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A general framework for parametric
survival analysis

Michael J. Crowther!*" and Paul C. Lambert!:2

Parametric survival models are being increasingly used as an alternative to the Cox model in
biomedical research. Through direct modelling of the baseline hazard function we can gain greater
understanding of the risk profile of patients over time, obtaining absolute measures of risk.
Commonly used parametric survival models, such as the Weibull, make restrictive assumptions
of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In
this article, we extend the general framework of parametric survival models proposed by Crowther
and Lambert (2013), to incorporate relative survival, and robust and cluster robust standard errors.
We describe the general framework through three applications to clinical datasets, in particular,
illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly
flexible survival modelling framework. Through the use of restricted cubic splines we can derive
the cumulative hazard function analytically beyond the boundary knots, resulting in a combined
analytic/numerical approach, which substantially improves the estimation process compared to only
using numerical integration. User friendly Stata software is provided which significantly extends
parametric survival models available in standard software. Copyright (© 0000 John Wiley & Sons,
Ltd.
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1. Introduction

The use of parametric survival models is growing in applied research [1, 2, 3, 4, 5], as the benefits become recognised
and the availability of more flexible methods becomes available in standard software. Through a parametric
approach, we can obtain clinically useful measures of absolute risk allowing greater understanding of individual
patient risk profiles [6, 7, 8], particularly important with the growing interest in personalised medicine. A model of
the baseline hazard or survival allows us to calculate absolute risk predictions over time, for example in prognostic
models, and enables the translation of hazards ratios back to the absolute scale, for example when calculating the
number needed to treat. In addition, parametric models are especially useful for modelling time-dependent effects
[9, 4], and when extrapolating survival [10, 11].

Commonly used parametric survival models, such as the exponential, Weibull and Gompertz proportional hazards
models, make strong assumptions about the shape of the baseline hazard function. For example, the Weibull model
assumes a monotonically increasing or decreasing baseline hazard. Such assumptions restrict the underlying function
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that can be captured, and are often simply not flexible enough to capture those observed in clinical datasets which
often exhibit turning points in the underlying hazard function [12, 13].

Crowther and Lambert [14] recently described the implementation of a general framework for the parametric
analysis of survival data, which allowed any well-defined hazard or log hazard function to be specified, with the
model estimated using maximum likelihood utilising Gaussian quadrature. In this article we extend the framework
to relative survival, and also allow for robust and cluster robust standard errors. In particular, throughout this
article we concentrate on the use of restricted cubic splines to demonstrate the framework, and describe a combined
analytic/numeric approach to greatly improve the estimation process.

Various types of splines have been used in the analysis of survival data, predominantly on the hazard scale which
results in an analytically tractable cumulative hazard function. For example, M-splines, which by definition are
non-negative can be directly applied on the hazard scale, due to the positivity condition. Kooperberg et al. (1995)
proposed using various types of splines on the log hazard scale, such as piecewise linear splines [15, 16]. In this
article we use restricted cubic splines to model the log hazard function, which by definition ensures the hazard
function is positive across follow-up, but has the computational disadvantage that the cumulative hazard requires
numerical integration to calculate it. Restricted cubic splines have been used widely within the flexible parametric
survival modelling framework of Royston and Parmar [17, 18], which are modelled on the log cumulative hazard
scale. The switch to the log cumulative hazard scale provides analytically tractable cumulative hazard and hazard
functions; however, when there are multiple time-dependent effects there are difficulties in interpretation of time-
dependent hazard ratios, since these will vary over different covariate patterns, even with no interaction between
these covariates [18].

In Section 2, we derive the general framework and extend it to incorporate cluster robust standard errors and
incorporate background mortality for the extension to relative survival. In Section 3, we describe a special case of
the framework using restricted cubic splines to model the baseline hazard and time-dependent effects, and describe
how the estimation process can be improved through a combined analytical and numerical approach. In Section
4 we apply the spline based hazard models to datasets in breast and bladder cancer, illustrating the improved
estimation routine, the application of relative survival, and the use of cluster robust standard errors, respectively.
We conclude the paper in Section 5 with a discussion.

2. A general framework for the parametric analysis of survival data

We begin with some notation. For the i*" patient, where i = 1,..., N, we define ¢; to be the observed survival time,
where t; = min(t}, ¢;), the minimum of the true survival time, ¢¥, and the censoring time, ¢;. We define an event
indicator d;, which takes the value of 1 if ¢ < ¢; and 0 otherwise. Finally, we define ¢p; to be the entry time for the
it? patient, i.e. the time at which a patient becomes at risk.

Under a parametric survival model, subject to right censoring and possible delayed entry (left truncation); the

overall log-likelihood function can be written as follows
N
1= logL; (1)
i=1

with log likelihood contribution for the i*" patient

1—d,
log L; = log {f(ti)di (5((;3)) }

=d;log{f(t:)} + (1 —di)log{S(t:)} — (1 — d;)log{S(to:)} (2)

where f(¢;) is the probability density function and S(.) is the survival function. If to; = 0, the third term of Equation
(2) can be dropped. Using the relationship

f(t) = h(t) x S(t) 3)

where h(t) is the hazard function at time ¢, substituting Equation (3) into (2), we can write

= d;log{h(t;)} + log{S(t:)} — log{S(to:)} (4)
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S(t) = exp (— /0 t h(u)du) (5)

we can write Equation (4) entirely in terms of the hazard function, h(.), incorporating delayed entry

Now given that

log L; = d; log{h(t;)} — i h(u)du (6)

toi

The log-likelihood formulation of Equation (6) implies that, if we specify a well-defined hazard function, where
h(t) > 0 for t > 0, and can subsequently integrate it to obtain the cumulative hazard function, we can then maximise
the likelihood and fit our parametric survival model using standard techniques [19].

When a standard parametric distribution is chosen, for example the exponential, Weibull or Gompertz, and for
the moment assuming proportional hazards; we can directly integrate the hazard function to obtain a closed form
expression for the cumulative hazard function. As described in Section 1, these distributions are simply not flexible
enough to capture many observed hazard functions. If we postulate a more flexible function for the baseline hazard,
which cannot be directly integrated analytically, or wish to incorporate complex time-dependent effects for example;
we then require numerical integration techniques in order to maximise the likelihood.

2.1. Numerical integration using Gaussian quadrature

Gaussian quadrature is a method of numerical integration which provides an approximation to an analytically
intractable integral [20]. It turns an integral into a weighted summation of a function evaluated at a set of pre-defined
points called quadrature nodes or abscissae. Consider the integral from Equation (6)

To obtain an approximation of the integral through Gaussian quadrature, we first must undertake a change of

interval using . bt [ £ — to; toi + 1,
h(u)du = = Z/ h< a4 = l>dz ()
/tm, 2 -1 2 2

Applying numerical quadrature, in this case Gauss-Legendre, results in

m

t.
! t; — to; t; — toq toi + ¢
/ h(u)du ~ — Zvjh < 52 + 5 > (9)

toi j=1

where v = {vy,...,un} and z ={z1,...,2,} are sets of weights and node locations, respectively, with m the
number of quadrature nodes. Under Gauss-Legendre quadrature the weights v; = 1. We must specify the number
of quadrature nodes, m, with the numerical accuracy of the approximation dependent on m. As with all methods
which use numerical integration, the accuracy of the approximation can be assessed by comparing estimates with
an increasing number of nodes. We return to the issue of choosing the number of quadrature points in Section 3.

2.2. Fxcess mortality models

In population-based studies where interest lies in mortality associated with a particular disease, it is not always
possible to use cause of death information. This may be due to this information not being available or it considered
too unreliable to use [21, 22]. In these situations it is common to model and estimate excess mortality by comparing
the mortality experienced amongst a diseased population to that expected amongst a disease free population. The
methods have most commonly been applied to population-based cancer studies, but have also been used in studies
of HIV [23] and cardiovascular disease [24]. The total mortality (hazard) rate, h;(t), is partitioned into the expected
mortality rate, hf(t), and the excess mortality rate associated with a diagnosis of disease, A;(t).

hi(t) = hi (1) + Ai(t) (10)

The expected mortality rate, h}(¢), is usually obtained from national or regional life tables stratified by age, calendar
year, sex and sometimes other covariates such as socio-economic class [25].

Transforming to the survival scale gives,
Si(t) = 57 (t)Ri(t) (11)
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where R;(t) is known as the relative survival function and S} (¢) is the expected survival function.
The effect of covariates on the excess mortality rate is usually considered to be multiplicative and so covariates,
X ; are modelled as,

hi(t) = hi(t) + Xo(t) exp(X:3) (12)

where Ao is the baseline excess hazard function and 3 is a vector of log excess hazard ratios (also referred to as
log excess mortality rate ratios). This model assumes proportional excess hazards, but in population-based cancer
studies this assumption is rarely true and there has been substantial work on methods to fit models that relax the
assumption of proportionality [24, 26, 27, 28].

A common model for analysing excess mortality is an extension of Royston-Parmar models [24]. These models
are fitted on the log cumulative excess hazard scale. With multiple time-dependent effects interpretation of hazard
ratios can be complicated and so there are advantages to modelling on the log hazard scale instead. For example, in
a model on the log cumulative excess hazard scale where both age group and sex are modelled as time-dependent
effects, but with no interaction between the covariates, the estimated hazard ratio for sex would be different in
each of the age groups. In a model on the log excess hazard scale, this would not be the case [18]. Previous work
by Remontet et al. (2007) used numerical integration, but used quadratic splines, limited to only two knots, with
no restriction on the splines [29].

The log-likelihood for an excess mortality model is as follows,

log L; = d; log {h*(t;) + A(t;)} + log {S* (t;)} + log { R(t;)} — log {S™ (to:)} — log {R(t0:)} (13)

Since the terms log {S*(¢;)} and log {S*(0;)} do not depend on any model parameters they can be omitted from
the likelihood function for purposes of estimation. This means that in order to estimate the model parameters the
expected mortality rate at the time of death, h*(¢;), is needed for subjects that experience an event.

2.3. Cluster robust standard errors

In standard survival analysis we generally make the assumption that observations are independent; however, in some
circumstances we can expect observations to be correlated if a group structure exists within the data. For example
in the analysis of recurrent event data, where individual patients can experience an event multiple times, resulting
in multiple observations per individual. In this circumstance, we would expect observations to be correlated within
groups. Failing to account for this sort of structure can underestimate standard errors.

Given V', our standard estimate of the variance covariance matrix, which is the inverse of the negative Hessian
matrix evaluated at the maximum likelihood estimates, we define the robust variance estimate developed by Huber
(1987) and White (1980,1982) [30, 31, 32]

N
V,=V (Z u'u> 1% (14)
=1

where u; is the contribution of the i*" observation to dlog L/93, with N the total number of observations.

This can be extended to allow for a clustered structure. Suppose the N observations can be classified into M
groups, which we denote by Gy, ...,G s, where groups are now assumed independent rather than individual level
observations. The robust estimate of variance becomes

M
V=V (Z u§G>fu;.G>> v (15)
j=1

where uEG) is the contribution of the j** group to dlogL/dB3. More specifically, Rogers (1993) [33] noted that if

the log-likelihood is additive at the observation level, where

N
logL = Zlog L; (16)

then with w; = dlog L; /08, we have
u]G = Z u; (17)

i€G

We follow the implementation in Stata which also incorporates a finite sample adjustment of V;* = {M/(M — 1)} V..
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3. Improving the estimation when using restricted cubic splines

The very nature of the modelling framework described above implies that we can specify practically any general
function in the definition of our hazard or log hazard function, given that it satisfies h(t) > 0 for all ¢ > 0. To
illustrate the framework, we concentrate on a particular flexible way of modelling survival data, using restricted
cubic splines [34].
We begin by assuming a proportional hazards model, modelling the baseline log hazard function using restricted
cubic splines
log hi(t) = log ho(t) + X8 = s(log(t)|v, ko) + X3 (18)

where X; is a vector of baseline covariates with associated log hazard ratios 8, and s(log(t)|v, ko) is a function of
log(t) expanded into restricted cubic spline basis with knot location vector, kg, and associated coefficient vector,
7. For example, if we let u = log(t), and with knot vector, kg

S(u|77 kO) =% + 7181 +7v282 + -+ TYm+1Sm+1 (19)

with parameter vector v, and derived variables s; (known as the basis functions), where

Sj = (U - kJ)i — /\J(u — kmin)i_ — (1 — /\j)(u — kmax)i (21)
where for j =2,...,m+1, (u— k;)} is equal to (u— k;)? if the value is positive and 0 otherwise, and

kmax - kj

)\] kmax - kmin (22)

In terms of knot locations, for the internal knots, we use by default the centiles of the uncensored log survival

times, and for the boundary knots we use the minimum and maximum observed uncensored log survival times.

The restricted nature of the function imposes the constraint that the fitted function is linear beyond the boundary

knots, ensuring a sensible functional form in the tails where often data is sparse. The choice of the number of

spline terms (more spline terms allows greater flexibility), is left to the user. A recent extensive simulation study

assessed the use of model selection criteria to select the optimum degrees of freedom within the Royston-Parmar

model (restricted cubic splines on the log cumulative hazard scale), which showed no bias in terms of hazard ratios,
hazard rates and survival functions, with a reasonable number of knots as guided by AIC/BIC [13].

3.1. Complex time-dependent effects

Time-dependent effects, i.e. non-proportional hazards, are commonplace in the analysis of survival data, where
covariate effects can vary over prolonged follow-up time, for example in the analysis of registry data [9]. Continuing
with the special case of using restricted cubic splines, we can incorporate time-dependent effects into our model

framework as follows .

log hi(t) = s(log(t) |70, ko) + XiB + Y wips(log(t)y,,: kp) (23)

where for the p** time-dependent effect, with p = {1,..., P}, we have z,, the pt" covariate, multiplied by some

spline function of log time, s(log(t)|v,,kp), with knot location vector, k,,, and coefficient vector, ~,. Once again,
degrees of freedom, i.e. number of knots, for each time-dependent effect can be guided using model selection criteria,
and/or the impact of different knot locations assessed through sensitivity analysis.

3.2. Improving estimation

Given that the modelling framework is extremely general, in that the numerical integration can be applied to a
wide range of user-defined hazard functions, the application of Gaussian quadrature to estimate the models may
not be the most computationally efficient. For example, in Crowther and Lambert [14], we compared a Weibull
proportional hazards model, with the equivalent general hazard model using numerical integration.

In the restricted cubic spline based models described above, the restricted nature of the spline function forces the
baseline log hazard function to be linear beyond the boundary knots. In those areas the cumulative hazard function
can actually be written analytically, as the log hazard is a linear function of log time. Defining our boundary
knots to be kg1, kon, we need only conduct numerical integration between kg1, ko, , using the analytical form of the
cumulative hazard function beyond the boundary knots.
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We define 6p; and 61; to be the intercept and slope of the log hazard function for the i*" patient before the first
knot, ko1, and ¢g; and ¢1; to be the intercept and slope of the log hazard function for the i*" patient after the final
knot, ko, . If there are no time-dependent effects then {dg;, 014, doi, P1:} are constant across patients. The cumulative
hazard function can then be defined in three components

Hi(t) = Hy;(t) + Hai(t) + Hsi(t) (24)

If we assume tg; < kg1 and t; > kg, then before the first knot, we have

exp(doi) : S14+1 814+1
H i t) = ti,k 12 — ol 2
1i(t) 5o 11 {min(t;, kor) o T} (25)
and after the final knot, we have
H3i(t) = e;lp(jio?l) {t?“Jrl — maX(tOi, kon)¢1i+1} (26)
and Ho;(t) becomes
Kon — ko1 ~— kon — ko1 ko1 + kon
j=1

The alternative forms of the cumulative hazard function for situations where, for example, to; > ko1 are detailed in
Appendix A. This combined analytical /numerical approach allows us to use far fewer quadrature nodes, which given
numerical integration techniques are generally computationally intensive, is a desirable aspect of the estimation
routine. We illustrate this in Section 4.1.

3.8. Improving efficiency

In this section we conduct a small simulation study to compare the efficiency of the Kaplan-Meier estimate of the
survival function, to a parametric formulation using splines, in particular, when data is sparse in the right tail.
We simulate survival times from a Weibull distribution with scale and shape values of 0.2 and 1.3, respectively.
Censoring times are generated from a U(0,6) distribution, with the observed survival time taken as the minimum of
the censoring and event times, and an administrative censoring time of 5 years. This provides a realistic combination
of intermittent and administrative censoring. A thousand repetitions are conducted, each with a sample size of 200.

In each repetition, we calculate the Kaplan-Meier estimate, and associated standard error, of survival at 4 and
5 years, and the parametric equivalent using a spline based model with 3 degrees of freedom. The median number
of events across the simulations was 101, with a median of 5 events during the final year of follow-up. Results are
presented in Table 1.

Table 1. Bias and mean squared error of log(—log(S(t))) at 4 and 5 years.

Time Kaplan-Meier Parametric model
4 vear Bias -0.0019 -0.0038
YeArs \ISE 0.1251 0.1100
5 vears Bias 0.0066 0.0063
Y MSE 0.1565 0.1481

From Table 1, we see that at both 4 and 5 years, the mean squared error is lower for the parametric approach,
compared to the Kaplan-Meier estimate. Bias is essentially negligible for all estimates. This indicates a gain in
efficiency for the parametric approach in this particular scenario. Of course, this simulation setting is limited to a
simple case of a Weibull, but note that we do not fit the correct parametric model, but an incorrect flexible model
still does better than the Kaplan-Meier.

4. Example applications
We aim to show the versatility of the framework through three different survival modelling areas, utilising splines,
whilst providing example code in the appendix to demonstrate the ease of implementation to researchers.
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4.1. Breast cancer survival

We begin with a dataset of 9721 women aged under 50 and diagnosed with breast cancer in England and Wales
between 1986 and 1990. Our event of interest is death from any cause, where 2,847 events were observed, and we
have restricted follow-up to 5 years, leading to 6,850 censored at 5 years. We are interested in the effect of deprivation
status, which was categorised into 5 levels; however, in this example we restrict our analyses to comparing the least
and most deprived groups. We subsequently have a binary covariate, with 0 for the least deprived and 1 for the
most deprived group.

In this section we wish to establish the benefit of incorporating the analytic components, described in Section
3.2, compared to the general method of only using numerical integration, described in Section 2. We use the general
Stata software package, stgenreg, described previously [14], to fit the full quadrature based approach, and a newly
developed Stata package, strcs, which implements the combined analytic and numeric approach when using splines
on the log hazard scale. We apply the spline based models shown in Equation (18), with 5 degrees of freedom (6
knots), i.e. 5 spline variables to capture the baseline, incorporating the proportional effect of deprivation status,
with an increasing number of quadrature points, until estimates are found to have converged to 3, 4 and finally 5
decimal places.
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Table 2 compares parameter estimates and standard errors under the full numerical approach, across varying
number of quadrature nodes, and Table 3 presents the equivalent results for the combined analytic/numeric
approach. From Table 2, we still observe variation in estimates and the log likelihood to 5 or 6 decimal places
between 500 and 1000 nodes, whilst for the combined approach shown in Table 3, the maximum difference between
100 and 1000 nodes is 0.000001. For the combined approach the log-likelihood does not change to 3 decimal places
between 100 and 1000 nodes, whilst the log-likelihood for the full numerical approach is only the same to 1 decimal
place.

We found that with the full numerical approach it required 23 nodes, and 50 nodes, to establish consistent
estimates to 3 and 4 decimal places, respectively. We compare that to 18 nodes, and 27 nodes under the combined
analytic and numerical approach. Final results for the combined approach using 27 nodes are presented in Table 4.

Table 4. Results from combined analytic/numerical spline based survival model.

Variable Hazard ratio 95% CI

Deprivation (most) 1.309 1.212 1.414
Baseline Coefficient 95% CI

Y1 -0.059 -0.112 -0.005

Yo 0.085 0.047 0.122

Y3 0.110 0.076 0.143

Ya -0.022 -0.050 0.006

Y5 -0.001 -0.027 0.025

Intercept -2.908 -3.027 -2.789

From Table 4 we observe a statistically significant hazard ratio of 1.309 (95% CI: 1.212, 1.414), indicating an
increased hazard rate in the most deprived group, compared to the least deprived. Comparing computation time,
the general approach with 49 quadrature nodes took 20.5 seconds on a standard laptop, compared to 17.5 using
the combined approach with 27 nodes.

Figure 1 shows the fitted survival functions from the full numerical approach (using stgenreg), the combined
analytic/numerical approach (using strcs), and the Cox model. It is clear that all three models yield essentially
identical fitted survival functions, though from a visual inspection all three appear to fit poorly.

Proportional hazards

1.0

Survival

Affluent group, KM curve  ———-—- Deprived group, KM curve
0.6 eeiee Affluent group, stgenreg — — - Deprived group, stgenreg
— — — Affluent group, strcs —— —- Deprived group, strcs
Affluent group, Cox ~ -- - - Deprived group, Cox
05 T T T T 1
0 1 2 3 4 5

Follow-up time (years)
Figure 1. Kaplan-Meier curve by deprivation status, with fitted survival functions overlaid, from stgenreg, strcs and Cox models.

We can investigate the presence of a time-dependent effect due to deprivation status, by applying Equation (23).
We use 5 degrees of freedom to capture the baseline and use 3 degrees of freedom to model the time-dependent
effect of deprivation status. Figure 2 shows the time-dependent hazard ratio, illustrating the decrease in the effect
of deprivation over time.

The improved fit when incorporating the time-dependent effect of deprivation status is illustrated in Figure 3.
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o -

Hazard ratio

~
~——_

Follow-up time (years since diagnosis)

95% Confidence Interval ———-—- Hazard ratio

Figure 2. Time-dependent hazard ratio for deprivation status.

Proportional hazards Non-proportional hazards

1.0+

Survival
Survival

2 3 4 5 0 1 2 3 4 5
Follow-up time (years) Follow-up time (years)

Affluent group, KM curve  ————- Deprived group, KM curve
----------- Affluent group, strcs —— - Deprived group, strcs

Figure 3. Fitted survival function overlaid on the Kaplan-Meier curve, under proportional hazards and non-proportional hazards models using
strcs.

Example Stata code to fit time-independent and time-dependent models presented in this section are included
in Appendix B.

4.2. FExcess mortality model

For the excess mortality model we use the same data source as in Section 4.1. However, we now include women
aged over 50. Expected mortality is stratified by age, sex, calendar year, region and deprivation quintile [25]. As
for the analysis in Section 4.1, we only include the least and most deprived groups for simplicity. Age is categorised
into 5 groups, < 50, 50-59, 60-69, 70-79, 80+4. There are 41,645 subjects included in the analysis, with a total of
17,057 events before 5 years post diagnosis.

4.2.1. Proportional excess hazards model We initially fit a model where the excess mortality rate is assumed to
be proportional between different covariate patterns. We compare the estimates to a model using restricted cubic
splines on the log cumulative hazard scale [24]. In both models 6 knots are used with these placed evenly according
to the distribution of log death times.

From Table 5, we observe very similar hazard ratios and their 95% confidence intervals between the models on
different scales.



Statistics

in Medicine M. J. CROWTHER AND P. C. LAMBERT

Table 5. Comparison of excess hazard ratios (and 95% confidence intervals) from models with the linear predictor
on the log hazard scale and the log cumulative hazard scale. Both models have 6 knots with these placed evenly
according to the distribution of log death times.

Covariate log hazard  log cumulative hazard
Deprivation (most) 1.313 1.313
(1.265,1.364) (1.265,1.364)
Age (50-59) 1.055 1.055
(0.998,1.114) (0.998,1.114)
Age (60-69) 1.071 1.071
(1.014,1.130) (1.015,1.131)
Age (70-79) 1.453 1.454
(1.372,1.539) (1.373,1.540)
Age (80+) 2.647 2.647
(2.484,2.822) (2.484,2.821)

Age (< 50) is the reference group

4.2.2. Time-dependent effects A model is now fitted where the assumption of proportional excess hazards is relaxed
for all covariates. This is done by incorporating an interaction between each covariate and a restricted cubic spline
function of log time with 4 knots (3 degrees of freedom). The knots are placed evenly according to the distribution
of log death times. The estimated excess hazard ratio for deprivation group can be seen in Figure 4. As there is not
an interaction between deprivation group and age group then this hazard ratio is assumed to apply for each of the
5 age groups. If the model was fitted on the log cumulative excess hazard scale, then this would not be the case.
This is illustrated in Figure 5 where the same linear predictor has been fitted for a model on the log cumulative
excess hazard scale and the estimated excess hazard ratio is shown for two age groups and is shown to be different.

1.8

1.6

1.4+

Excess mortality ratio

T T
0 1 2 3 4 5
Year since diagnosis

Figure 4. Excess hazard ratio comparing most deprived with least deprived group. The model used 6 knots for the baseline and 4 knots for the
time-dependent effect.

The impact of the default interior knot locations can be assessed through sensitivity analyses, varying the knot
locations. In Figure 6, we compare the default choice (interior knots at 1.024 and 2.660), to three other choices,
illustrating some minor variation in the tails of the estimated shape of the time-dependent excess hazard ratio;
however, the functional form is generally quite robust to knot location.

Example Stata code to fit time-independent and time-dependent excess mortality models presented in this section
are included in Appendix C.
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1.8+

Excess mortality ratio

Age <50
Age 70-79

T

0

Thinner lines are lower and upper confidence intervals

Year since diagnosis

Figure 5. Excess hazard ratios comparing most deprived with least deprived group. The model used 6 knots for the baseline and 4 knots for

the time-dependent effect.

1.8+

Excess mortality rate ratio

Internal knots: 0.5, 3
Internal knots: 1, 2.4
internal knots: 0.7, 5 2

2

Time since diagnosis

Figure 6. Excess hazard ratios comparing most deprived with least deprived group. The model used 6 knots for the baseline and 4 knots for

the time-dependent effect, with 3 choices for the interior knots of the time-dependent effect. Dashed lines indicate 95% confidence intervals.

4.83. Cluster robust errors

To illustrate the use of cluster robust standard errors, we use a dataset of 85 patients with bladder cancer [35, 36].
We fit a model for recurrent event data, where the event of interest is recurrence of bladder cancer. Each patient
can experience a total of 4 events, shown in Table 6. A total of 112 events were observed. Covariates of interest
include treatment group (0 for placebo, 1 for thiotepa), initial number of tumors (range 1 to 8, with 8 meaning 8
or more), and initial size of tumors (in centimetres, with range 1 to 7).

Table 6. Number of patients who were censored or experienced up to 4 recurrences of bladder cancer

Recurrence Number of patients
number Censored Event Total
1 38 47 85
2 17 29 46
3 5 22 27
4 6 14 20
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To allow for the inherent structure, events nested within patients, we fit a parametric version of the Prentice-
Williams-Peterson model, allowing for cluster robust standard errors. This model uses non-overlapping time
intervals, thus for example, a patient is not at risk of a second recurrence until after the first has occurred. The
baseline hazard for each event is allowed to vary, i.e. there is a stratification factor by event. We use 5 knots for
a shared baseline between the events, but allow departures from this baseline using restricted cubic splines with 3
knots for each of the subsequent events. For comparison, we also fit a Cox model, stratified by event number, with
cluster robust standard errors [37]. Results are presented in Table 7.

Table 7. Results from spline based and Cox models with cluster robust standard errors.

Variable Spline hazard model Cox model
Hazard Ratio Robust Std. Err. 95% CI Hazard Ratio Robust Std. Err. 95% CI
group 0.699 0.149 0.459 1.063 0.716 0.148 0.478 1.073
size 0.990 0.064 0.872 1.123 0.992 0.061 0.878 1.120
number 1.146 0.060 1.035 1.269 1.127 0.058 1.018 1.247

From Table 7, we observe similar estimates from the spline based model, compared to the Cox model with cluster
robust standard errors. We can compare estimated baseline hazard rates for each of the four ordered events, from
the spline based model, shown in Figure 7.

Event 1 Event 2
O O
— —
Q [}
[ 8
= =
| N -
c - c -
I d T -
o o
S S]
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Follow-up time Follow-up time
Event 3 Event 4
© © -
— -
Q Q
[ [
° ©
8 8
32 Ne
T3 3.
S S
T T T T T T T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50
Follow-up time Follow-up time
P 95% Confidence Interval ————- Hazard rate

Figure 7. Baseline hazard rates for the four ordered events.

We can see from Figure 7, that those patients who go on to experience a third and fourth event have a high
initial hazard rate, demonstrating the fact that they will likely be a more severe subgroup.
Example Stata code to fit the cluster robust spline model is included in Appendix D.

5. Discussion

We have described a general framework for the parametric analysis of survival data, incorporating any
combination of complex baseline hazard functions, time-dependent effects, time-varying covariates, delayed entry
(left truncation), robust and cluster robust standard errors, and the extension to relative survival. Modelling the
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baseline hazard, and any time-dependent effects parametrically, can offer a greater insight into the risk profile over
time. Parametric modelling is of particular importance when extrapolating survival data, for example within an
economic decision modelling framework [11]. In this article we concentrated on the use of restricted cubic splines,
which offer great flexibility to capture the observed data, but also a likely sensible extrapolation if required, given
the linear restriction beyond the boundary knots.

In particular, we described how the general framework can be optimised in special cases with respect to the
estimation routine, utilising the restricted nature of the splines to incorporate the analytic parts of the cumulative
hazard function, in combination with the numerical integration. This provided a much more efficient estimation
process, requiring far fewer quadrature nodes to obtain consistent estimates, providing computational benefits.
However, it is important to note that although we have concentrated on the use of splines in this article, essentially
any parametric function can be used to model the baseline (log) hazard function and time-dependent effects.

In application to the breast cancer data, we showed that the general numerical approach requires a large number
of quadrature nodes, compared to the combined analytic/numeric approach, in order to obtain consistent estimates.
This is due to the numerical approach struggling to capture high hazards at the beginning of follow-up time. Given
that hazard ratios are usually only reported to two/three decimal places, the large number of nodes used in Section
4.1 will often not be required. In further examples not shown, where the hazard is low at the beginning of follow-up,
often < 30 nodes are sufficient with the full numerical approach.

We have chosen to use restricted cubic spline functions of log time, since in many applications we have found
this to provide an equivalent or better fit, compared to using splines of time. However, in studies with age as the
timescale it may be more appropriate to use spline functions of untransformed time.

Other approaches to modelling the baseline hazard and time-dependent effects include using the piecewise
exponential framework, either through a Bayesian [38] or classical approach [39]. Han et al. (2014) [39] developed
a reduced piecewise exponential approach which can be used to identify shifts in the hazard rate over time based
on an exact likelihood ratio test, a backward elimination procedure, and an optional presumed order restriction on
the hazard rate; however, can be considered more of a descriptive tool, as covariates cannot currently be included.
The piecewise approach assumes the baseline and any time-dependent effects follow a step-function. Alternatively,
using splines, as described in this article, would produce a more plausible estimated function in continuous time,
with particular benefits in terms of prediction both in and out of sample, compared to the piecewise approach.

In this article we have only looked at fixed effect survival models; however, future work involves the incorporation
of frailty distributions. User friendly Stata software, written by the authors, is provided which significantly extends
the range of available methods for the parametric analysis of survival data [14].

Appendix

Appendiz A

For the " patient, we have entry and survival times, to; and t;, respectively. We define 6p; and &1; to be the
intercept and slope of the log hazard function for the i*" patient before the first knot, ko1, and ¢o; and ¢q; to be the
intercept and slope of the log hazard function for the i*" patient after the final knot, kg,,. The cumulative hazard
function can then be defined in three components

Hi(t) = Hyi(t) + Hoi(t) + Ha(t)

If we assume tg; < ko1 and t; > kon, then before the first knot, we have

exp(do; . ; ;
Hyi(t) = % {mln(ti,k01)5“+1 - tg%ﬁl}

and after the final knot, we have

H;i(t) = M {t?17‘,+1 — max(to;, kon)¢11‘,+1}

Copu+l
and Ho;(t) becomes
 kon — ko1 kon — ko1 ko1 + kon
HQZ(t) ~ 72 Zl’l)jhi < B) Zj + B)
]:

Alternatively, we may have observations where kg, > to; > ko1 and t; > ko, then we have
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m

—to; kn— 0i ti+k57z
H;(t) ~ OZ h<0 j—&-020>

Hs,(t) = e;(f(jioi) {tg)u-‘rl _ maX(tOiyk'On)d)li+1}

If tg; < ko1 and kg1 < t; < kOru we have

exp(do;)

Hyi(t) = St 1 {min(t;, ko )"+ — tg;"*l}
k: S ti—k ko1 + ti
Hos (1) ti — ko1 nghz ( Olzj n 012 )
j=1
H3i(t)=0
If koy < to; < t; < kon, we have
Hy;(t)=0
t; — toi o t; — tos to; + ti
Hailt) 2 =57 3w < 2 9T )
j=1
Hsi(t) =0
If tos <t; < k()l, then
_exp(00i) gu5041  Loui41
Hli(t)*m{tl — o}
Hyi(t) =0
H3i(t)=0
Finally, if kq,, < to; < t;, we have
Hy;(t)=0
exp(¢o;) { b1t 6 .H}
Hsi(t) = ———=2 Q70 — ¢t
lt) pri+1 U° oi

Appendiz B

Example Stata code using 5 spline variables to model the baseline. stgenreg uses the full numerical approach, and
strcs uses the combined analytic/numeric approach.

. stgenreg, loghazard([xb]) xb(dep5 | #rcs(df(5)) ) nodes(50)
. strcs dep5, df(5) nodes(27)
Incorporating a time-dependent effect:

. stgenreg, loghazard([xb]) xb(dep5 | #rcs(df(5)) | dep5:*#rcs(df(3))) nodes(50)
. strcs dep5, df(5) nodes(50) tvc(dep5) dftvc(3)

Appendiz C

Example code to fit the combined analytic/numeric approach assuming proportional excess hazards, and non-
proportional excess hazards

. strcs depb agegrp2 agegrp3 agegrp4 agegrp5, df(5) nodes(50) bhazard(rate)

. strcs depb5 agegrp2 agegrp3 agegrp4 agegrp5, df(5) nodes(50) bhazard(rate) ///
> tvc(depb agegrp2 agegrp3 agegrp4 agegrpb) dftvc(3)
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Appendiz D

Example code to fit the combined analytic/numeric approach with cluster robust standard errors

. stset rec, enter(start) f(event=1) id(id) exit(time .)

. //generate binary event (strata) indicators
. tab strata, gen(st)

. strcs group size number st2 st3 st4, df(4) tvc(st2 st3 st4) dftvc(2) vce(cluster id)
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