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1. Introduction

We present an implemented system which allows to
run a fleet of autonomous mobile robots in a route
network or an in-door environment with a very limited
centralized activity. The robots are endowed with all
the necessary ingredients for planning and executing
navigation missions expressed at a very high level as
well as for multi-robot cooperation.

The system is based on a generic paradigm called
Plan-Merging Paradigm, where robots incrementally
merge their plans into a set of already coordinated
plans. This is done through exchange of information,
between robots, about their current state and their
future plans.

The robot architecture is derived from the generic ar-
chitecture developed at LAAS. The software tools we
use allow us to run the robot software under VxWorks
on real robots (from the Hilare family) as well as on
Unix workstation emulating the behavior of the robot.

A test and evaluation environment has been developed
which includes a 3D graphic system to display the
complete fleet of robots (dozen or even more) evolving
in their environment (usually a route network connect-
ing docking/un-docking areas). This testbed provides
mechanisms such that each robot is fully functional
and can be ran on independent Unix workstation.

The same 3D graphic system can also be used as
a server which draws periodically the positions of
the real robots in the model as well the result of
the various actions they perfrom (landmark-based lo-
calization, obstacle modelling, pick-up and put-down
actions. . .).

Numerous tests on various environments have been
performed. Two examples will be presented in the
following: (1) a simulation based example which runs
ten robots in an in-door environment, and (2) a real

robot demonstration involving three Hilare robots.

2. A fleet of Autonomous Mobile

Robots

The problem consists in devising a system which al-
lows to run a large fleet of autonomous mobile robots
in a route network (resp. in-doors) composed of lanes
(corridors), crossings and open areas (rooms).

Typical applications of this problem are load trans-
shipment as dealt with in the MARTHA project!
which requires the development of a large fleet of au-
tonomous mobile robots for the transportation of con-
tainers in harbors, airports and railway station envi-
ronments.

The Plan-Merging Paradigm we propose is well suited
to such applications as it allows to deal with a great
number of robots, locally dealing with conflicts while
maintaining a global coherence of the system. In-
deed, it limits the role of the central system to the
assignment of tasks and routes to the robots (without
specifying any trajectory or any synchronization be-
tween robots) taking only into account global traffic
constraints.

2.1. Mission specification

The system is composed of a Central Station and a set
of autonomous mobile robots. As mentioned above,
the environment is a route network composed of en-
tities like lanes, crossings and open areas. Basically,
the robots navigate through an oriented graph of cells.
Lanes and crossings are composed of a set of connected
cells, while areas consist of only one cell.

Thus, the environment model, which is provided to
each robot, mainly contains topological and geometric

'MARTHA: European ESPRIT Project No 6668. “Multiple
Autonomous Robots for Transport and Handling Applications”



Figure 1. An environment model with 10 simulated robots

information:

e A network describing the connections of areas and
crossings by oriented lanes. This is the only infor-
mation used by the Central Station to elaborate
routes for robots.

e A lower level topological description (cell level).
The graph of cells is oriented, in order to pro-
vide a nominal (but not exclusive) direction for
lanes and crossings use. However, cells adjacency
is also provided in order to allow robots to use
complementary spatial resources when necessary.

o A geometrical description of cells (polygonal re-
gions).

e Additional information concerning landmarks
(for re-localization), station descriptions for dock-
ing and load handling actions.

Figure 1 illustrates a typical environment model and
its associated cell topology.

In the developed system, the central station is in
charge of producing the high level plans. The plans
produced takes into account the topological model of

the environment as well as the availability of such or
such robot. However, it does not further specify the
sequence of robots going through a crossing (this de-
cision is left to the robot locally concerned), nor does
it require the robot to remain on the specified lanes
(in case it needs to move away from an unexpected
obstacle).

2.2. A Plan-Merging Protocol for Multi-Robot
Navigation

The cooperation scheme we use i1s based on a general
paradigm, called Plan-Merging Paradigm [2], where
robots incrementally merge their plans into a set of
already coordinated plans. This is done through ex-
change of information about their current state and
their future actions.

For the case of a number of mobile robots in a route
network environment,, we have devised a specific Plan-
Merging Protocol based on spatial resource allocation
(see [3]). It is an instance of the general protocol de-
scribed in [2], but in this context, Plan-Merging Op-
eration (PMO) is done for a limited list of required
resources (a set of cells which will be traversed dur-
ing the plan to merge). Due to place limitations, we
will not describe in more detail this protocol. A full



description may be found in [2].

One of the most interesting attributes of this protocol
is that 1t allows several PMOs to be performed si-
multaneously if they involve disjunctive resource sets.
This is particularly useful when there are several local
conflicts at the same time.

Plan-Merging for cell occupation In most sit-
uations, robot navigation and the associated Plan-
merging procedure are performed by trying to main-
tain each cell of the environment occupied by at most
one robot. This allows the robots to plan their trajec-
tories independently, to compute the set of cells they
will cross and to perform Plan-Merging at cell alloca-
tion level.

We have chosen an allocation strategy which makes
the robots allocate one cell ahead when they move
along lanes, while for crossing, they must allocate all
the cells necessary to traverse and leave it. This is
done in order not to constrain unnecessarily the other
robots.

When reasoning about cells is not sufficient
While, most of the time, the robots may restrict their
cooperation to cells allocation, there are situations
where this is not enough. This happens when they
have to cross non-structured areas (rooms) or when
an unexpected obstacle, encountered in a lane or in a
crossing, forces a set of robots to maneuver simulta-
neously in a set of cells. In such situations, a more
detailed cooperation (using the same protocol but a
different planner: the motion planner) takes place al-
lowing robots to coordinate their actions at trajectory
level.

Thus, we have a hierarchy of PMOs

1. first, at the cell level, based on resource (cells)
allocation

2. then, depending on the context, at trajectory
level: motion planning in a set of common cells
determined by the first level

This hierarchy authorizes a “light” cooperation, when
possible, and a more detailed one, when necessary.

3. The Robot Control System

The Robot Control System (RCS) architecture is de-
rived from the generic control architecture for au-
tonomous mobile robots developed at LAAS [4, 1, 6].

The control architecture of an autonomous robot must
include both some decision-making processes, embed-
ded in the Decisional Level, and real-time execution
processes which are gathered in the Functional Level.

The Decisional Level which includes the refinement of
the tasks and a coherent control of the actions, calls
for centralized knowledges and decisions, whereas the
Functional Level, the reactive part of the architecture,
calls for a distribution of the low level functions (e.g.
the sensor/actuator control loops).

3.1. The Decisional Level

From an architecture point of view, the decisional level
is organized into three independent layers running in
parallel: a mission layer, a coordination layer and a
execution layer (Figure 2) . At each layer planning as-
pects and supervision or control aspects are indepen-
dent and run separately to satisfy different response
time constraints [1].

Decisional level or Robot Supervisor

Refinement
request

Mission refinment
Plan steps
and

Trajectories

Mission supervisor

Mission layer

Plan merging

request
Coordination supervisor
Plan-merging and
— Plan merging protocole
Robots synghromzatlons

Execution

an
Multi-robots trajectories events

Coordination layer

Coordination
plan

Execution supervisor

Execution layer

Functional level

Figure 2. The robot supervisor architecture

The mission layer deals with the mission refinement,
the mission control and Central System interactions.
The mission (see a typical mission in Figure 3) are first
refined as if the robot was alone. Refinement consists
in planning all trajectories? according to the specified
actions (dock, un-dock, load or un-load). The plan is
annotated with cell entry and exit monitoring oper-
ations which will be used to maintain the execution
state of the robot and to synchronize its action with
other robots.

Figure 4 shows a refined plan corresponding to the

refinement of the first action of the mission in Figure 3
(the robot being at the end of the lane 0).

2Currently the route, is given by the Central Station, how-
ever we plan to add some route planning capabilities in a near
future.



(mlss(lzgti%n 1 (goto (station 1))
(using (lane 10)))

(action 2 (dock))

(action 3 (putdown))

(action 4 (undock))

(action 5 (goto (station 3))
.(using (lane 12) (lane 8)))

(action 6 (dock))

(action 7 (pick-up (container 5)))

(action 8 (undock))

(action 5 (goto (end-lane 0))
(using (lane 9) (lane 0))) .))

Figure 3. Example of mission sent by the Cen-
tral Station

report (begin-action 1)))
monitor (entry (cell 4))))
monitor (entry (cell 5))))
monitor (exit (cell 14))))
monitor (exit (cell 4))))
exec-traj 0))

exec-traj 1))

exec-traj 2))

monitor (entry (cell 0))))
0 (monitor (exit (cell 5))))
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report (end-action 1))) .))

Figure 4. Example of refined mission

The coordination layer is involved in plan merg-
ing operations, interactions with others robots (plans
or events exchange), the control of the plan and the
production of the coordination plan. Actually before
executing its plan, the robot must validate it in the
multi-robot context. This is done through incremental
plan merging. The plan merging protocol allows the
coordination supervisor to incrementally build a new
plan called the coordination plan. This plan specifies
all trajectories and actions to be executed, but also all
events to be monitored and sent to another or awaited
from another robot. Note that this plan is also the one
exchanged between robots during plan merging oper-
ations.

Figure 5 presents a coordination plan example corre-
sponding to the & first plan steps of the refined mission
geiven above.

The execution layer is in charge of the interpreta-
tion and the execution of the coordination plan. As
a result, it is responsible of most interactions with
the functional level. The coordination plan is exe-
cuted while taking into account synchronization be-
tween robots. When plan merging is done only at the
“cell allocation level” entry or exit of cells are moni-

(coordination-plan
(.(exec-plan 1 (report (begin-action 1)))
(exec-plan 2 (wait-exec-event robot-3
exec-plan 3 (walt-exec-event robot-7
)
)

)
( 18))
exec-plan 4 (monitor (entry (cell 4))))
exec-plan 5 (monitor (entry (cell 5))))
exec-plan 6 (monitor (exit (cell 14))))
exec-plan 7 (monitor (exit (cell 4))))
exec-plan 8 (exec-traj 0))

exec-plan 9 (exec-traj 1))

exec-plan 10 (exec-traj 2)) .))
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Figure 5. Example of coordination plan

tored in order to produce exchanged execution events.
If “trajectory level” plan merging has been necessary,
then concerted curvilinear abscissa are monitored.

3.2. The Functional Level

The functional level implements all the basic capabil-
ities of the robot in sensing, acting and computing.
These functionalities are grouped according to data
or resource sharing, and integrated into modules.

Beside real time capabilities to insure closed-loop con-
trol and reactivity, this level fulfill several conditions
towards the others layers: bounded response time to
request, observability and programmability. To make
easier the integration of a module in the system, a
standardization of the module behavior has been spec-

ified (see [6]) and used.

Roughly, the structure of a module is composed of
a control level and an execution level. The control
capacities are related to the handling of requests and
replies and the control of the functions of the execution
level.

At the execution level, the implemented functions
(i.e. embedded algorithms) are classified in four cat-
egories according to their execution modalities (i.e.
starting and ending conditions, periodicity, ...), and
consequently the way to control them : servers, fil-
ters, servo-processes, monitors. All these functions
are interruptible by the module controller. They can
also abort by themselves if the execution cannot be
achieved (internal fail, fail of a server at a lower
level...).

Figure 6 shows the functional level, for the presented
application, including 7 modules, their client/server
relations and 3 exported data (posters).

The Robot Supervisor is a client of all the modules
of the functional level. It manages itself the poster
named ENVIRONMENT which exports the topological
and geometrical model of the environment (cf §2.1).
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Figure 6. Architecture and interactions of the func-
tional level

The Modules currently implemented are:

e The Motion Planner Module: it is composed of a
Topological Planner, a Geometrical Planner and
Multi-robot Scheduler. Tt is used in order to com-
pute not only feasible trajectories but also syn-
chronization events between different robot tra-
jectories.

e The Motion Execution Module [10]: this modules
embeds all robot motion primitives.

e The Local Obstacle Avoidance Module [9]: this
module allows to execute (non-holonomous) tra-
Jjectories while avoiding (when possible) unknown
obstacles. Figure 7 illustrates an example of its
capabilities.

e The External Perception Module [5]: which al-
lows to perform landmark-based (wall and fixed
furniture) localisation (see Figure 8) and to build,
when necessary, a model of the local obstacles.
This feature is used to update the world model
after the detection of a situation which requires a
drastic change of a planned trajectory.

e The Position Monitoring Module: this modules
provides a variety of position based monitors for

detecting the entry of exit of regions for synchro-
nization purposes, as established after a Plan-
merging operation.

e The External Communication Modules: two in-
dependent systems which handle the communica-
tion with the Central Station and the direct com-
munication between robots. This last one allows
also to broadcast messages to all robots.

P |
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Figure 7. An example of an obstacle avoidance

4. Implementation of a  Realistic

Testbed

We have developed a complete robot control system
which includes all the features described above.

The robot supervisor is coded using a procedural rea-
soning system: C-PRS [8, 7]. The target implementa-
tion runs on-board a multi-processor VME rack, under
the VxWorks real-time system.

Simulated environments: For testing and demon-
stration purposes we have built an emulation of the
communication and multi-tasking primitives of the
real-time system, that allows us to run all elements
of a robot (the supervisor and all functional modules)
on a Unix workstation as a set of Unix processes.
The motion execution is simulated at the lowest level
by sending the elementary motion controls into the
perception sub-system. Radio communications be-
tween robots and with the central station are simu-
lated on the Ethernet network.

Moreover, for the purpose of simulation, virtual obsta-
cles can be given to the external perception module.
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Figure 8. An example of re-localisation based on walls
and furniture

Their presence near the robot will be detected and
signaled to the supervisor.

A 3-D graphic server has been built in order to visual-
ize the motions and the load operations performed by
all the robots in their environment (Figures 1,10-12).
It receive position updates from the motion execution
modules of all the robots, each running on its own
workstation.

Experiments have been run successfully on a dozen
of workstations (each workstation running a complete
robot simulator). Figure 1 is a snapshot of a typical
run: 10 robots in an in-door environment.

An experiment using three real robots We have
also tested the implementation an run several demon-
strations on three real mobile robots.

Figure 9 illustrates the hardware used in the experi-
mental testbed.

The 3D graphic system can also be used as a server
which draws periodically the positions of the real
robots in the model as well the result of the various ac-
tions they perfrom (landmark-based localization, ob-
stacle modelling, pick-up and put-down actions...).
An example of such use is represented in Figure 13.

5. Results

We shall now illustrate the plan-merging paradigm
and its capabilities with some sequences from our ex-
perimentation with simulated and real robots in an

Robot Control Systems (I:S

Central
Control

Ethernet - TCP/IP Seation
r 1 ] =——
. . 18-232 r$-232 .
Unix \ Unix J + modegl +moch

3D graphic

server hilare2b  hilare 2
+ modes

hilare 1.5

Figure 9. The experimental testbed

indoor environment. The first example presents a
PMO at a crossing with simulated robots, the second,
a PMO in an open area with real robots.

An example of PMOs at a crossing (simulation)

P T

Figure 10. Crossing (Step 1)

Crossing, Step 1 (Figure 10): This snapshot has
been modified to present the routes the robot must
follow.

e Robot r3, coming from position A, and r0 have
disjunctive list of resources. Therefore, they can
perform PMOs in parallel and traverse the cross-
ing without any synchronization.



Figure 12. Crossing (Step 3)

e Robot 19 follows r3, but its PMO fails (because
r3 has not yet planned an action to free the cell 19
must allocate to exit the crossing). As a result r9
must wait a planning events from r3 (i.e. a new

PMO).

e Robot r2, which wants to go in position B, can
merge its plan into the incrementally build local
plan.

Crossing, Step 2 (Figure 11):

e Robot r2 traverses the crossing, after an execu-
tion synchronization with r0 (it must wait until
0 leaves the lower left cell of the crossing before
entering it).

e Robot 19 has received the awaited “planning
event” from r3 (which as now planned action to

exit its current cell) and its PMO succeed, but it
must synchronize with r2 and r3 .

Crossing, Step 3 (Figure 12):

e Robot 12 frees the crossings cells and sends the
corresponding execution event to r9.

e Robot r9 can now traverse the crossing.

An example of PMOs in an Open Area: 3 real
robots in the LAAS robotics room

As mentioned earlier, open areas are not exclusive re-
sources. In our example (see the figure 14 and 13
which represent the same situation in 3D and 2D),
rll (Hilare 2) goes from station S5 to Lane 0, r12 (Hi-
lare 2b) moves backward from station S3 to station
S5, and r13 (Hilare 1.5) from station S4 to station S3.

After synchronizing at the PMO level, the three robots
eventually performed theirs PMOs, at the “trajectory
level” | in the following order: r11, r12 and r13.

In short, r13 waits for r12 to move away, and r12 waits
until r11 clears its path.

If we analyze the situation more carefully, one can
see that r12 will move until position Waitl1, at which
point, it will wait until r11 reaches the point Notify12
and then notifies r12 of this event. As a consequence,
r12 will proceed to station S5 and will notify R13
(upon reaching point Notify13), which is waiting at
point Wait12, that it can now proceed to station S3.

To conclude on these two examples presented above,
one can note the following interesting properties of the

PMO:

e Planning and execution is done in parallel.

e Several robots may use the crossing simultane-
ously (r0 and r3).

e The example exhibits the two types of syn-
chronization: synchronization based on execution
events (r11, r12 and r13 in the area example) and
synchronization based on planning events (19 and
r3 in the crossing example).

e Each robot produces and merges its plans itera-
tively, and the global plan for the use of the cross-
ing is incrementally built through several PMOs
performed by various robots.

e It is not a first arrived first served execution.
In the crossing example 19 arrived second, was
blocked by r3, but did not block the crossing and
let 12 enter the crossing before.



Figure 13. The three Hilare in the robotics room (1)
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Figure 14. The three Hilare in the robotics room(2)
6. Conclusion autonomous mobile robot. To our knowledge, it is is

The system described in this paper paper presents
many original contributions to the field of research on §



the first time such a large fleet of autonomous robot
is put together to execute high level missions given by
a central station.

Our experimentation using large number of emulated
robots has shown the feasibility and the embarkability
of our solution.

The Plan-Merging Paradigm we propose has the fol-
lowing properties;

1. Tt “fills the gap” between centralized, very high
level planning and distributed execution by a set
of autonomous robots in a dynamic environment.

2. It makes possible for each robot to produce a co-
ordination plan which is compatible with all plans
executed by other robots.

3. No system 1s required to maintain the global state
and the global plan permanently. Instead, each
robot updates it from time to time by executing
a PMO.

4. The PMO is safe, because it is robust to plan
execution failures and allows to detect deadlocks.

The current implementation have shown that the pro-
tocol works and allows for far more than ten robots
to cooperate. In fact, considering the locality of the
conflict resolution, 1.e. the ability of robots in a group
to coordinate their plans and actions without disturb-
ing the rest of the fleet, one can easily see that this
protocol can scale to a much larger number of robots
(hundreds). This protocol allowed us to make a large
number of autonomous robots behave coherently and
efficiently without creating a burden on the central
system activity.

The final version of the paper will report in more de-
tails on the experiments performed using three Hilare
robots. It will also give a brief review of the literature.
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