.

[2] F. Flippo, A. Krebs, and I. Marsic. A framework for
rapid development of multimodal interfaces.
Proceedings of the 5th international conference on

Multimodal interfaces - ICMI ’03, page 109, 2003.

[3] S. Irawati, D. Calderón, and H. Ko. Spatial ontology
for semantic integration in 3D multimodal interaction
framework. In Proc. ACM VRCAI2006, volume 1,
pages 129–135, New York, New York, USA, 2006.
ACM.

[4] M. Johnston. Unification-based multimodal parsing.
Proceedings of the 36th annual meeting on Association

for Computational Linguistics -, page 624, 1998.

[5] M. Johnston and S. Bangalore. Finite-state
multimodal integration and understanding. Natural

Language Engineering, 11(02):159–187, 2005.

[6] M. Johnston, P. R. Cohen, D. McGee, S. L. Oviatt,
J. a. Pittman, and I. Smith. Unification-based
multimodal integration. Proceedings of the 35th annual

meeting on Association for Computational Linguistics

-, pages 281–288, 1997.

[7] Y. Kamide, G. T. M. Altmann, and S. L. Haywood.
The time-course of prediction in incremental sentence
processing: Evidence from anticipatory eye
movements. Journal of Memory and Language,
49(1):133–156, 2003.

[8] S. L. Oviatt. Ten myths of multimodal interaction. In
CACM, 42(11):74–81, 1999.

[9] D. Schlangen and G. Skantze. A general, abstract
model of incremental dialogue processing. Proc. EACL
’09, (April):710–718, 2009.

[10] R. Stiefelhagen, C. Fogen, P. Gieselmann,
H. Holzapfel, K. Nickel, and a. Waibel. Natural
human-robot interaction using speech, head pose and
gestures. IROS 2004, pages 2422–2427, 2004.

