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A General Framework for Low Level Vision
Nir Sochen, Ron Kimmel, and Ravikanth Malladi

Abstract—We introduce a new geometrical framework based on
which natural flows for image scale space and enhancement are
presented. We consider intensity images as surfaces in the
space. The image is, thereby, a two-dimensional (2-D) surface
in three-dimensional (3-D) space for gray-level images, and 2-D
surfaces in five dimensions for color images. The new formulation
unifies many classical schemes and algorithms via a simple scaling
of the intensity contrast, and results in new and efficient schemes.
Extensions to multidimensional signals become natural and lead
to powerful denoising and scale space algorithms.

Index Terms— Color image processing, image enhancement,
image smoothing, nonlinear image diffusion, scale-space.

I. INTRODUCTION

T
HE IMPORTANCE of dynamics of image geometry in

the perception and understanding of images is by now

well established in computer vision. Geometry, symmetry,

and dynamics are also the main issues in physics. Borrowing

ideas from high-energy physics, we propose in this paper a

geometrical framework for low-level vision. The two main

ingredients of this framework are 1) defining images as em-

bedding maps between two Riemannian manifolds, and 2)

an action functional that provides a measure on the space

of these maps. This action is the natural generalization of

the L2 Euclidean norm to non-Euclidean manifolds and is

known as the Polyakov action in physics. The justification

for the use of this functional in computer vision is twofold: It

unifies many seemingly unrelated scale space methods on one

hand, and provides new and improved ways to smooth and

denoise images on the other. It will lead us in this paper to the

construction of image enhancement procedures for gray and

color images. The framework also integrates many existing

denoising and scale space procedures by a change of a single

parameter that switches between the Euclidean L1 and L2

norms.

Motivated by [2] and [31], we consider low level vision as

an input to output process. For example, the most common

input is a gray-level image; namely, a map from a two

dimensional (2-D) surface to a three-dimensional (3-D) space

. We have at each point of the coordinate plane
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an intensity . The space-feature has Cartesian

coordinates where and are the spatial coordinates

and is the feature coordinate1. The output of the low level

process in most models consists of 1) a smoothed image from

which reliable features can be extracted by local and, therefore,

differential operators, and 2) a segmentation, that is, either a

decomposition of the image domain into homogeneous regions

with boundaries, or a set of boundary points—an “edge map.”

The process assumes the existence of layers serving as

operators such that the information is processed locally in the

layers and forwarded to the next layer with no interaction

between distant layers. This means that the output has the

form which is the solution of , where

is a local differential operator and the input image is given as

initial condition. This process yields a one-parameter family

of images on the basis of an input image. Normally, such a

family is called a scale-space (see [35] and references therein).

The importance of edges that are obtained from the intensity

gradient is acknowledged, and gradient-based edge detectors

are a basic operation in many computer vision applications.

Edge detectors appear by now in almost all image processing

tools. The importance of edges in scale space construction

is also obvious. Boundaries between objects should survive

as long as possible along the scale space, while homogeneous

regions should be simplified and flattened in a more rapid way.

We propose here a new nonlinear diffusion algorithm which

does exactly that.

Another important question, for which there is only partial

answers, is how to treat multivalued images. A color image

is a good example since we actually talk about three images

(red, green, blue) that are composed into one. Should one treat

such images as multivalued functions as proposed in [14]?

We attempt to answer the above question by viewing images

as embedding maps, that flow toward minimal surfaces. We

go two dimensions higher than most of the classical schemes,

and instead of dealing with isophotes as planar curves we

deal with the whole image as a surface. For example, a gray

level image is no longer considered as a function but as a 2-

D surface in 3-D space. This idea is quite old [20], [46] for

gray-level images, yet, to the best of our knowledge, it was

never carried on to higher dimensions. As another example,

we will consider a color image as 2-D surfaces now in five

dimensions. We thank the editors for communicating to us a

related effort that is published in this issue (see [47]).

We have chosen to present our ideas in the following

order. Section II introduces the basic concepts of a metric

and the induced metric and presents a measure on maps

1While in this paper, the feature coordinate is simply the zeroth jet space
, we use the term feature space to leave room for a more general cases

like texture [24], etc.
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Fig. 1. Length element of a surface curve , may be defined either as a
function of a local metric defined on the surface , or as a function of
the coordinates of the space in which the surface is embedded .

between Riemannian manifolds that we borrowed from high-

energy physics. This measure provides a general framework

for nonlinear diffusion in computer vision, as shown in the

following sections. In Section III, we introduce a new flow that

we have chosen to name Beltrami flow, present a geometric

interpretation in the simplest 3-D case, its relation to previous

models, and two examples of the Beltrami flow for color

images. Then, in Section IV, we refer to other models that

are the result of the same action through different choices

of the image metric and the minimization variables. We also

study the geometrical properties of a generalized version of

the mean curvature flow that is closely related to the proposed

framework. We conclude in Section V with a summarizing

discussion.

II. POLYAKOV ACTION AND HARMONIC MAPS

A. The Geometry of a Map

The basic concept of Riemannian differential geometry is

distance. The natural question in this context is: How do we

measure distances? We will first take the important example

. Denote the local coordinates on the 2-D

manifold by , these are analogous to arc length for

the one-dimensional (1-D) manifold, i.e., a curve (see Fig. 1).

The map is explicitly given by , ,

. Since the local coordinates are curvilinear,

the squared distance is given by a positive definite symmetric

bilinear form called the metric whose components we denote

by

where we used Einstein summation convention in the second

equality; identical indices that appear one up and one down

are summed over. We will denote the inverse of the metric by

, so that , where is the Kronecker delta.

Let be an embedding of in ,

where and are Riemannian manifolds and and

are their metrics, respectively. We can use the knowledge of

the metric on and the map to construct the metric on

. This procedure, which is denoted formally as

, is called the pullback for obvious reasons and is

given explicitly as follows:

(1)

where are being summed over, and

.

Take, for example, a grey-level image which is, from our

point of view, the embedding of a surface described as a graph

in , as follows:

(2)

where are Cartesian coordinates. Using (1) we get

(3)

where we used the identification and in the

map .

Actually, we can understand this result in an intuitive

way: (1) means that the distance measured on the surface

by the local coordinates is equal to the distance measured

in the embedding coordinates (see Fig. 1). Under the above

identification, we can write

.

Next we provide a measure on the space of these maps.

B. The Measure on Maps

In this subsection, we present a general framework for non-

linear diffusion in computer vision. We will show in the sequel

that many known methods fall naturally into this framework

and how to derive new ones. The equations will be derived

by a minimization problem from an action functional. The

functional in question depends on both the image manifold and

the embedding space. Denote by the image manifold

and its metric and by the space-feature manifold and

its metric, then the map has the following weight

[34]:

(4)

where is the dimension of , is the determinant of the

image metric, is the inverse of the image metric, the range

of indices is , and .

The metric of the embedding space is .

To gain some intuition about this functional, let us take the

example of a surface embedded in and treat both the metric

and the spatial coordinates of the embedding space as

free parameters, and let us fix them to

(5)
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We also adopt in the Cartesian coordinates (i.e., ).

Then, we get the Euclidean L2 norm

(6)

If we now minimize with respect to , we will get the

usual heat operator acting on . We see that the Polyakov

action is the generalization of the L2 norm to curved spaces.

Here, is the volume element (area element for

) of —the image manifold and is

the generalization of to maps between non-Euclidean

manifolds. Note that the volume element as well as the

rest of the expression is reparameterization invariant. This

means that they are invariant under a smooth transformation

. The Polyakov action really depends on the

geometrical objects and not on the way we describe them via

our parameterization of the coordinates.

Given the above functional, we have to choose the min-

imization. We may choose for example to minimize with

respect to the embedding alone. In this case the metric

is treated as a parameter of the theory and may be fixed

by hand. Another choice is to vary only with respect to the

feature coordinates of the embedding space, or we may choose

to vary with respect to the image metric as well. We will

see that these different choices yield different flows. Some

flows are recognized as existing methods like the heat flow,

a generalized Perona–Malik flow, or the mean-curvature flow.

Other choices are new and will be described below in detail.

Another important point is the choice of the embedding

space and its geometry. In general, we need information about

the task at hand in order to fix the right geometry. Take for

example the grey-level images. It is clear that the intensity is

not on equal footing as and . In fact the relative scale of

with respect to the spatial coordinates is to be specified.

This can be interpreted as taking the metric of the embedding

space as follows:

(7)

We will see below that different limits of this ratio interpo-

late between the flows that originate from the Euclidean L1

and L2 norms.

Using standard methods in variational calculus, the Eu-

ler–Lagrange equations with respect to the embedding are (see

[42] for derivation)

(8)

where are the Levi–Civita connection coefficients with

respect to the metric that describes the geometry of

the embedding space (see [42], [44] for a definition of the

Levi–Civita connection).

Our proposal is to view scale-space as the gradient descent

(9)

A few remarks are in order. First, notice that we used our

freedom to multiply the Euler–Lagrange equations by a strictly

positive function and a positive definite matrix. This factor is

the simplest one that does not change the minimization so-

lution while giving a reparameterization invariant expression.

This choice guarantees that the flow is geometric and does

not depend on the parameterization. We will see below that

the Perona–Malik flow, for example, corresponds to another

choice of the prefactor, namely one. The operator that is acting

on in the first term of (8) is the natural generalization

of the Laplacian from flat spaces to manifolds and is called

the second order differential parameter of Beltrami [27], or

in short Beltrami operator, and we will denote it by .

When the embedding is in a Euclidean space with Cartesian

coordinate system the connection elements are zero. If the

embedding space is not Euclidean or if the coordinate system

we use is not Cartesian, we have to include the Levi–Civita

connection term since it is no longer equal to zero.

In general for any manifolds and , the map

that minimizes the action with respect to the embedding

is called a harmonic map. The harmonic map is the natural

generalization of the geodesic curve and the minimal surface

to higher dimensional manifolds and for different embedding

spaces. We have here a framework that can treat curves, sur-

faces, and higher dimensional image data embedded in gray,

color and higher dimensional and geometrically nontrivial

embedding spaces.

III. THE BELTRAMI FLOW

In this section, we present a new and natural flow. The

image is regarded as an embedding map , where

is a 2-D manifold. We treat grey-level and color images as

examples and then compare to related works. Explicitly, the

maps for grey-level and color images are

and

(10)

respectively. In the above map, we have denoted by

(1, 2, 3) for convenience, or in general notation by . We

minimize our action in (4) with respect to the metric and with

respect to . The coordinates and are parameters

from this view point and are identified as usual with and ,

respectively. We note that there are obviously better selections

to color space definition rather than the red–green–blue (RGB)

flat space. Nevertheless, we get good results even from this

oversimplified assumption.

Minimizing the metric for 2-D manifolds gives, as we have

seen, the induced metric which is given for grey-level image

in (3) and for color images by

(11)
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and . Note that this metric differs

from the Di Zenzo matrix [14] (which is not a metric since

it is not positive definite) by the addition of to and

. The source of the difference lies in the map used to

describe the image; Di Zenzo used while we

use .

The action functional under our choice of the metric is the

Nambu functional

(12)

where stands for the magnitude of the vector prod-

uct of the vectors and . For grey-level images the last

term vanishes and we are left with .

The action in (12) is simply the area of the image surface.

Now, we compare our norm to that proposed by Shah in

[41]: . We notice that the proposed area norm

in (12), includes an extra term that does not appear in Shah’s

norm and other previous norms in the literature. The term

measures the directional difference of the

gradient between different channels. The minimization of a

norm that includes this term, directs different channels to align

together as they become smoother and simpler in scale. One

should recognize this cross correlation of orientation between

the channels as a very important feature; overcoming the

color fluctuations along edges as a result of a lossy Joint

Photographic Expert Group (JPEG) standard compression is

a good example.

Minimizing (12) with respect to gives the Beltrami flow

(13)

It means that the velocity in the direction is proportional

to the component of the mean curvature vector in the

direction. Note the difference between (13) and the mean

curvature flow in (20). Here, we only move the feature

coordinates while keeping and fixed, where as in the mean

curvature flow we move all coordinates. The projection of the

mean curvature vector on the feature coordinates is an edge-

preserving procedure. Intuitively it is obvious. Each point on

the image surface moves with a velocity that depends on the

mean curvature and the components of the normal to the

surface at that point. Since along the edges the normal to the

surface lies almost entirely in the – plane, hardly changes

along the edges while the flow drives other regions of the

image toward a minimal surface at a more rapid rate.

For a simple implementation of the Beltrami flow in color

we first compute the following matrices: , , , and

given by

Then, the evolution is given by

(14)

where .

For grey-scale case, we get the following expression after

plugging the explicit form of

(15)

Let us further explore the geometry of the flow and relate

it to other known methods.

A. Geometric Flows Toward Minimal Surfaces

A minimal surface is the surface with least area that

satisfies given boundary conditions. It has nice geometrical

properties, and is often used as a natural model of various

physical phenomena, e.g., soap bubbles “Plateau’s problem,”

in computer-aided design, in structural design, and recently

even for medical imaging [6]. It was realized by Lagrange

in 1762 [28], that the mean curvature equal to zero is the Eu-

ler–Lagrange equation for area minimization. Hence, the mean

curvature flow is the most efficient flow toward a minimal

surface. Numerical schemes for the mean curvature flow, and

the construction of minimal surfaces under constraints, where

studied since the beginning of the modern age of numerical

analysis [13], and is still the subject of ongoing numerical

research [8], [11], [12].

For constructing the mean curvature flow of the image as a

surface, we follow three steps.

1) Let the surface evolve according to the geometric flow

, where is an arbitrary smooth flow field.

The geometric deformation of may be equivalently

written as , where is the unit

normal of the surface at each point, and is the

inner product (the projection of on ).

2) The mean curvature flow is given by ,

where is the mean curvature of at every point.

3) Considering the image function , as a parameter-

ized surface , and using the relation

in step 1, we may write the mean curvature flow as

, for any smooth vector field

defined on the surface. Especially, we may choose as

the direction, i.e., . In this case

(16)

Fixing the parameterization along the flow, we have

. Thus, for

tracking the evolving surface, it is enough to evolve via

, where the mean curvature is

given as a function of the image . (See Fig. 2 and (22); see

[10] and [11] for the derivation of , as Chopp summarizes

the original derivation by Lagrange from 1762.)

Substituting the explicit equation for mean curvature, we

end up with the equation

(17)
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Fig. 2. Consider the surface mean curvature flow , mean curva-

ture in the surface normal direction . A geometrically equivalent flow
is the flow which yields the
mean curvature flow when projected onto the normal.

Fig. 3. Consider the mean curvature in the surface normal direction . It

can also be expressed as . Beltrami operator that operates on :
, is the third component of this vector: Projection onto the ( ) direction.

with the initial condition . Using

the notation of Beltrami second order operator and the

metric , (17) may be read as . This equation was

studied in depth in [16] and [32], where the existence and

uniqueness of weak solutions was proved under some mild

conditions on the behavior of the curvature on the boundary

and the smoothness of the initial condition. The Beltrami flow

itself (selective mean curvature flow) is given

explicitly for the simple 2-D case in (15). The difference

between the two flows is the factor . This factor has an

important significance in keeping the flow geometrical, that

is, it depends on geometrical objects and not on coordinates

used in describing them. It also serves as an edge detector by

behaving like an edge-preserving flow; see Fig. 3.

B. Related Works

In [17], the authors propose the following similar flow

for grey-level images: . Geometrically,

they rotate the curvature normal vector so that it coincides

with the axis. This equation was studied extensively by

mathematicians [15], [19], [29], where the existence and

uniqueness of weak solutions was discussed. It is located

somewhere between the mean curvature flow for the image as

a surface that was used in [30] to denoise

images, and our Beltrami flow, which in 2-D case simplifies

to . All of the above flows lead toward a

minimal surface, yet our proposed framework better preserves

the edges, naturally extends to any number of dimensions, and

is reparameterization invariant.

Let us show next the direct relation to TV methods [36]

and especially for the regularization introduced by Vogel and

Oman [45], and efficiently implemented for changing the

regularization ratio (from large to small) in [8]. We will show

that by modifying the aspect ratio between the intensity and

the coordinates, we are able to switch between norms. It

is possible to obtain the TV norm, travel through minimal

surfaces, and end up with potential surfaces at the other limit.

The regularized TV is defined by ,

where is a real number, subject to constraints that are used

to monitor the drifting of the evolving image away from the

initial one. Contrast scaling of , we have

and the TV norm becomes . This is exactly an

area minimization toward a minimal surface that could be

realized through mean curvature flow with constraints imposed

by the noise variance and scale. In other words, the regularized

TV is in fact a flow toward a minimal surface with respect to

the scaled surface . The ratio between the image size

(resolution) and the gray level is taken in an arbitrary way for

creating an artificial Euclidean metric, therefore, setting this

ratio to brings us to the minimal surface computation. It

is important to note that the ratio should be determined

for every image processing algorithm. The ratio may be

introduced via Polyakov action by defining the embedding

metric to be as in (7). The only way to avoid the ratio

dependence is to construct planar curve evolution for the gray-

level sets, such that embedding is preserved [1], [22], [39].

This was called “contrast invariance” in [2]. Yet, these schemes

are pure smoothing schemes that do not preserve edges.

We note that it is possible to impose constraints on the

functional that modify the flow like the variance constraints of

the Rudin–Osher–Fatemi total variation (TV) method [36]. We

have just shown that large ratio leads to potential surfaces,

while at small ratio we have the TV norm. We have thereby

linked together many classical schemes via a selection of one

parameter, that is, the image gray-level scale with respect to

its coordinates. This scale is determined arbitrarily anyhow

in most of the current schemes.

Note that for color images we have a different situation.

First we can have three different regularization ratios one for

each channel. Second, even when we take a common ratio for

all channels, in the limit we get an action that does not

agree with the color TV [3], [37], [38], [41]. This can be seen

easily by observing (12) where only the third term survives

in this limit. This is the term that contributes the most for

coupling between the color channels. The other limit

gives a channel by channel linear diffusion.

Because of space limitations, we refer the reader to our

papers [23], [25], [42], and [43] for comparison with other

methods suggested recently for nonlinear color image process-

ing, like [3], [7], [37], [38], and [41].

C. Beltrami Flow in Color Space: Results

We now present some results of denoising color images

using our model. Spatial derivatives are approximated using

central differences and an explicit Euler step is employed

to reach the solution. We represent the image in the RGB
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Fig. 4. Reconstruction of a color images corrupted with Gaussian noise (for the color version, refer to www.lbl.gov/ ron/belt-html.html).

Fig. 5. Reconstruction of an image that has been corrupted by JPEG compression algorithm (for the color version, refer to www.lbl.gov/ ron/belt-html.html).

space; however, other representations and different numerical

schemes (as in [8]) are possible.

In the first example, we corrupt a given image with Gaussian

noise and denoise it using our method. The left image in

Fig. 4 shows an image corrupted with noise and the image

on the right depicts its reconstruction. In the second example,

we consider noise artifacts introduced by lossy compression

algorithms such as JPEG. In Fig. 5, the left image shows a

JPEG compressed image and the right image is its “corrected”

version using our Beltrami flow.

IV. CHOICES THAT LEAD TO KNOWN METHODS

We will survey in this section different choices for the

dynamic and parametric degrees of freedom in the action

functional.

A. Linear Scale-Space

Recently, Florac et al. [18] invoked reparameterization

invariance in vision. The basic motivation in their work is

to give a formulation of the linear scale-space, which is based

on the linear heat flow, that lends itself to treatment in different

coordinate systems. They also noted on the possibility to use a

nonflat metric, and raised the idea of using an image induced

metric.

In order to have reparameterization invariance, one has to

write an invariant differential operator. The simplest second-

order invariant differential operator is the Beltrami operator.

The major difference then between our approach and the one

given in [18] is the class of metrics allowed. Since a change in

parameterization cannot change the geometry of the problem,

and since they are interested in a linear scale-space, they only
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allow metrics for which the Riemann tensor vanishes, that is

metrics of a flat space.

Our point of view is that an image is a surface embedded

in (or a more general Riemannian manifold). From this

perspective the natural metric to choose is the induced metric

of the surface. This metric is never flat for a significant image.

B. Generalized Perona–Malik Flows

We fix, as in the linear case, the coordinates and vary the

action with respect to while the metric is arbitrary for the

time being. Using the Euler–Lagrange equation without any

pre-factor, we get the following flow

We assume now that the image is a -dimensional manifold

embedded in . The task at hand is to find the right choice

of the metric to reproduce the Perona–Malik flow. We select

, where is the identity matrix. The determinant

is , and consequently the flow becomes

For any dimension different from two, we can choose

to get

div

which is the basic idea of Perona and Malik [33]. If we further

specify , where is the

original image, we arrive at

div

which is the core (up to the normalization factor) of

what is known in the literature as the geodesic active contours

[4]–[6], [21], [40]. Note that this works only for dimensions

different from two. Examples of higher dimensional manifolds

in vision and image processing are 3-D images and movies

as 3-D manifolds [26], 3-D movies as four-dimensional (4-

D) manifolds, and texture as a 4-D manifold embedded in

six-dimensional (6-D) space [24].

A simple way to get the 2-D Perona–Malik flow is to go one

dimension higher: Imagine a map that is the embedding of a 3-

D hyperplane as follows: Note that depends

only on and Now choose a metric that is zero except the

diagonal elements so that the

determinant is and the diagonal of the inverse metric matrix

reads . Since both the metric and the intensity do not

depend on , then the derivative with respect to vanishes and

we get the 2-D Perona–Malik flow: . In

fact, can depend on since if , so

that we can indentify with the parameter in the Perona–Malik

diffusion function, e.g., . Our approach

gives the and a special form that has a well-defined

geometrical meaning and it is derived from a minimization

of an action functional.

C. The Mean Curvature Flow

In this subsection, we choose to minimize with respect to

all the embedding variables in the action. We also choose the

induced metric as the image metric.

Going back to the action in (4) and minimizing with respect

to each one of the embedding coordinates , we get the

Euler–Lagrange equations (see [42] for derivation)

(18)

We take the image metric to be which

is by definition the induced metric. For the case of grey-level

image (i.e., ), it is given explicitly in (3).

Substituting the induced metric in (9), we get the generalized

mean curvature flow, namely

(19)

where is the mean curvature vector by definition [9], [44].

For embedding of a manifold in with Cartesian coordi-

nate system, the affine connection is identically zero and we

are left with the Laplace–Beltrami operator

(20)

Plugging the explicit expression of the induced metric (3) for

the case , in the above equation, we obtain

(21)

where is the mean curvature vector2 that can be written

for surfaces as the mean curvature times the unit normal

to the surface

(22)

where .

The fact that this choice gives us the mean curvature flow

should not be a surprise, since if we check how the choice of

metric effects the action functional, we notice that

(23)

which is the Euler functional that describes the area of the

surface (also known in high-energy physics as the Nambu

action). The geometrical meaning of this flow is evident. Each

point of the surface moves in the direction of the normal with

velocity proportional to the mean curvature. If the embedding

space is not Euclidean or if we use a non-Cartesian coordinate

system, we have to use the more general flow, (19). In this

way, we generalize the mean curvature flow to any dimension,

co-dimension, and geometry.

2Note that some definitions of the mean curvature include a factor of two
that we omit in our definition.
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V. CONCLUDING REMARKS

Inventing a perceptually good smoothing process which is

compatible with a segmentation process, and formulating a

meaningful scale space for images is not an easy task, and is

actually what low level vision research is about. Here we tried

to address these questions and to come up with a new frame-

work that both introduces new procedures and unifies many

previous results. There are still many open questions to be

asked, like what is the right aspect ratio between the intensity

and the image plane? Or in a more general sense, a deeper

question that both the fields of string theory and computer vi-

sion try to answer, is what is the “right” embedding space ?

The question of what is the “right norm” when dealing with

images is indeed not trivial, and the right answer probably

depends on the application. For example, the answer for

the “right” color metric is the consequence of empiri-

cal results, experimental data, and the application. Here we

covered some of the gaps between the two classical

norms in a geometrical way and proposed a new approach

to deal with multidimensional images. We used recent results

from high-energy physics that yield promising algorithms for

enhancement, segmentation, and scale space.
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