
To appear in ACM Transactions on Computer Systems.

An earlier version of this work also appears in Proceedings of the 10th International Conference

on Parallel Architectures and Compilation Techniques. September 2001.

A General Framework for Prefetch Scheduling in Linked Data

Structures and its Application to Multi-Chain Prefetching

Seungryul Choi‡, Nicholas Kohout††, Sumit Pamnani∗, Dongkeun Kim†, Donald Yeung†

‡Computer Science Dept. ††Intel Corp. ∗AMD Inc. †Electrical & Computer Eng. Dept.
Univ. of Maryland, nicholas.j.kohout sumitkumar.pamnani Univ. of Maryland,

College Park @intel.com @amd.com College Park
choi@cs.umd.edu {dongkeun,yeung}@eng.umd.edu

Abstract

Pointer-chasing applications tend to traverse composite data structures consisting of mul-
tiple independent pointer chains. While the traversal of any single pointer chain leads to the
serialization of memory operations, the traversal of independent pointer chains provides a source
of memory parallelism. This article investigates exploiting such inter-chain memory parallelism

for the purpose of memory latency tolerance, using a technique called multi-chain prefetching.
Previous works [30, 31] have proposed prefetching simple pointer-based structures in a multi-
chain fashion. However, our work enables multi-chain prefetching for arbitrary data structures
composed of lists, trees, and arrays.

This article makes five contributions in the context of multi-chain prefetching. First, we
introduce a framework for compactly describing LDS traversals, providing the data layout and
traversal code work information necessary for prefetching. Second, we present an off-line schedul-
ing algorithm for computing a prefetch schedule from the LDS descriptors that overlaps serialized
cache misses across separate pointer-chain traversals. Our analysis focuses on static traversals.
We also propose using speculation to identify independent pointer chains in dynamic traver-
sals. Third, we propose a hardware prefetch engine that traverses pointer-based data structures
and overlaps multiple pointer chains according to the computed prefetch schedule. Fourth, we
present a compiler that extracts LDS descriptors via static analysis of the application source
code, thus automating multi-chain prefetching. Finally, we conduct an experimental evaluation
of compiler-instrumented multi-chain prefetching and compare it against jump pointer prefetch-
ing [21], prefetch arrays [14], and predictor-directed stream buffers (PSB) [33].

Our results show compiler-instrumented multi-chain prefetching improves execution time by
40% across six pointer-chasing kernels from the Olden benchmark suite [29], and by 3% across
four SPECint2000 benchmarks. Compared to jump pointer prefetching and prefetch arrays,
multi-chain prefetching achieves 34% and 11% higher performance for the selected Olden and
SPECint2000 benchmarks, respectively. Compared to PSB, multi-chain prefetching achieves
27% higher performance for the selected Olden benchmarks, but PSB outperforms multi-chain
prefetching by 0.2% for the selected SPECint2000 benchmarks. An ideal PSB with an infinite
markov predictor achieves comparable performance to multi-chain prefetching, coming within
6% across all benchmarks. Finally, speculation can enable multi-chain prefetching for some
dynamic traversal codes, but our technique loses its effectiveness when the pointer-chain traversal
order is highly dynamic.

1

1 Introduction

A growing number of important non-numeric applications employ linked data structures (LDSs).
For example, databases commonly use index trees and hash tables to provide quick access to large
amounts of data. Several compression algorithms and voice recognition programs use hash tables
to store lookup values. Finally, object-oriented programming environments such as C++ and Java
track dynamic objects using object graphs and invoke methods via function tables, both requir-
ing linked data structures. Moreover, current trends show these non-numeric codes will become
increasingly important relative to scientific workloads on future high-performance platforms.

The use of LDSs will likely have a negative impact on memory performance, making many
non-numeric applications severely memory-bound on future systems. LDSs can be very large owing
to their dynamic heap construction. Consequently, the working sets of codes that use LDSs can
easily grow too large to fit in the processor’s cache. In addition, logically adjacent nodes in an
LDS may not reside physically close in memory. As a result, traversal of an LDS may lack spatial
locality, and thus may not benefit from large cache blocks. The sparse memory access nature of
LDS traversal also reduces the effective size of the cache, further increasing cache misses.

In the past, researchers have used prefetching to address the performance bottlenecks of
memory-bound applications. Several techniques have been proposed, including software prefetch-
ing techniques [2, 16, 25, 26], hardware prefetching techniques [5, 9, 13, 28], or hybrid tech-
niques [4, 6, 35]. While such conventional prefetching techniques are highly effective for appli-
cations that employ regular data structures (e.g. arrays), these techniques are far less successful
for non-numeric applications that make heavy use of LDSs due to memory serialization effects
known as the pointer chasing problem. The memory operations performed for array traversal can
issue in parallel because individual array elements can be referenced independently. In contrast,
the memory operations performed for LDS traversal must dereference a series of pointers, a purely
sequential operation. The lack of memory parallelism during LDS traversal prevents conventional
prefetching techniques from overlapping cache misses suffered along a pointer chain.

Recently, researchers have begun investigating prefetching techniques designed for LDS traver-
sals. These new LDS prefetching techniques address the pointer-chasing problem using several
different approaches. Stateless techniques [21, 23, 30, 37] prefetch pointer chains sequentially using
only the natural pointers belonging to the LDS. Existing stateless techniques do not exploit any
memory parallelism at all, or they exploit only limited amounts of memory parallelism. Conse-
quently, they lose their effectiveness when the LDS traversal code contains insufficient work to hide
the serialized memory latency [21].

A second approach [14, 21, 31], which we call jump pointer techniques, inserts additional pointers
into the LDS to connect non-consecutive link elements. These “jump pointers” allow prefetch
instructions to name link elements further down the pointer chain without sequentially traversing
the intermediate links, thus creating memory parallelism along a single chain of pointers. Because
they create memory parallelism using jump pointers, jump pointer techniques tolerate pointer-
chasing cache misses even when the traversal loops contain insufficient work to hide the serialized
memory latency. However, jump pointer techniques cannot commence prefetching until the jump
pointers have been installed. Furthermore, the jump pointer installation code increases execution
time, and the jump pointers themselves contribute additional cache misses.

Finally, a third approach consists of prediction-based techniques [12, 33, 34]. These techniques
perform prefetching by predicting the cache-miss address stream, for example using hardware pre-
dictors [12, 33]. Early hardware predictors were capable of following striding streams only, but

2

more recently, correlation [3] and markov [12] predictors have been proposed that can follow arbi-
trary streams, thus enabling prefetching for LDS traversals. Because predictors need not traverse
program data structures to generate the prefetch addresses, they avoid the pointer-chasing problem
altogether. In addition, for hardware prediction, the techniques are completely transparent since
they require no support from the programmer or compiler. However, prediction-based techniques
lose their effectiveness when the cache-miss address stream is unpredictable.

This article investigates exploiting the natural memory parallelism that exists between inde-
pendent serialized pointer-chasing traversals, or inter-chain memory parallelism. Our approach,
called multi-chain prefetching, issues prefetches along a single chain of pointers sequentially, but
aggressively pursues multiple independent pointer chains simultaneously whenever possible. Due to
its aggressive exploitation of inter-chain memory parallelism, multi-chain prefetching can tolerate
serialized memory latency even when LDS traversal loops have very little work; hence, it can achieve
higher performance than previous stateless techniques. Furthermore, multi-chain prefetching does
not use jump pointers. As a result, it does not suffer the overheads associated with creating and
managing jump pointer state. And finally, multi-chain prefetching is an execution-based technique,
so it is effective even for programs that exhibit unpredictable cache-miss address streams.

The idea of overlapping chained prefetches, which is fundamental to multi-chain prefetching, is
not new: both Cooperative Chain Jumping [31] and Dependence-Based Prefetching [30] already
demonstrate that simple “backbone and rib” structures can be prefetched in a multi-chain fashion.
However, our work pushes this basic idea to its logical limit, enabling multi-chain prefetching for
arbitrary data structures (our approach can exploit inter-chain memory parallelism for any data
structure composed of lists, trees, and arrays). Furthermore, previous chained prefetching tech-
niques issue prefetches in a greedy fashion. In contrast, our work provides a formal and systematic
method for scheduling prefetches that controls the timing of chained prefetches. By controlling
prefetch arrival, multi-chain prefetching can reduce both early and late prefetches which degrade
performance compared to previous chained prefetching techniques.

In this article, we build upon our original work in multi-chain prefetching [17], and make the
following contributions:

1. We present an LDS descriptor framework for specifying static LDS traversals in a compact
fashion. Our LDS descriptors contain data layout information and traversal code work infor-
mation necessary for prefetching.

2. We develop an off-line algorithm for computing an exact prefetch schedule from the LDS
descriptors that overlaps serialized cache misses across separate pointer-chain traversals. Our
algorithm handles static LDS traversals involving either loops or recursion. Furthermore, our
algorithm computes a schedule even when the extent of dynamic data structures is unknown.
To handle dynamic LDS traversals, we propose using speculation. However, our technique
cannot handle codes in which the pointer-chain traversals are highly dynamic.

3. We present the design of a programmable prefetch engine that performs LDS traversal outside
of the main CPU, and prefetches the LDS data using our LDS descriptors and the prefetch
schedule computed by our scheduling algorithm. We also perform a detailed analysis of the
hardware cost of our prefetch engine.

4. We introduce algorithms for extracting LDS descriptors from application source code via
static analysis, and implement them in a prototype compiler using the SUIF framework [11].

3

Our prototype compiler is capable of extracting all the program-level information necessary
for multi-chain prefetching fully automatically.

5. Finally, we conduct an experimental evaluation of multi-chain prefetching using sev-
eral pointer-intensive applications. Our evaluation compares compiler-instrumented multi-
chain prefetching against jump pointer prefetching [21, 31] and prefetch arrays [14], two
jump pointer techniques, as well as predictor-directed stream buffers [33], an all-hardware
prediction-based technique. We also investigate the impact of early prefetch arrival on
prefetching performance, and we compare compiler- and manually-instrumented multi-chain
prefetching to evaluate the quality of the instrumentation generated by our compiler. In addi-
tion, we characterize the sensitivity of our technique to varying hardware parameters. Lastly,
we undertake a preliminary evaluation of speculative multi-chain prefetching to demonstrate
its potential in enabling multi-chain prefetching for dynamic LDS traversals.

The rest of this article is organized as follows. Section 2 further explains the essence of multi-
chain prefetching. Then, Section 3 introduces our LDS descriptor framework. Next, Section 4
describes our scheduling algorithm, Section 5 discusses our prefetch engine, and Section 6 presents
our compiler for automating multi-chain prefetching. After presenting all our algorithms and tech-
niques, Sections 7 and 8 then report on our experimental methodology and evaluation, respectively.
Finally, Section 9 discusses related work, and Section 10 concludes the article.

2 Multi-Chain Prefetching

This section provides an overview of our multi-chain prefetching technique. Section 2.1 presents
the idea of exploiting inter-chain memory parallelism. Then, Section 2.2 discusses the identification
of independent pointer chain traversals.

2.1 Exploiting Inter-Chain Memory Parallelism

The multi-chain prefetching technique augments a commodity microprocessor with a programmable
hardware prefetch engine. During an LDS computation, the prefetch engine performs its own
traversal of the LDS in front of the processor, thus prefetching the LDS data. The prefetch engine,
however, is capable of traversing multiple pointer chains simultaneously when permitted by the ap-
plication. Consequently, the prefetch engine can tolerate serialized memory latency by overlapping
cache misses across independent pointer-chain traversals.

To illustrate the idea of exploiting inter-chain memory parallelism, we first describe how our
prefetch engine traverses a single chain of pointers. Figure 1a shows a loop that traverses a linked
list of length three. Each loop iteration, denoted by a hashed box, contains w1 cycles of work.
Before entering the loop, the processor executes a prefetch directive, INIT (IDll), instructing the
prefetch engine to initiate traversal of the linked list identified by the IDll label. If all three link
nodes suffer an l-cycle cache miss, the linked list traversal requires 3l cycles since the link nodes
must be fetched sequentially. Assuming l > w1, the loop alone contains insufficient work to hide
the serialized memory latency. As a result, the processor stalls for 3l − 2w1 cycles. To hide these
stalls, the prefetch engine would have to initiate its linked list traversal 3l − 2w1 cycles before the
processor traversal. For this reason, we call this delay the pre-traversal time (PT).

While a single pointer chain traversal does not provide much opportunity for latency tolerance,

4

<compute>

l

ptr = A[i];

3l

ptr = ptr->next;

 while (ptr) {

for (i=0; i < N; i++) {

w2

w1a)

b)

Memory Parallelism

}

<compute>
ptr = ptr->next;

 while (ptr) {

}
}

PD = 2

INIT(IDll);

stall stall stall

INIT(IDaol);
stall stall

Figure 1: Traversing pointer chains using a prefetch engine. a). Traversal of a single linked list.
b). Traversal of an array of lists data structure.

pointer chasing computations typically traverse many pointer chains, each of which is often inde-
pendent. To illustrate how our prefetch engine exploits such independent pointer-chasing traversals,
Figure 1b shows a doubly nested loop that traverses an array of lists data structure. The outer
loop, denoted by a shaded box with w2 cycles of work, traverses an array that extracts a head
pointer for the inner loop. The inner loop is identical to the loop in Figure 1a.

In Figure 1b, the processor again executes a prefetch directive, INIT (IDaol), causing the
prefetch engine to initiate a traversal of the array of lists data structure identified by the IDaol

label. As in Figure 1a, the first linked list is traversed sequentially, and the processor stalls since
there is insufficient work to hide the serialized cache misses. However, the prefetch engine then
initiates the traversal of subsequent linked lists in a pipelined fashion. If the prefetch engine starts
a new traversal every w2 cycles, then each linked list traversal will initiate the required PT cycles
in advance, thus hiding the excess serialized memory latency across multiple outer loop iterations.
The number of outer loop iterations required to overlap each linked list traversal is called the
prefetch distance (PD). Notice when PD > 1, the traversals of separate chains overlap, exposing
inter-chain memory parallelism despite the fact that each chain is fetched serially.

2.2 Finding Independent Pointer-Chain Traversals

In order to exploit inter-chain memory parallelism, it is necessary to identify multiple independent
pointer chains so that our prefetch engine can traverse them in parallel and overlap their cache
misses, as illustrated in Figure 1. An important question is whether such independent pointer-chain
traversals can be easily identified.

Many applications perform traversals of linked data structures in which the order of link node
traversal does not depend on runtime data. We call these static traversals. The traversal order of
link nodes in a static traversal can be determined a priori via analysis of the code, thus identify-
ing the independent pointer-chain traversals at compile time. In this paper, we present an LDS
descriptor framework that compactly expresses the LDS traversal order for static traversals. The
descriptors in our framework also contain the data layout information used by our prefetch engine
to generate the sequence of load and prefetch addresses necessary to perform the LDS traversal at
runtime.

5

a).

b).

(B,L,S)

(B,L,*S)

B S

B

S

for (i = 0 ; i < N ; i++) {
 ... = data[i].value;
}

for (ptr = root ; ptr != NULL;) {
 ptr = ptr->next;
}

B = &(data[0].value)
L = N
S = sizeof(data[0])

B = &(root->next)
L = N
S = &(type_of_ptr) 0->next

data

root

N elements

Figure 2: Two LDS descriptors used to specify data layout information. a). Array descriptor. b).
Linked list descriptor. Each descriptor appears inside a box, and is accompanied by a traversal
code example and an illustration of the data structure.

While compile-time analysis of the code can identify independent pointer chains for static traver-
sals, the same approach does not work for dynamic traversals. In dynamic traversals, the order
of pointer-chain traversal is determined at runtime. Consequently, the simultaneous prefetching of
independent pointer chains is limited since the chains to prefetch are not known until the traversal
order is computed, which may be too late to enable inter-chain overlap. For dynamic traversals, it
may be possible to speculate the order of pointer-chain traversal if the order is predictable. In this
paper, we focus on static LDS traversals. Later in Section 8.7, we illustrate the potential for pre-
dicting pointer-chain traversal order in dynamic LDS traversals by extending our basic multi-chain
prefetching technique with speculation.

3 LDS Descriptor Framework

Having provided an overview of multi-chain prefetching, we now explore the algorithms and hard-
ware underlying its implementation. We begin by introducing a general framework for compactly
representing static LDS traversals, which we call the LDS descriptor framework. This framework
allows compilers (and programmers) to compactly specify two types of information related to LDS
traversal: data structure layout, and traversal code work. The former captures memory reference
dependences that occur in an LDS traversal, thus identifying pointer-chasing chains, while the
latter quantifies the amount of computation performed as an LDS is traversed. After presenting
the LDS descriptor framework, subsequent sections of this article will show how the information
provided by the framework is used to perform multi-chain prefetching (Sections 4 and 5), and how
the LDS descriptors themselves can be extracted by a compiler (Section 6).

3.1 Data Structure Layout Information

Data structure layout is specified using two descriptors, one for arrays and one for linked lists.
Figure 2 presents each descriptor along with a traversal code example and an illustration of the
traversed data structure. The array descriptor, shown in Figure 2a, contains three parameters: base

6

B

S0

(B,L0,S0)

(O1,L1,S1)

S0

S1

B

(B,L0,S0)

*(O1,L1,S1)

O1

(B,L0,S0)

(O1,L1,S1)

*(O2,L2,S2)

a).

b).

c).

for (i = 0 ; i < L0 ; i++) {

 ... = node[i].value;
 for (j = 0 ; j < L1 ; j++) {

 ... = node[i].data[j];
 }
}

B = &(node[0].value)
S0 = sizeof(node[0])

O1 = &(node[0].data[0]) - &(node[0].value)

S1 = sizeof(node[0].data[0])

node

&(node[1].data[0])

for (i = 0 ; i < L0 ; i++) {

 down = node[i].pointer;
 for (j = 0 ; j < L1 ; j++) {

 ... = down->data[j];
 }
}

B = &(node[0].pointer)
S0 = sizeof(node[0])

O1 = &(node[0].pointer->data[0]) - node[0].pointer

S1 = sizeof(node[0].pointer->data[0])

node

&(node[1].pointer->data[0])

for (i = 0 ; i < L0 ; i++) {

 for (j = 0 ; j < L1 ; j++) {

 ... = node[i].data[j];
 }
 down = node[i].pointer;
 for (j = 0 ; j < L2 ; j++) {

 ... = down->data[j];
 }
}

B = &(node[0].pointer)
S0 = sizeof(node[0])

O1 = &(node[0].data[0]) - &(node[0].pointer)

S1 = sizeof(node[0].data[0])

O2 = &(node[0].pointer->data[0]) - node[0].pointer

S2 = sizeof(node[0].pointer->data[0])

S0

S2

B

O2

node S1O1

S1O1

Figure 3: Nested descriptor composition. a). Nesting without indirection. b). Nesting with
indirection. c). Nesting multiple descriptors. Each descriptor composition appears inside a box,
and is accompanied by a traversal code example and an illustration of the composite data structure.

(B), length (L), and stride (S). These parameters specify the base address of the array, the number
of array elements traversed by the application code, and the stride between consecutive memory
references, respectively. The array descriptor specifies the memory address stream emitted by the
processor during a constant-stride array traversal. Figure 2b illustrates the linked list descriptor
which contains three parameters similar to the array descriptor. For the linked list descriptor, the
B parameter specifies the root pointer of the list, the L parameter specifies the number of link
elements traversed by the application code, and the ∗S parameter specifies the offset from each
link element address where the “next” pointer is located. The linked list descriptor specifies the
memory address stream emitted by the processor during a linked list traversal.

To specify the layout of complex data structures, our framework permits descriptor composition.
Descriptor composition is represented as a directed graph whose nodes are array or linked list
descriptors, and whose edges denote address generation dependences. Two types of composition
are allowed. The first type of composition is nested composition. In nested composition, each

7

O

*(B,O,L,S)

B S

D

main() {
 foo(root, depth_limit);
}
foo(node, depth) {
 depth = depth - 1;
 if (depth == 0 || node == NULL)
 return;
 foo(node->child[0], depth);
 foo(node->child[1], depth);
 foo(node->child[2], depth);
}

B = root
O = &(type_of_node) 0->child[0]
L = 3
S = sizeof(root->child[0])
D = depth_limit

.
depth_limit

root->child[2]

Figure 4: Recursive descriptor composition. The recursive descriptor appears inside a box, and is
accompanied by a traversal code example and an illustration of the tree data structure.

address generated by an outer descriptor forms the B parameter for multiple instantiations of a
dependent inner descriptor. An offset parameter, O, is specified in place of the inner descriptor’s B

parameter to shift its base address by a constant offset. Such nested descriptors capture the memory
reference streams of nested loops that traverse multi-dimensional data structures. Figure 3 presents
several nested descriptors, showing a traversal code example and an illustration of the traversed
multi-dimensional data structure along with each nested descriptor.

Figure 3a shows the traversal of an array of structures, each structure itself containing an array.
The code example’s outer loop traverses the array “node,” accessing the field “value” from each
traversed structure, and the inner loop traverses each embedded array “data.” The outer and inner
array descriptors, (B,L0, S0) and (O1, L1, S1), represent the address streams produced by the outer
and inner loop traversals, respectively. (In the inner descriptor, “O1” specifies the offset of each
inner array from the top of each structure). Figure 3b illustrates another form of descriptor nesting
in which indirection is used between nested descriptors. The data structure in Figure 3b is similar
to the one in Figure 3a, except the inner arrays are allocated separately, and a field from each outer
array structure, “node[i].pointer,” points to a structure containing the inner array. Hence, as shown
in the code example from Figure 3b, traversal of the inner array requires indirecting through the
outer array’s pointer to compute the inner array’s base address. In our framework, this indirection
is denoted by placing a “*” in front of the inner descriptor. Figure 3c, our last nested descriptor
example, illustrates the nesting of multiple inner descriptors underneath a single outer descriptor
to represent the address stream produced by nested distributed loops. The code example from
Figure 3c shows the two inner loops from Figures 3a-b nested in a distributed fashion inside a
common outer loop. In our framework, each one of the multiple inner array descriptors represents
the address stream for a single distributed loop, with the order of address generation proceeding
from the leftmost to rightmost inner descriptor.

It is important to note that while all the descriptors in Figure 3 show two nesting levels only,
our framework allows an arbitrary nesting depth. This permits describing higher-dimensional LDS
traversals, for example loop nests with > 2 nesting depth. Also, our framework can handle non-
recurrent loads using “singleton” descriptors. For example, a pointer to a structure may be deref-
erenced multiple times to access different fields in the structure. Each dereference is a single
non-recurrent load. We create a separate descriptor for each non-recurrent load, nest it underneath
its recurrent load’s descriptor, and assign an appropriate offset value, O, and length value, L = 1.

In addition to nested composition, our framework also permits recursive composition. Recur-

8

for (i = 0; i < L0; i++) {

... = data[j];

}

w0
for (j = 0; j < L1; j++) {

}

w1

o1

(B,L0,S0)[w0]

*(O1,L1,S1)[w1]

a).

data = B[i];

[o1]

b). tree (node) {

tree(node->left);

}

w0 *(B,O,L,S)[w0]D

[o0]

<compute>

tree(node->right);

<compute>

<compute>

o0

B = &B[0]
S0 = sizeof(B[0])
O1 = 0
S1 = sizeof(data[0])

B = node
O = &((type_of_node) 0->left)
L = 2
S = &((type_of_node) 0->right) -
 &((type_of_node) 0->left)
D = ∞

Figure 5: Each LDS descriptor graph is extended with work parameter and offset parameter anno-
tations to specify the traversal code work information. Annotations for a). nested composition and
b). recursive composition are shown. Each example shows the descriptor graph with annotations.
In addition, the amount of work associated with each annotation parameter is indicated next to
the source code.

sively composed descriptors describe depth-first tree traversals. They are similar to nested descrip-
tors, except the dependence edge flows backwards. Since recursive composition introduces cycles
into the descriptor graph, our framework requires each backwards dependence edge to be annotated
with the depth of recursion, D, to bound the size of the data structure. Figure 4 shows a simple
recursive descriptor in which the backwards dependence edge originates from and terminates to a
single array descriptor. The “L” parameter in the descriptor specifies the fanout of the tree. In our
example, L = 3, so the traversed data structure is a tertiary tree, as shown in Figure 4. Notice the
array descriptor has both B and O parameters–B provides the base address for the first instance
of the descriptor, while O provides the offset for all recursively nested instances.

In Figures 2 and 4, we assume the L parameter for linked lists and the D parameter for trees
are known a priori, which is generally not true. Later in Section 4.3, we discuss how our frame-
work handles these unknown descriptor parameters. In addition, our prefetch engine, discussed
in Section 5, does not require these parameters, and instead prefetches until it encounters a null
pointer.

3.2 Traversal Code Work Information

The traversal code work information specifies the amount of work performed by the application
code as it traverses the LDS. Our LDS descriptor framework extends the descriptor graph with
annotations to specify the traversal code work information. Two types of annotations are pro-
vided. First, the work parameter annotation specifies the work per iteration of a traversal loop in
cycles. Each array or linked list descriptor in an LDS descriptor graph contains a work parameter
annotation, appearing inside brackets at the end of the descriptor. Figure 5 illustrates the work
parameter annotations for nested and recursively composed descriptors. In Figure 5a, w0 and w1

specify the work per iteration of the outer and inner loops, respectively, in a nested composition.
For nested compositions, each work parameter includes the work of all nested loops, so w0 includes
the work of an entire inner loop instance, L1 ∗w1. In Figure 5b, w0 specifies the work per instance
of each recursive function call in a recursive composition. For recursive compositions, each work

9

parameter includes the work of a single function call instance only, and excludes all recursively
called instances. Our scheduling algorithm computes the work of the recursive instances through
recursive descriptor unrolling, discussed later in Section 4.1.2.

The second type of annotation, called the offset parameter annotation, specifies the work sepa-
rating the first iteration of a descriptor from each iteration of its parent descriptor. Each dependence
edge in an LDS descriptor graph contains an offset parameter annotation, appearing inside brackets
beside the dependence edge. Figures 5a and b illustrate the offset parameter annotations, o1 and
o0, for the nested and recursively composed descriptors, respectively.

Values for both the work and offset parameters are architecture dependent, and measuring them
would require detailed simulation. We make the simplifying assumption that CPI (assuming all
memory references take 1 cycle as a result of perfect prefetching) is 1.0, and use static instruc-
tion counts to estimate the parameter values. While this provides only an estimate, we find the
estimates are sufficiently accurate. Furthermore, in many LDS traversals, there may be multiple
paths through the traversal code. When multiple paths exist, the work and offset parameters are
computed assuming the shortest path, thus yielding minimum work and offset parameter values.
Choosing minimum values for the traversal code work information tends to schedule prefetches
earlier than necessary. While this guarantees that prefetches never arrive late, early prefetches
can have negative performance consequences. Later in Section 8, we will evaluate the performance
impact of early prefetches.

4 Prefetch Chain Scheduling

The LDS descriptor framework, presented in Section 3, captures all the information necessary
for multi-chain prefetching. In the next two sections, we discuss how this information is used to
perform prefetching. We begin by presenting an algorithm for computing a prefetch chain schedule
from an LDS descriptor graph. Sections 4.1 and 4.2 describe our basic scheduling algorithm, and
demonstrate how it works using a detailed example. Our basic scheduling algorithm computes an
exact prefetch chain schedule which requires the size of all data structures to be known a priori,
including the length of linked lists and the depth of trees (i.e. the L and D parameters from
Section 3.1). In Sections 4.1 and 4.2, we optimistically assume these parameters are available to
facilitate a clean exposition of our scheduling algorithm. Then, in Section 4.3, we discuss how our
scheduling algorithm handles the more general case in which these parameters are not known.

We note our scheduling algorithm is quite general. While Section 2 illustrated the multi-chain
prefetching idea using a simple array of lists example, the scheduling algorithm presented in this
section can handle any arbitrary data structure composed of lists, trees, and arrays. However,
our technique works only for static traversals. Later, in Section 8.7, we will discuss extensions for
dynamic traversals.

4.1 Scheduling Algorithm

This section presents our basic scheduling algorithm. Section 4.1.1 describes the algorithm assuming
acyclic LDS descriptor graphs. Then, Section 4.1.2 discusses how our scheduling algorithm handles
LDS descriptor graphs that contain cycles.

10

for (i = N-1 down to 0) {

if ((descriptor i is pointer-chasing) and (l > wi)) {
PTi = Li * (l - wi) + wi + PTnesti

} else {
PTi = l + PTnesti

}
}

(2)

(4)

PTnesti =
composed k via indirection

(PTk - ok)max (1)

PDi = (3)

PDi = (5)PTi / wi

∞;

Figure 6: The basic scheduling algorithm for acyclic descriptor graphs.

4.1.1 Scheduling for Acyclic Descriptor Graphs

Figure 6 presents our basic scheduling algorithm that computes the scheduling information nec-
essary for prefetching. Given an LDS descriptor graph, our scheduling algorithm computes three
scheduling parameters for each descriptor i in the graph: whether the descriptor requires asyn-

chronous or synchronous prefetching, the pre-traversal time, PTi (i.e. the number of cycles in
advance that the prefetch engine should begin prefetching a chain of pointers prior to the proces-
sor’s traversal), and the prefetch distance, PDi (i.e. the pre-traversal time in terms of iterations of
the loop containing the pointer-chain traversal). These parameters were introduced in Section 2.1.
As we will explain below, the scheduling parameters at each descriptor i are dependent upon the
parameter values in the sub-graph nested underneath i; hence, descriptors must be processed from
the leaves of the descriptor graph to the root. The “for (N − 1 down to 0)” loop processes the
descriptors in the required bottom-up order assuming we assign a number between 0 and N − 1 in
top-down order to each of the N descriptors in the graph, as is done in Figures 3 and 5 (and later in
Figure 7). As mentioned earlier, our basic scheduling algorithm assumes there are no cycles in the
descriptor graph. Our basic scheduling algorithm also assumes the cache miss latency to physical
memory, l, is known.

We now describe the computation of the three scheduling parameters for each descriptor vis-
ited in the descriptor graph. First, we determine whether a descriptor requires asynchronous or
synchronous prefetching. We say descriptor i requires asynchronous prefetching if it traverses a
linked list and there is insufficient work in the traversal loop to hide the serialized memory latency
(i.e. l > wi). Otherwise, if descriptor i traverses an array or if l ≤ wi, then we say it requires
synchronous prefetching.1 The “if” conditional test in Figure 6 computes whether asynchronous
or synchronous prefetching is used.

Next, we compute the pre-traversal time, PTi. The computation of PTi is different for asyn-
chronous prefetching and synchronous prefetching. For asynchronous prefetching, we must overlap
that portion of the serialized memory latency that cannot be hidden underneath the traversal loop
itself with work prior to the loop. Figure 1 shows PT = 3l − 2w1 for a 3-iteration pointer-chasing
loop. If we generalize this expression, we get PTi = Li ∗ (l−wi) + wi. In contrast, for synchronous
prefetching, we need to only hide the cache miss for the first iteration of the traversal loop, so
PTi = l. Equations 2 and 4 in Figure 6 compute PTi for asynchronous and synchronous prefetch-
ing, respectively. Notice these equations both contain an extra term, PTnesti. PTnesti serializes

1This implies that linked list traversals in which l <= wi use synchronous prefetching since prefetching one link
element per loop iteration can tolerate the serialized memory latency when sufficient work exists in the loop code.

11

PTi and PTk, where PTk is the pre-loop time of any descriptor k nested underneath descriptor i us-
ing indirection (i.e. the nested composition illustrated in Figure 3b). Serialization occurs between
composed descriptors that use indirection because of the data dependence caused by indirection.
We must sum PTk into PTi; otherwise, the prefetches for descriptor k will not initiate early enough.
Equation 1 in Figure 6 considers all descriptors composed under descriptor i that use indirection
and sets PTnesti to the largest PTk found. The offset, ok, is subtracted because it overlaps with
descriptor k’s pre-loop time.

Finally, we compute the prefetch distance, PDi. Descriptors that require asynchronous prefetch-
ing do not have a prefetch distance; we denote this by setting PDi = ∞. The prefetch distance for
descriptors that require synchronous prefetching is exactly the number of loop iterations necessary
to overlap the pre-traversal time, which is ⌈PTi

wi
⌉. Equations 3 and 5 in Figure 6 compute the

prefetch distance for asynchronous and synchronous prefetching, respectively.

4.1.2 Recursive Descriptor Unrolling

Cycles can occur in LDS descriptor graphs due to recursive composition, as discussed in Section 3.1.
To handle cyclic descriptor graphs, we remove the cycles to obtain an equivalent acyclic descrip-
tor graph, and apply the basic scheduling algorithm for acyclic descriptor graphs introduced in
Section 4.1.1. The technique used to remove the cycles is called recursive descriptor unrolling.

Recursively composed descriptors can be “unrolled” by replicating all descriptors along the
cycle D times, where D is the depth of recursion associated with the backwards dependence edge.
Each replicated descriptor is nested underneath its parent in a recursive fashion, preserving the
LDS traversal order specified by the original recursively composed descriptor.

In addition to descriptor replication, recursive descriptor unrolling must also update the work
parameter annotations associated with replicated descriptors. Specifically, each work parameter
along the chain of replicated descriptors should be increased to include the work of all nested
descriptors created through replication. To update the work parameters, we visit each replicated
descriptor in the unrolled descriptor graph in bottom-up order. For each visited descriptor, we sum
the work from all child descriptors into the visited descriptor’s work parameter, where each child
descriptor i contains work Li ∗ wi.

4.2 Example of an Exact Prefetch Chain Schedule

This section presents a detailed prefetch chain scheduling example using the techniques described
in Section 4.1. Figure 7 illustrates each step of our technique applied to the example, and Figure 8
graphically shows the final prefetch chain schedule computed by our scheduling algorithm. In this
example, we assume the size of data structures is known, allowing our scheduling algorithm to
compute an exact prefetch chain schedule.

We have chosen the traversal of a tree of lists data structure as our example. This particular
LDS traversal resembles the computation performed in the Health benchmark from the Olden
suite [29], one of the applications used in our performance evaluation presented in Section 8. The
tree of lists data structure appears in Figure 7a. We assume a balanced binary tree of depth 4
in which each tree node contains a linked list of length 2.2 Furthermore, we assume a depth-first

2Our tree of lists data structure differs slightly from the one in the Health benchmark. Health uses a balanced
quad tree of depth 5 in which each tree node contains several variable-length linked lists. One of the linked lists,
which causes most of the cache misses in Health, contains roughly 150 link elements.

12

B

*(O2, 2, S2)[40]

(O3, 2, *S3)[10]

[20]

D=2
[60]

(B, 1, 0)[0]

[60]
[20]

(O1, 2, *S1)[10]

(B, 1, 0)[900]

[20]

[20] [60]

[60]

(O7, 2, *S7)[10]

*(O2, 2, S2)[420](O1, 2, *S1)[10]

*(O4, 2, S4)[180](O3, 2, *S3)[10]

*(O6, 2, S6)[60](O5, 2, *S5)[10]

[20] [60]

[20]

a).

b).

c). PT7 = 2*(76-10)+10 = 142

PD7 = ∞

PT5 = 2*(76-10)+10 = 142

PD5 = ∞

PT6 = 76+PT7-20 = 198

PT6 / 60PD6 = = 4

PT3 = 2*(76-10)+10 = 142

PD3 = ∞

PT4 = 76+PT6-60 = 214

PT4 / 180PD4 = = 2

PT1 = 2*(76-10)+10 = 142

PD1 = ∞

PT2 = 76+PT4-60 = 230

PT2 / 420PD2 = = 1

PT0 = 76+PT2-60 = 246

PT0 / 900PD0 = = 1

d).

Figure 7: Prefetch chain scheduling example for a tree of lists traversal. a). Tree of lists data
structure. b). Cyclic LDS descriptor graph representation. c). Equivalent acyclic LDS descriptor
graph after unrolling. d). Scheduling parameter solutions using l = 76 cycles.

traversal of the tree in which the linked list at each tree node is traversed before the recursive call
to the left and right child nodes. (Note Figure 7a only shows two levels of our depth-four tree.)

First, we extract data layout and traversal code work information via static analysis of the
application code (this is the compiler’s job, and will be described later in Section 6). Figure 7b
shows the LDS descriptor graph resulting from this analysis. Descriptor 0, the root of the descriptor
graph, is a ”dummy” descriptor that provides the root address of the tree, “B.” Descriptors 1 and
2, nested directly underneath descriptor 0, traverse the linked list and tree node, respectively, at
the root of the tree. Composed under descriptor 2 are the descriptors that traverse the linked
list (descriptor 3 which is identical to descriptor 1) and tree node (descriptor 2 itself composed
recursively) at the next lower level of the tree. The data layout information in this descriptor
graph is exactly the information used by our prefetch engine, described later in Section 4.

Second, we apply recursive descriptor unrolling to the cyclic descriptor graph in Figure 7b to
remove cycles. Figure 7c shows the equivalent acyclic descriptor graph after unrolling. Descriptor
replication creates two copies of the recursively composed descriptors since D = 2 in Figure 7b,
producing descriptors 4 and 6 (copies of descriptor 2), and descriptors 5 and 7 (copies of descriptor
3). After copying, the work parameters are updated to reflect the work in the newly created
descriptors as described in Section 4.1.2.

Finally, we compute the pre-loop time, PTi, and the prefetch distance, PDi, for each descriptor
i ∈ {0..7} in Figure 7c using the basic scheduling algorithm. Figure 7d shows the computation
of the scheduling parameters for each descriptor in bottom-up order, following the algorithm in
Figure 6. For this computation, we assume an arbitrary memory latency, l, of 76 cycles.

Figure 8 graphically displays the prefetch chain schedule specified by the scheduling parameters
in Figure 7d by plotting the initiation and completion of prefetch requests from different descriptors

13

|
-360

|
-180

|
0

|
180

|
360

|
540

|
720

|
900

|

 Time (cycles)

1

1

2 9

2 9

3 6 10 13

3 6 10 13

4
5

7
8

11
12

14
15

4
5

7
8

11
12

14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0:

1:

2:

3:

4:

5:

6:

7:

Computation:

D
es

cr
ip

to
r

N
um

be
r

Figure 8: A graphical display of the final prefetch chain schedule computed by our scheduling algo-
rithm for the tree of lists example. Short horizontal lines denote prefetches for the tree nodes, long
horizontal lines denote prefetches for the linked lists, and dotted lines indicate address generation
dependences. The “Computation” timeline shows the traversal of the tree nodes by the application
code. We assume all prefetches take 76 cycles to complete.

(y-axis) as a function of time (x-axis). Short solid horizontal lines denote prefetches for the tree
nodes, long solid horizontal lines denote 2 serialized prefetches for each linked list, and dotted lines
indicate address generation dependences. The ”Computation” timeline shows the traversal of the
tree nodes by the application code, with a unique ID assigned to each instance of a recursive function
call. Each prefetch request has been labeled with the function call instance ID that consumes the
prefetched data. Notice all prefetch requests complete by the time the processor consumes the
data. After an initial startup period which ends at T ime = 0, the processor will not have to stall.
The figure also shows our scheduling algorithm exposes significant inter-chain memory parallelism
in the tree of lists traversal.

4.3 Handling Unknown Descriptor Graph Parameters

Throughout Sections 4.1 and 4.2, we have assumed that LDS descriptor graph parameters are
known statically, enabling our scheduling algorithm to compute an exact prefetch chain schedule
off line. This assumption is optimistic since certain LDS data layout parameters may not be known
until runtime. In particular, static analysis typically cannot determine the list length, L, in linked
list descriptors, and the recursion depth, D, in recursively composed descriptors (see Section 3.1 for
a description of these parameters). As a consequence, it is impossible to compute an exact prefetch
chain schedule statically for many LDS traversals.

One potential solution is to obtain the missing information through profiling. Unfortunately,
this approach has several drawbacks. First, profiling can be cumbersome because it requires profile
runs, and the accuracy of the profiles may be sensitive to data inputs. Furthermore, profiling
cannot determine the data layout parameters exactly if the size of data structures varies during
program execution. Rather than using profiles, we propose another solution that uses only static
information. The key insight behind our solution is that the scheduling parameters computed by

14

PT7(L) = L(76 − 10) + 10 = 66L + 10

PD7 = ∞

PT6(L) = 76 + PT7 − 20 = 66L + 66

PD6(L) =

⌈

PT6(L)

10L + 40

⌉

=

⌈

66L + 66

10L + 40

⌉

PD6(L → ∞) →

⌈

66

10

⌉

= 7

Figure 9: Computing scheduling parameters for the leaf nodes as a function of the list length, L,
for the tree of lists example.

our scheduling algorithm are bounded regardless of the size of dynamic data structures. Hence, our
scheduling algorithm can compute a bounded solution when an exact solution cannot be determined
due to incomplete static information.

To illustrate how bounded prefetch chain schedules can be computed for linked lists and trees,
consider once again the tree of lists example from Figure 7. We will first assume the length of
each linked list (the L parameter in descriptors 1 and 3 in Figure 7b) is not known. Then, we will
assume the depth of recursion (descriptor 2’s D parameter in Figure 7b) is not known.

4.3.1 Unknown List Length

Without the list length, the pre-loop time of the linked list descriptors (PT7, PT5, PT3, and PT1

in Figure 7d) cannot be computed, which in turn prevents computing the prefetch distance for
the tree node descriptors (PD6, PD4, PD2, and PD0). However, it is possible to express these
quantities as a function of the list length. Figure 9 shows the computation for descriptors 6 and 7
from Figure 7d as a function of the list length, L.

In Figure 9, the prefetch distance for the list, PD7, remains ∞ because this linked list should
be prefetched as fast as possible independent of its length. However, the prefetch distance for the

tree node, PD6, becomes a function of L. Notice in the limit, as L → ∞, PD6 →
⌈

66

10

⌉

= 7. Such a

bounded prefetch distance exists because both the pre-loop time of the list (66L+66) and the work
of its parent loop (10L + 40) depend linearly on the list length. Consequently, PD6 does not grow
unbounded, but instead grows towards an asymptotic value as list length increases. In general, the
prefetch distances for the predecessors of a linked list descriptor in an LDS descriptor graph are
always bounded, and can be determined statically by solving the scheduling equations in the limit,
as illustrated in Figure 9.

Although the prefetch distances associated with linked lists are bounded, buffering requirements
may not be. A bounded prefetch distance only fixes the number of lists prefetched simultaneously;
the number of prefetches issued in advance of the processor for each list grows linearly with its
length. Hence, buffering for prefetched data is in theory unbounded. Applications requiring large
amounts of buffering may suffer thrashing, limiting performance. Fortunately, we find lists are
relatively short and do not grow unbounded in practice, most likely because long lists are undesirable
from an algorithmic standpoint. Programmers typically employ data structures such as hash tables
and trees to reduce chain length, and thus reduce buffering requirements. In Section 8, we will
evaluate the impact of finite buffering on multi-chain prefetching performance.

15

L1 Cache Prefetch
Buffer

Processor
Prefetch
Engine

INIT(ID)

SYNC(ID,i)

L2 Cache and Main Memory

Index Address IDID i Parenti Count Descriptor PD

Prefetch Engine

.....

Address Descriptor TableAddress Generator Table

Functional Units

.....

Figure 10: Prefetch engine hardware and integration with a commodity microprocessor.

4.3.2 Unknown Recursion Depth

Without the recursion depth, recursively composed descriptors (e.g. descriptors 2 and 3 in Fig-
ure 7b) cannot be unrolled, and their scheduling parameters thus cannot be computed. However,
the prefetch distance of any descriptor created during unrolling is guaranteed not to exceed the
prefetch distance of the leaf descriptor (e.g. descriptor 7 in Figure 7d). This is because the leaf
descriptor contains the least amount of work among all descriptors created during unrolling; hence,
it has the largest prefetch distance. So, the leaf descriptor’s prefetch distance is an upper bound
on the prefetch distances for all other descriptors associated with the tree traversal. For example,
in Figure 7d, the prefetch distance of the leaf descriptor, PD6, is 4, while the prefetch distances
for its predecessor descriptors, PD4, PD2, and PD0 are only 2, 1, and 1, respectively.

Furthermore, the leaf descriptor’s prefetch distance is independent of recursion depth. This is
because a descriptor’s predecessors in the LDS descriptor graph do not affect any of its data layout
or traversal code work parameters. In particular, regardless of the recursion depth, the traversal
code work associated with the leaf descriptor is exactly the amount of work in a single function
call instance since there are no other recursive calls beyond a leaf node. Consequently, all LDS
descriptor graph parameters necessary to compute the prefetch distance for the leaf descriptor are
available statically. So, our scheduling algorithm can compute the leaf descriptor’s prefetch distance
exactly, which yields the bound on the prefetch distance for all descriptors contained in the tree
traversal as well, despite the fact that the recursion depth is not known.

We propose to handle unknown recursion depth by computing the prefetch distance for the leaf
descriptor, and then using this prefetch distance for descriptors at all levels in the tree traversal.
This approach ensures that nodes at the leaves of the tree are prefetched using an exact prefetch
distance, and that all other tree nodes are prefetched using a prefetch distance that is larger than
necessary. Since a large fraction of a tree’s nodes are at the leaves of the tree, our approach should
provide good performance.

5 Prefetch Engine

In this section, we introduce a programmable prefetch engine that performs LDS traversal outside
of the main CPU. Our prefetch engine uses the data layout information described in Section 3.1
and the scheduling parameters described in Section 4.1 to guide LDS traversal.

The left of half of Figure 10 shows the integration of the prefetch engine with a commodity
microprocessor. The design requires three additions to the microprocessor: the prefetch engine
itself, a prefetch buffer, and two new instructions called INIT and SY NC. During LDS traversal,

16

the prefetch engine fetches data into the prefetch buffer if it is not already in the L1 cache at the
time the fetch is issued (a fetch from main memory is placed in the L2 cache on its way to the
prefetch buffer). All processor load/store instructions access the L1 cache and prefetch buffer in
parallel. A hit in the prefetch buffer provides any necessary data to the processor in 1 cycle, and
also transfers the corresponding cache block from the prefetch buffer to the L1 cache (in the case
of a store, the write is then performed in the L1 cache).

The prefetch engine, shown in the right half of Figure 10, consists of two hardware tables, the
Address Descriptor Table and the Address Generator Table, and some functional units. The rest
of this section discusses how the prefetch engine works. First, Sections 5.1 and 5.2 describe the
Address Descriptor and Address Generator tables in detail, explaining how these tables are used
to compute prefetch addresses from the LDS descriptors introduced in Section 3. This discussion
uses the array of lists example from Figure 1; the code for this example, annotated with INIT and
SY NC instruction macros, appears in Figure 11a. Then, Section 5.3 discusses how prefetches are
scheduled according to the scheduling information computed by our scheduling algorithm. Finally,
Section 5.4 presents a detailed implementation of the prefetch engine, including a description of
the functional units, and analyzes its cost.

5.1 Address Descriptor Table

The Address Descriptor Table (ADT) stores the data layout information from the LDS descriptors
described in Section 3.1. Each array or linked list descriptor in an LDS descriptor graph occupies
a single ADT entry, identified by the graph number, ID (each LDS descriptor graph is assigned
a unique ID), and the descriptor number, i, assuming the top-down numbering of descriptors
discussed in Section 4.1.1. The Parent field specifies the descriptor’s parent in the descriptor
graph. The Descriptor field stores all the parameters associated with the descriptor such as the
base, length, and stride, and whether or not indirection is used. Finally, the PD field stores the
prefetch distance computed by our scheduling algorithm for descriptor i. Figure 11b shows the
contents of the ADT for our array of lists example, where ID = 4.

Before prefetching can commence, the ADT must be initialized with the data layout and prefetch
distance information for the application. We memory map the ADT and initialize its contents via
normal store instructions. Most ADT entries are filled at program initialization time. However,
some ADT parameters are unknown until runtime (e.g. the base address of a dynamically allocated
array). Such runtime parameters are written into the ADT immediately prior to each INIT

instruction. Although Figure 11a does not show the ADT initialization code, our compiler described
later in Section 6 generates all the necessary code to initialize the ADT.

Notice the ADT contents should be saved and restored across process switches by the operating
system. On a process switch, the OS must flush the AGT to terminate prefetching (the next section
explains the AGT), and save out the contents of the ADT. When the process is rescheduled, its
ADT contents will be restored, but we assume the AGT contents will not. This simplifies the
save and restore operation, but it can prematurely terminate prefetching. Since process switches
are infrequent, these effects should not impact performance significantly (for frequent exceptions
like TLB faults that do not result in a process switch, the OS does not have to save and restore
the ADT). In our benchmarks, system calls are extremely infrequent; moreover, we only consider
single-program workloads. Consequently, our simulator assumes both the ADT and AGT contents
persist across all context switches and does not model switching-related overheads.

17

ptr = A[i];

for (i=0; i < N; i++) {

<compute>
ptr = ptr->next;

 while (ptr) {

}
}

INIT(4);

SYNC(4,0);

Index Address
Address Generator Table

ID

ID

i Parent

i Count

Descriptor PD

4 0 - (B0,L0,S0) 2

4 1 0 *(O1, ,*S1) ∞∞

4 0 B0 21

4 0 B01

4 1 *B0+O11 ∞

4 0 B0+S0 02

4 1 stall(*B0+O1)1 ∞

4 0 B0+S0 02

4 1 stall(*(*B0+O1)+S1)2 ∞
4 1 *(B0+S0)+O11 ∞

a). b).

c1).

c2).

c3).

c4).

pref B0

pref *B0+O1

pref B0+S0

pref *(B0+S0)+O1

load B0

load B0+S0

4 1 stall(B0)1 ∞

4 1 stall(B0+S0)1 ∞

1

1 0

B0 = &A[0];
L0 = N;
S0 = sizeof(void *);
O1 = &((type_of_ptr) 0->next);

Address Descriptor Table

S1 = &((type_of_ptr) 0->next);

Figure 11: LDS traversal example. a). Array of lists traversal code annotated with prefetch
directives. b). ADT contents. c). AGT contents at 4 different times during LDS traversal.

5.2 Address Generator Table

The Address Generator Table (AGT) generates the LDS traversal address stream specified by the
data layout information stored in the ADT. AGT entries are activated dynamically. Once activated,
each AGT entry generates the address stream for a single LDS descriptor. AGT entry activation
can occur in one of two ways. First, the processor can execute an INIT (ID) instruction to initiate
prefetching for the data structure identified by ID. Figure 11c1 shows how executing INIT (4)
activates the first entry in the AGT. The prefetch engine searches the ADT for the entry matching
ID = 4 and i = 0 (i.e. entry (4, 0) from Figure 11b which is the root node for descriptor graph #4).
An AGT entry (4, 0) is allocated for this descriptor, the Index field is set to one, and the Address

field is set to B0, the base parameter from ADT entry (4, 0). Once activated, AGT entry (4, 0)
issues a prefetch for the first array element at address B0, denoted by a solid bar in Figure 11c1.

Second, when an active AGT entry computes a new address, a new AGT entry is activated
for every node in the descriptor graph that is a child of the active AGT entry. (Note, address
computation for the AGT occurs in the functional units shown in Figure 10; these will be described
in detail in Section 5.4). As shown in Figure 11c1, a second AGT entry, (4, 1), is activated after
AGT entry (4, 0) issues its prefetch because (4, 0) is the parent of (4, 1) in the ADT. This new AGT
entry is responsible for prefetching the first linked list; however, it stalls initially because it must
wait for the prefetch of B0 to complete before it can compute its base address, ∗B0. Eventually,
the prefetch of B0 completes, AGT entry (4, 1) loads the value, and issues a prefetch for address
∗B0, denoted by a dashed bar in Figure 11c2.

18

Figures 11c3 and 11c4 show the progression of the array of lists traversal. In Figure 11c3, AGT
entry (4, 0) generates the address and issues the prefetch for the second array element at B0 + S0.
As a result, its Index value is incremented, and another AGT entry (4, 1) is activated to prefetch
the second linked list. Once again, this entry stalls initially, but continues when the prefetch of
B0 +S0 completes, as shown in Figure 11c4. Furthermore, Figures 11c3 and 11c4 show the progress
of the original AGT entry (4, 1) as it traverses the first linked list serially. In Figure 11c3, the AGT
entry is stalled on the prefetch of the first link node. Eventually, this prefetch completes and the
AGT entry issues the prefetch for the second link node at address ∗B0 + S1. In Figure 11c4, the
AGT entry is waiting for the prefetch of the second link node to complete.

AGT entries are deactivated once the Index field in the AGT entry reaches the L parameter
in the corresponding ADT entry, or in the case of a pointer-chasing AGT entry, if a null pointer is
reached during traversal.

5.3 Prefetch Scheduling

When an active AGT entry generates a new memory address, the prefetch engine must schedule a
prefetch for the memory address. Prefetch scheduling occurs in two ways. First, if the prefetches for
the descriptor should issue asynchronously (i.e. PDi = ∞), the prefetch engine issues a prefetch for
the AGT entry as long as the entry is not stalled. Consequently, prefetches for asynchronous AGT
entries traverse a pointer chain as fast as possible, throttled only by the serialized cache misses that
occur along the chain. The (4, 1) AGT entries in Figure 11 are scheduled in this fashion.

Second, if the prefetches for the descriptor should issue synchronously (i.e. PDi 6= ∞), then the
prefetch engine synchronizes the prefetches with the code that traverses the corresponding array or
linked list. We rely on the compiler to insert a SY NC instruction at the top of the loop or recursive
function call that traverses the data structure to provide the synchronization information, as shown
in Figure 11a. Furthermore, the prefetch engine must maintain the proper prefetch distance as
computed by our scheduling algorithm for such synchronized AGT entries. A Count field in the
AGT entry is used to maintain this prefetch distance. The Count field is initialized to the PD value
in the ADT entry (computed by the scheduling algorithm) upon initial activation of the AGT entry,
and is decremented each time the prefetch engine issues a prefetch for the AGT entry, as shown in
Figures 11c1 and 11c2. In addition, the prefetch engine “listens” for SY NC instructions. When a
SY NC executes, it emits a descriptor graph ID and a descriptor number i that matches an AGT
entry (essentially matching up the loop with the AGT entry generating its address stream). On a
match, the Count value in the matched AGT entry is incremented. The prefetch engine issues a
prefetch as long as Count > 0. Once Count reaches 0, as it has in Figure 11c2, the prefetch engine
waits for the Count value to be incremented before issuing the prefetch for the AGT entry, which
occurs the next time the corresponding SY NC instruction executes (not shown in Figure 11).

5.4 Hardware Implementation and Cost

Figure 12 presents an implementation of the prefetch engine. This figure is similar to Figure 10, but
illustrates the ADT, AGT, and functional units in greater detail. Enough detail has been provided
to permit an estimate of the prefetch engine’s hardware cost.

In Figure 12, the ADT and AGT are identical to the ones in Figure 10 except for two differences.
First, the AGT Descriptor field has been expanded to show the descriptor parameters. The B,
L, S, and O parameters are the same as those described in Section 3.1; the “*S” parameter

19

ID i index addr count ID i LPD BParent *SS

Adder

DEC INCINC >

INIT(ID)SYNC(ID,i)

1

A
dd

er

M
ul

ti

*()SizeO

Next Address
Computation Unit

Memory System

AGT

MUX
MUX

ADT

Processor

(8) (8) (8) (32) (8) (8) (8) (8) (8) (16) (1) (16) (32) (32) (8) (1)

32x32

32
x3

2

32
x8

Prefetch Engine

Base Address
Computation Unit

7

4

6

7

7

11

3

.

3

Functional Units

55 55

2

1

 Descriptor

Figure 12: Prefetch engine implementation, detailing the ADT and AGT, and two functional units,
the Next Address Computation Unit and the Base Address Computation Unit.

specifies whether the descriptor is an array descriptor or a linked-list descriptor; the “*()” parameter
indicates whether indirection is used to generate the base address of a nested descriptor; and the
“Size” parameter is used during base address computation for nested descriptors (this parameter
is needed for indexed array addressing only). Second, the size (in bits) of all ADT and AGT fields
have been specified in parentheses.

From the field sizes in Figure 12, we see that each ADT entry is 18 bytes wide, while each
AGT entry is 8 bytes wide. To determine the total size of the ADT and AGT, we must also select
the number of entries. The number of ADT entries should be selected to accommodate the LDS
descriptors, and the number of AGT entries should be selected to accommodate AGT activation.
We have found that for the benchmarks used in our evaluation, 75 and 128 entries are sufficient for
the ADT and AGT, respectively. Consequently, the ADT is 1.32 Kbytes and the AGT is 1 Kbytes.
(Later, in Section 8.5, we will vary table size and study the impact on performance).

Figure 12 also shows two functional units, the Next Address Computation Unit (NACU) and
the Base Address Computation Unit (BACU), for computing addresses during LDS traversal. The
NACU consists of a 32x32 adder, 2 incrementers, and 1 decrementer, and is responsible for comput-
ing the address stream for active AGT entries. Every cycle, the NACU selects a single active AGT
entry, computes its next address, and writes the new address back into the AGT (wires labeled

20

“1”). Computed addresses are also issued to the memory system for prefetching (wire labeled “2”).
In addition, the NACU compares the AGT entry’s Index to its corresponding Length parameter
(wires labeled “3”), and deactivates the AGT entry if the address stream is exhausted. Every time
the NACU computes a new address for an AGT entry that has nested child descriptors, it forwards
the address to the BACU (wires labeled “4”). The BACU consists of a 32x8 multiplier and a 32x32
adder, and is responsible for activating AGT entries for nested descriptors (see Section 5.2 for a
discussion on AGT entry activation). For each address forwarded from the NACU, the BACU
computes a new base address using descriptor parameters (wires labeled “5”), and activates a new
AGT entry (wire labeled “6”). As described in Section 5.2, AGT entry activation can also occur
when the processor executes an INIT (ID) instruction; the wires labeled “7” perform this action.

Both the NACU and BACU have modest hardware complexity. An important question, how-
ever, is how many units are necessary to sustain an adequate prefetch throughput? Surprisingly,
even with an 128-entry AGT, we have found that a single NACU and a single BACU is sufficient.
Address computation is not the bottleneck in multi-chain prefetching. In fact, we have observed in
our experiments that the prefetch engine is idle most of the time waiting for long-latency memory
operations to complete. Given that address generation concurrency is not important, the functional
units contribute very little to the cost of the prefetch engine.

Finally, the last major hardware component in the prefetch engine is the prefetch buffer, shown
in Figure 10. The prefetch buffer should be large enough to hold all prefetched data prior to their
access by the processor. Too small a prefetch buffer can lead to thrashing, defeating the benefits
of prefetching. We have found that for the benchmarks used in our evaluation, a 1 Kbyte prefetch
buffer provides good performance. (Later, in Sections 8.3 and 8.5, we study the thrashing problem
and the performance impact of varying prefetch buffer size).

In summary, our prefetch engine consumes roughly 4.32 Kbytes of on-chip RAM. In addition,
it requires combinational logic to implement the functional units, consisting of 2 32x32 adders, a
32x8 multiplier, 2 incrementers, and a decrementer. Overall, we find the hardware complexity of
the prefetch engine to be modest.

6 Compiler Support

Sections 3 through 5 presented the algorithms and hardware for performing multi-chain prefetching
based on our LDS descriptor framework. An important question is how are the LDS descriptors
constructed? Also, how is the software support (i.e. the INIT and SY NC instructions, and the
ADT initialization code) instrumented? One approach is to rely on the programmer to carry
out these tasks. Unfortunately, this approach is ad hoc and error prone, and requires significant
programmer effort. A more desirable approach is to develop systematic algorithms for performing
these tasks and to implement them in a compiler, thus automating multi-chain prefetching.

This section addresses the compiler support necessary to automate multi-chain prefetching.
Our approach consists of three major steps. First, we analyze the program structure to determine
where to initiate prefetching. Second, for each selected prefetch initiation site, we extract an
LDS descriptor graph. Finally, from the extracted LDS descriptors, we compute the scheduling
information following the algorithms already presented in Section 4, and instrument the application
code. The following sections discuss these compiler steps in detail. Sections 6.1 and 6.2 introduce
the algorithms for performing the first two steps. Then, Section 6.3 describes a prototype compiler
that implements all of our algorithms, and performs the necessary software instrumentation.

21

int main(argc, argv) {
 for (i = 0; i < max_time; i++) {
 sim(top);
 }
}

void sim(village) {
 for (i = 3; i >= 0; i--)
 val[i] = sim(village->forward[i]);

 for (i = 3; i >= 0; i--)
 for (l = val[i]; l; l = l->forward)
 removeList(val[i], l->patient);

 check_patients_waiting(village, village->waiting);
}

void check_patients_waiting(village, list) {
 while (list != NULL) {
 removeList(&village->waiting,
 list->patient);
 list = list->forward;
 }
}

void removeList(list, patient) {
 while (list->patient != patient) {
 list = list->forward;
 }
}

L3

L4

R0

L1

L2

L0

L1

L0

0.02

0.85

0.09

0.0

0.0

0.0

A. Health Benchmark Example B. GT

R0

L3

L4
L2

Figure 13: Constructing a traversal nesting graph. A. Kernel code from the Health benchmark.
Boxed labels indicate the possible prefetch initiation sites. B. GT annotated with cache-miss break-
downs acquired via profiling.

6.1 Prefetch Initiation

The first step that a compiler for multi-chain prefetching must perform is to determine where to
initiate prefetching. For simplicity, we only permit prefetch initiation immediately prior to a loop
or a call to a recursive function, i.e. at a point in the program where a new LDS traversal begins.
To provide the information necessary for identifying such prefetch initiation sites, we build a data
structure called the traversal nesting graph, or GT . GT is a directed acyclic graph whose nodes
represent loops or recursive functions defined in the source code, and whose edges connect those
nodes corresponding to loops or recursive functions that are nested. Hence, GT reflects the nesting
structure of all possible prefetch initiation sites in a program. Moreover, we construct GT globally,
so its edges capture nesting relationships across procedures as well as within procedures.

Figure 13 illustrates GT for the Health benchmark. In Figure 13A, a kernel code from Health
consisting of 4 functions is shown. For readability, only function headers, loops, and function call
sites appear in the figure. The boxed labels indicate the 5 loops (“L0” through “L4”) and recursive
function (“R0”) that are candidates for prefetch initiation. In Figure 13B, the corresponding GT

for this code is shown. The graph reports the nesting structure of the possible prefetch initiation
sites identified in Figure 13A. (Note, in our example, we construct GT for the kernel code only; the
actual analysis would consider the entire Health benchmark).

After constructing GT , we compute the set of prefetch initiation sites, which we call P . Fig-
ure 14 presents our algorithm for computing P given GT . The main procedure in our algorithm,
select prefetch sites, visits every node, N , in GT (lines 2 and 18), and considers nodes for
initiating prefetching based on two criteria. First, only nodes corresponding to LDS traversals
that incur a significant number of cache misses are considered. This minimizes runtime overhead,
thus increasing the potential performance gain of prefetching. Unfortunately, accurately predicting
cache-miss behavior from static information alone (e.g. GT) is difficult; hence, we augment our
static analysis with profiling. We built a profiling tool, which we will describe in Section 6.3, that
breaks down the total cache misses into the fraction incurred by each loop and recursive function,
and annotates the corresponding nodes in GT with the breakdown values. As an example, the

22

select_prefetch_sites(GT)

 Given: traveresal nesting graph, GT

 Compute: prefetch initiation sites, P

 1: P = Φ;
 2: do {
 3: if (no_gain(N) || too_complex(N))
 4: continue;
 5: if (recursive(N) && (fanout(N) > 1)) {
 6: if (!(overlap(N, P)))
 7: P = P {N};
 8: } else {
 9: Q = Φ;
10: do {
11: if (!(too_complex(M)) && !(overlap(M, P Q)))
12: Q = Q {M};
13: } ∀ M that is a parent of N in GT ;

14: if ((Q == Φ) && !(overlap(N, P)))
15: Q = {N};
16: P = P Q;
17: }
18: } ∀ N in GT from most to least cache_miss(N);

too_complex(N)
 Given: GT node, N

 Compute: too complex for prefetch engine?

24: if (no_loop_induction(N) ||
25: contains_goto_statements(N) ||
26: complex_address generation(N) ||
27: data_dependent_traversal(N))
28: return TRUE;
29: else
30: return FALSE;

no_gain(N)
 Given: GT node, N

 Compute: potential for gain

19: if ((cache_miss(N) < 0.01) ||
20: (no_pointer_references(N)))
21: return TRUE;
22: else
23: return FALSE;

overlap(N, P)
 Given: GT node, N, set of prefetch

 initiation sites, P
 Compute: nesting conflict

31: do {
32: if (nested(N, S) || nested(S, N))
33: return TRUE;
34: } ∀ S in P;
35: return FALSE;

Figure 14: Algorithm for computing the set of prefetch initiation sites, P , from the traversal nesting
graph, GT .

cache-miss breakdowns acquired by our profiling tool for Health are annotated in the GT from
Figure 13B. For every node in GT visited by select prefetch sites, our algorithm examines the
corresponding cache-miss breakdown annotation (line 19). If this value is below 1%, we skip over
the node and do not consider it further for prefetch initiation (lines 3 and 4).3

Second, only nodes corresponding to LDS traversals that are implementable in the prefetch
engine are considered for prefetch initiation. As described in Section 5, our prefetch engine can only
perform static traversals involving simple address computation and memory indirection. Hence,
our algorithm analyzes the loops and recursive functions corresponding to each visited node in
GT , and skips over nodes that perform traversals too complex for our prefetch engine (lines 3 and
4). Specifically, we skip nodes that perform unstructured traversals (lines 24 and 25), traversals
containing complex address computations (line 26), and data dependent traversals (line 27).

For every node, N , that satisfies both our performance and complexity criteria, we choose one or
more nodes in GT to initiate prefetching for N . The primary factor affecting this choice is memory
parallelism: prefetching should be initiated from a point where sufficient memory parallelism exists
to tolerate the (potentially serialized) cache misses incurred within N . The node that best provides
this memory parallelism depends on N ’s LDS traversal type. If node N represents a recursive
function that pursues multiple child pointers at each level of recursion (i.e. its “fanout” is greater
than 1), then we assume N performs a tree traversal. Tree traversals contain significant memory
parallelism since the sub-trees at each tree node can be pursued in parallel. Hence, in this case,
we select node N itself for initiating prefetching (lines 5 and 7). (Note, recursive functions with a
fanout equal to 1 are treated as linked list traverals, and are discussed next).

The situation is different if node N represents a loop. For pointer-chasing loops that traverse
linked lists (i.e. the induction variable update is of the form ptr=ptr->next), all pointer accesses
in N are serialized, and there is no memory parallelism. For affine loops that traverse non-recursive
ribs (i.e. the induction variable update is of the form i+=constant, but the loop body dereferences

3We chose 1% arbitrarily; any small fraction would suffice. Our intention is simply to skip over traversals that
contribute an insignificant number of cache misses.

23

pointers derived from the induction variable), all pointer accesses within a single iteration of N are
serialized, and there is only limited memory parallelism.4 In both cases, our algorithm assumes
there is insufficient memory parallelism within node N alone to effectively tolerate the pointer-
chasing cache misses. Rather than select node N , our algorithm instead considers all nodes M

that are parents of N in GT (lines 10 and 13). We select every node M that meets our traversal
complexity criterion (line 11), adding it to the set of prefetch initiation sites (lines 12 and 16). By
initiating prefetching from N ’s parents, the degree of memory parallelism is increased since multiple

instances of N can be prefetched simultaneously. In the event that none of N ’s parents meet the
traversal complexity criterion, we just choose N itself (lines 14 and 15). This ensures that N will be
prefetched, even if it is from a point in GT that provides only limited memory parallelism. Lastly,
in addition to the two looping cases described above, there is a third case: node N may represent a
loop that contains no pointer-chasing references whatsoever (line 20). Since our technique focuses
on LDS traversals, we simply skip over all such nodes (lines 3 and 4).

Finally, it is possible for our algorithm to select two or more prefetch initiation sites that are
nested in GT . Nested prefetch initiation leads to multiple traversals of the same data structures. To
avoid such redundant prefetching, our algorithm calls the procedure overlap each time it discovers
a new node for initiating prefetching (lines 6, 11, and 14). overlap checks if the candidate node,
N , has a nesting conflict with any node currently in P (lines 31–34), and includes N in P only
if no nesting conflicts are found. Note, if N is included in P , all parents of N in GT become
unprefetchable since they will have nesting conflicts with N and cannot be selected for prefetch
initiation. (While the children of N similarly cannot be selected for prefetch initiation, they will
get prefetched from the prefetch initiation site at N , as we will see in Section 6.2). However, since
our algorithm considers nodes in descending order of their cache-miss annotations (line 18), the
most important nodes are highly likely to be prefetched.

Applying our algorithm to Figure 13B, nodes “L0,” “L1,” and “L2” are skipped since their
cache-miss breakdown annotations are less than 1%. The remaining nodes are considered in the
order of their annotation values, “L3,” “L4,” and “R0,” to select the prefetch initiation nodes.
(Note, all nodes in Figure 13B meet the complexity criteria, but ascertaining this requires analyzing
more code than has been provided in Figure 13A). For “L3,” our algorithm selects “R0.” For “L4,”
our algorithm tries to select “L3,” but fails because of a nesting conflict with the already selected
“R0.” And for “R0,” our algorithm selects “R0” again. Hence, the final solution is P = {R0}.

6.2 LDS Descriptor Graphs

After computing the set of prefetch initiation sites, P , the next step that a compiler for multi-
chain prefetching must perform is to extract the LDS descriptor graphs–one for each node, N ,
in P . We begin this step by constructing code fragments from which our compiler will extract
the LDS descriptor graphs. Each code fragment contains the code corresponding to a node, N ,
in P as well as the nodes nested underneath N in GT whose cache-miss breakdown annotations
meet the minimum threshold (1%). By including all such LDS traversal codes, we ensure the LDS
descriptor graph eventually extracted from the code fragment will provide prefetching for all the
loops and recursive functions associated with node N that incur a large number of cache misses.
It is important to note these code fragments are not part of the application; they are constructed
for the sole purpose of extracting LDS descriptor graphs, and are discarded afterwards.

4In this case, there is memory parallelism between iterations of N since the induction variable updates are not
serialized. However, if the loop executes a small number of iterations, which is common in affine loops from non-
numeric programs, there is typically not enough memory parallelism for our technique to provide performance gains.

24

list_3 = l_2;
patient_3 = p_2;

p_3 = list_3->patient7;
while(p_3 != patient_3) {

 list_3 = list_3->forward8;

 p_3 = list_3->patient9;
}

back_3 = list_3->back10;
forward_3 = list_3->forward;
back_3->forward = forward_3;
if (list_3->forward != NULL) {
 back_3 = list_3->forward;
 forward_3 = list_3->back;
 back_3->back = forward_3;
}

village_2 = village_1;
list_2 = l;
while (list_2 != NULL) {

 i_2 = village_2->hosp.free_personnel3;

 p_2 = list_2->patient4;
 if (i_2 > 0) {
 t_2 = village_2->hosp.free_personnel;
 village_2->hosp.free_personnel = t_2-1;

 t_2 = p_2->time5;
 p_2->time = t_2 + 3;
 l_2 = &(village_2->hosp.waiting);

 /* in-line removeList */

 }

 list_2 = list_2->forward6;
}

R0 L3
L4

struct List *sim(struct Village *village) {
 if (village == NULL)
 return NULL;
 for (i = 3; i >= 0; i--) {

 /* in-line
 sim */

 }
 . . .
}

village_1 = village->forward[i]0;
if (village_1 == NULL)
 return NULL;
for (i_1 = 3; i_1 >= 0; i_1--) {

 sim(village_1->forward[i_1]1);
}

l = village_1->hosp.waiting.forward2;

/* in-line
 check_patients_waiting */

a.

b.

c.
d.

Figure 15: Construction of a code fragment for the Health benchmark. a. Code for sim containing
“R0.” b. In-lining of recursive call to sim. c. In-lining of check patients waiting containing
“L3.” d. In-lining of removeList containing “L4.”

Figure 15 illustrates the construction of a code fragment for the Health benchmark example.
As described in Section 6.1, “R0” is selected as the prefetch initiation site for Health. And as
shown by the GT graph in Figure 13B, “L3” and “L4” are nested underneath “R0,” and have
> 1% cache-miss breakdown annotations. Hence, we construct a code fragment starting at sim, the
procedure containing “R0,” and include check patients waiting and removeList, the procedures
containing “L3” and “L4,” respectively. Figures 15a, c, and d show the contents of these procedures
(they are simply more complete versions of the procedures shown in Figure 13).

As we construct the code fragment in Figure 15, we perform two types of procedure in-lining.
First, we in-line calls to non-recursive procedures (e.g. check patients waiting and removeList)
so that all the code resides in a single procedure when we’re done. This simplifies the extraction
of the LDS descriptor graph later on since it relieves our compiler from having to perform inter-
procedure analysis. Second, we also in-line calls to recursive procedures (e.g. sim) once. This
“unrolls” two invocations of the recursive traversal, i.e. the code between the recursive procedure
entry point and the recursive procedure call site(s). Our compiler analyzes the code along this
traversal path to extract recursively composed descriptors. For both types of in-lining, we rename
local variables to remove naming conflicts, and explicitly set any renamed caller parameters to their
matching callee parameters at the top of each in-lined procedure.

Once the code fragment for a prefetch initiation site has been constructed, our compiler extracts
its LDS descriptor graph. Recall from Section 3 that we must extract both data structure layout
information as well as traversal code work information. In the remainder of this section, we describe
the former (which is the more challenging of the two). We will discuss the latter in Section 6.3.

Extraction of the data structure layout information proceeds in 4 parts. First, we extract a
local traversal graph for each loop or recursive function in the code fragment separately. Each local
traversal graph contains a node for every memory read reference found in the corresponding loop or
recursive function. Our analysis creates nodes for reads through pointers, as well as reads through
arrays used to compute addresses for pointer references (we exclude array reads that do not affect
pointer references since we focus on LDS traversals only). Each local traversal graph also contains a
directed edge connecting every pair of nodes whose corresponding memory references have address
generation dependences. For such intra-traversal edges, we extract the address generation functions
that relate each pair of memory references connected by the edges.

25

3

8

9

10

2

6

0

1

4

5

7

init

e). Recurrent References

d). Intra-Traversal f). Inter-Traversal

g). Initial Address

Node 0: AR + 4; length = 4
Node 1: AR + 4; length = 4
Node 6: *AR + &((struct List*)0)->forward; length =
Node 8: *AR + &((struct List*)0)->forward; length =

AP + &((struct List)0)->patient

AP + &((struct Patient)0)->time

AP + &((struct List)0)->patient

AP + &((struct Village)0)->hosp.waiting.forward *AP + &((struct Village*)0)->forward[0]

AP + &((struct Village)0)->hosp.free_personnel

AP + &((struct Village)0)->hosp.waiting.patient

AP + &((struct Village)0)->hosp.waiting.forward

AP + &((struct List)0)->forward

&(top->forward[0])

b). L3

c). L4

a). R0

∞
∞

Figure 16: Data structure layout information for the Health benchmark. a-c). Local traversal
graphs for “R0,” “L3,” and “L4.” d-g). Address generation functions for intra-traversal edges,
recurrent references, inter-traversal edges, and initial address edges.

Figures 15 and 16 illustrate the extraction of local traversal graphs for the Health benchmark.
In Figure 15, we bold-face and label the memory read references that have been identified for
each loop or recursive function: “R0” contains references labeled 0 – 2, “L3” contains references
labeled 3 – 6 and 10, and “L4” contains references labeled 7 – 9. In Figures 16a, b, and c, we
show the local traversal graphs for “R0,” “L3,” and “L4,” respectively. The same numbers used to
label the memory references in Figure 15 are used to label the corresponding graph nodes, and the
solid directed edges connect the nodes corresponding to memory references with address generation
dependences. In Figure 16d, we show the address generation function computed by our analysis
for each directed edge. The variable “AP ” in these functions denotes the address generated by the
parent reference used in the address computation of the child reference.

Second, we analyze the code fragments for recurrent references. Recurrent references are mem-
ory references inside loops whose address computations depend directly on the loop induction
variable. Our analysis identifies recurrent references based on loop type. In pointer-chasing loops,
recurrent references are inside the expressions that update the pointer induction variable (e.g.
ptr=ptr->next). In affine loops, recurrent references are the array references that use the loop
induction variable as part of their array index. For each recurrent reference identified, we determine
the address generation function that relates consecutive dynamic instances of the same reference.
We also extract the recurrence length, or the number of iterations in the loop that contains the
reference. (If the loop length is unknown, we use a default value of ∞). In Figure 15, the recurrent
references identified by our analysis are underlined, and the corresponding graph nodes in Figure 16
are shaded grey. In Figure 16e, we show the extracted address generation functions and recurrence
lengths. The variable “AR” in the functions denotes the address generated by a single dynamic
instance of the recurrent reference used in the address computation of the next dynamic instance.

Third, we insert directed edges to connect nodes from different local traversal graphs, corre-
sponding to memory references with address generation dependences that span traversals. Such
inter-traversal edges provide the “live-in values” for address generation within each local traversal
graph. (Examples of such live-ins include the initial address for the first dynamic instance of a

26

recurrent reference, or the address for a memory reference that is invariant with respect to the
local loop or recursive function). This step is analogous to inserting intra-traversal edges explained
above, except instead of considering nodes within a single local traversal graph, it considers nodes
from different graphs. Notice, however, for the outer-most traversal in the code fragment, there
are no parent nodes from which to receive live-in values. We add a dummy init node to provide
the initial address for such root traversals. In Figure 16, we indicate the inter-traversal edges for
the Health example using dotted directed edges. Figure 16f shows the address generation functions
extracted by our analysis to compute the live-in values, and Figure 16g shows the initial address
provided by the init node.

Finally, we prune the local traversal graphs to remove unnecessary nodes. Three conditions
guide pruning. First, we remove nodes without incoming edges. These nodes represent memory
references whose addresses are invariant with respect to the entire code fragment; hence, prefetching
them will not provide noticeable gains. Second, we perform locality analysis and remove nodes
that reference an L1 cache block already referenced by another node. We also remove any edges
associated with such redundant nodes. Lastly, we remove nodes created by in-lining recursive
function calls. We retain each incoming edge to such nodes (as well as their address generation
functions), but redirect the edge to point back at the removed node’s parent. This creates a cycle,
thus forming the desired recursive composition. In Figure 16, node 10 would be removed due to
the first condition. Also, node 1 would be removed due to the third condition, and its incoming
edge would be redirected to point at node 0. None of the nodes in Figure 16 would be removed
due to the second condition.

From Figure 16 (after pruning has been applied), a simple transformation yields the final data
layout information. Replace every graph node with the descriptor (O,L, S). Examine the address
generation function associated with the node’s incoming edge. If the “AP ” variable is preceeded by
a “*”, place a “*” in front of the descriptor (e.g. ∗(O,L, S)). Set O equal to this address generation
function (without the “AP ” variable). Next, if the node is not recurrent, set L = 1 and S = 0.
If the node is recurrent, examine the corresponding address generation function in Figure 16e. If
the “AR” variable is preceeded by a “*”, place a “*” in front of the S parameter (e.g. (O,L, ∗S)).
Set S equal to this address generation function (without the “AR” variable) and L equal to the
recurrence length. Lastly, for the node that is the child of the dummy init node, replace the O

parameter with a B parameter (if the node is recursively composed, add the B parameter rather
than replacing the O parameter). Set B equal to the initial address.

6.3 Prototype Compiler

We built a prototype compiler for multi-chain prefetching. Our compiler implements all the al-
gorithms presented in Sections 6.1 and 6.2, as well as the scheduling analysis from Section 4,
and inserts prefetch instrumentation into the program source code (i.e. the final product is a C
program). Figure 17 illustrates the major modules that comprise our prototype compiler. Its con-
struction leverages several tools from existing toolsets, including SimpleScalar [1], Unravel [22], the
Stanford University Intermediate Format (SUIF) [11], and Perl. It also contains several custom-
built modules implemented in C. All the steps illustrated in Figure 17 are performed automatically;
no manual intervention is necessary.

Three of the modules in Figure 17 are responsible for constructing the traversal nesting graph,
GT , described in Section 6.1. The “Initiation Selector” is a binary analyzer implemented in C
that extracts loops and recursive functions from the original program binary, and determines their

27

1

3

1. Original Program Binary
2. Cache-Miss Profiles

2

3. Procedure Call Graph

4

7

5. Code Fragments
7. Traversal Code Work Information

1

4. Set of Prefetch Initiation Sites, P

6. Data Structure Layout Information

Original
Program
(C code)

gcc

Profiler

Work
Extractor Scheduler

Call Graph
Generator

Initiation
Selector In-liner

Layout
Extractor

Instrumentor

Program with
Multi-Chain

Prefetching (C code)

Unravel SUIF

Perl

SimpleScalar

5

66

8

8. Scheduling Parameters

1

Figure 17: Modules comprising the prototype compiler for multi-chain prefetching. Dashed boxes
enclose modules derived from the SimpleScalar, Unravel, SUIF, and Perl toolsets. All other modules
(except for gcc) are custom built in C.

nesting relationships. This tool takes as input the program’s procedure call graph, which we
construct using a procedure call graph generator provided as part of the Unravel toolset [22].
Based on the program’s binary and procedure call graph, the “Initiation Selector” extracts the GT

graph across the entire program. To annotate the GT graph with the cache-miss breakdown values
discussed in Section 6.1, we use cache simulation. The “Profiler” is a modified cache simulator
from the SimpleScalar toolset [1] that acquires cache-miss counts on a per load PC basis. Using
line number information generated by our C compiler, we map load PCs back to source code lines,
and aggregate all the cache misses incurred within the same loops or recursive functions. These
aggregates are then used to annotate the GT graph nodes. Once the final GT graph is constructed,
the “Initiation Selector” also computes the set of prefetch initiation sites, P , using the algorithm
from Figure 14.

Two other modules in Figure 17, the “In-liner” and the “Layout Extractor,” perform the pro-
cedure in-lining and data structure layout extraction, respectively, described in Section 6.2. These
modules are implemented in SUIF, and are the largest modules in our prototype compiler. Notice,
the “Profiler” output is not directly fed into these modules. In our compiler, cache-miss profiles
are used to select prefetch initiation sites only. Our SUIF passes do not use cache-miss profiles to
guide data structure layout extraction, and instead, extracts descriptors for all memory references
identified in the code fragments. While it is relatively easy to map cache-miss load PCs to con-
trol structures such as loops and functions, it is more difficult to map them to individual memory
references because the line number information used to perform the mapping provides insufficient
resolution (i.e. multiple load PCs often map to the same line number).

In addition to extracting the data structure layout information, we must also extract the traver-
sal code work information described in Section 3.2 to complete the LDS descriptor graphs. The
“Work Extractor” in Figure 17 is responsible for this step. Like the “Initiation Selector,” the
“Work Extractor” is a binary analyzer implemented in C. It constructs a control flow graph from
the original program binary, and counts the number of instructions in each basic block. For each
loop and recursive function in the program, the work and offset parameters illustrated in Figure 5
are extracted by aggregating the instruction counts from the appropriate basic blocks. Along with
the data structure layout information from the “Layout Extractor,” these work parameters are fed

28

to the “Scheduler.” This module implements the scheduling algorithm presented in Sections 4.1
and 4.3, and computes the prefetch scheduling parameters required by our prefetch engine.

Finally, the “Instrumentor” is a Perl script that performs the software instrumentation nec-
essary for multi-chain prefetching, and creates the final C code. Two types of instrumentation
are performed. First, the “Instrumentor” inserts the INIT and SY NC instructions required for
prefetching, as described in Section 5. Second, the “Instrumentor” also inserts code for installing
the LDS descriptors into the prefetch engine. Constant LDS descriptor parameter values are written
into the prefetch engine once at the beginning of the application. The remaining LDS descriptor
parameter values that are unknown at compile time are written into the prefetch engine prior to
prefetch initiation, i.e. right before the corresponding INIT instruction.

7 Experimental Methodology

This section presents our experimental methodology. First, Section 7.1 describes our simulator
infrastructure. Second, Section 7.2 presents the benchmarks and simulation windows chosen for the
experiments. Third, Section 7.3 discusses the compilation of benchmark codes. Finally, Section 7.4
describes other prefetching techniques we consider in our study.

7.1 Multi-Chain Prefetching Simulator

We constructed a detailed event-driven simulator of the prefetch engine architecture described in
Section 5 coupled with a state-of-the-art RISC processor. Our simulator uses the processor model
from the SimpleScalar toolset [1] to model a 1 GHz dynamically scheduled 8-way issue superscalar
with an 128-entry instruction window and a 64-entry load-store dependence queue. We assume
a split 32-Kbyte instruction/32-Kbyte data 2-way set-associative write-through L1 cache with a
32-byte block size. We assume a unified 1-Mbyte 4-way set-associative write-back L2 cache with a
64-byte block size. The L1 and L2 caches have 16 and 32 miss status holding registers (MSHRs) [18],
respectively, which is also the number of outstanding memory requests allowed from each cache.
Access to the L1 and L2 caches costs 1 and 10 cycles, respectively. For simplicity, we do not model
contention across the L1-L2 cache bus.

The simulator we built also models a memory sub-system in detail, consisting of a single mem-
ory controller connected to 64 DRAM banks. Each L2 request to the memory controller simulates
several actions: queuing of the request in the memory controller, sending of the row and column
addresses to the appropriate DRAM bank, and data transfer across the memory system bus. Our
simulator faithfully models contention in the DRAM banks and on the memory system bus, per-
mitting concurrent accesses as long as there are no bank or bus conflicts. We configure the memory
sub-system to have a baseline memory access cost of 100 cycles, and a peak bandwidth of 6.4
Gbytes/sec. Later in Section 8.6, we consider memory sub-systems with less memory bandwidth.

Our baseline prefetch engine follows the implementation described in Section 5.4. We assume
the prefetch engine contains an 128-entry AGT. If an AGT entry attempts to generate an address
requiring the allocation of a new AGT entry (see Section 5.2) and all AGT entries are full, address
generation for that AGT entry is suspended until an entry becomes available. Our baseline prefetch
engine also has a 75-entry ADT (i.e. any number of LDS descriptor graphs can be accommodated
as long as the aggregate number of array and linked list descriptors does not exceed 75). We sized
the ADT to accommodate the maximum number of required entries for our applications; hence, our
simulator does not model capacity limitations in the ADT. In addition, we model a single NACU

29

Olden Benchmarks L1 Miss Rate
Program Input Parameters Data Structure FstFwd Sim 16K 64K 256K 1M

EM3D 10K nodes, 50 iters array of pointers 27 54 41.6 39.7 32.8 17.5
MST 1024 nodes list of lists 183 29 27.9 27.0 25.6 19.3
Treeadd 20 levels binary tree 143 34 3.6 3.3 3.2 3.2
Health 5 levels, 500 iters quadtree of lists 115 47 22.6 20.0 19.0 13.3
Perimeter 11 levels unbalanced quadtree 14 17 1.4 1.1 1.0 1.0
Bisort 250,000 numbers binary tree 377 241 2.0 1.3 0.9 0.3

SPECint2000 Benchmarks L1 Miss Rate
Program Input Parameters FstFwd Sim 16K 64K 256K 1M

MCF inp.in 2,616 124 27.2 26.0 24.4 20.1
Twolf ref 124 128 10.8 7.9 4.9 0.9
Parser 2.1.dict -batch < ref.in 257 119 4.9 3.1 1.6 0.6
Perlcomp -I./lib diffmail.pl 2 550 15 24 23 100 125 132 2.0 1.3 0.9 0.3
Perlexec -I./lib diffmail.pl 2 550 15 24 23 100 3,276 129 2.4 0.8 0.2 0.2

Table 1: Benchmark summary. Columns labeled “FstFwd” and “Sim” report number of fast
forwarded and simulated instructions (in millions). The last four columns report the miss rate for
16K, 64K, 256K, and 1M L1 data caches (in percent).

and a single BACU, as described in Section 5.4. Each functional unit has the ability to compute
one address per cycle. Finally, we couple our prefetch engine with a 64-entry 2-Kbyte prefetch
buffer. The prefetch buffer is fully associative, and uses an LRU eviction policy. We assume the
prefetch buffer can satisfy a processor request in 1 cycle. Each prefetch buffer entry effectively
serves as an MSHR, so the prefetch engine can issue up to 64 outstanding memory requests at any
time. In the event that all 64 entries are waiting on outstanding memory requests, new prefetch
requests must stall until an entry becomes available. Our simulator models contention for the L1
data cache port and prefetch buffer port between the prefetch engine and the CPU, giving priority
to CPU accesses.

7.2 Benchmarks

Our experimental evaluation uses applications from both the Olden [29] and SPECint2000 bench-
mark suites. Table 1 lists the applications, their input parameters, and the simulation windows
used. In addition, the last four columns of Table 1 report the percent miss rate for 16K, 64K,
256K, and 1M L1 data caches from the simulation window to quantify the working set sizes of
these applications. The simulation windows are defined by the columns labeled “FstFwd” and
“Sim,” which report the number of fast forwarded and simulated instructions in millions, respec-
tively, starting from the beginning of each program. The rest of this section describes how we select
these simulation windows.

For Olden, all of the benchmarks consist of an initialization phase followed by a single main
computation loop (or recursive function call) that accounts for all of the computation. Through
code inspection, we identify the initialization code, and fast forward through this portion of the
benchmark in our simulation windows. Then, we simulate the main computation to completion.
One exception is Health. In addition to an initialization phase, Health also builds its primary data
structure through repeated calls to sim() from its main computation loop. For Health, we fast
forward through the first 400 calls to sim() to build up the data structure, and then we simulate
the next 100 calls.

30

App Initialization Main Computation Time Total Iter Sim Iter

MCF primal start artificial() primal net simplex() 58% 361,717 2,000
Twolf read cell() uloop() 95% 522,568 35,000
Parser read dictionary() batch process() 90% 7,761 4
Perl perl construct() yyparse() 1% 136,098 45,000

runops standard() 99% 115,249,512 500,000

Table 2: Source code level information used to select simulation windows for the SPECint2000
benchmarks. The columns labeled “Initialization” and “Main Computation” list the routines re-
sponsible for program initialization and most of the main computation, respectively. The column
labeled “Time” reports the percentage of execution time spent in the computation routines. The
last two columns report the total iterations and simulated iterations of the primary loop from each
computation routine.

Compared to Olden, the SPECint2000 benchmarks are far more complex, making it difficult
to pick representative simulation regions. We ran each SPECint2000 benchmark natively on an
UltraSPARC workstation from beginning to end under gprof [10]. Using the gprof profiles and
code inspection, we were able to identify the routines responsible for both program initialization
and most of the main computation. Through code inspection of the main computation routines, we
found that in all cases there is a large primary loop which accounts for all of the routines’ execution
time (we note these primary loops are quite different from the computation loops in Olden; they
call several procedures, each of which also contain multiple loops). Our simulation windows for
the SPECint2000 benchmarks fast forward through the initialization routines as well as all code
leading up to the primary loops, and then simulates each primary loop for several iterations.

Table 2 reports the source code level information obtained through gprof and code inspection
that we used to select the simulation windows for SPECint2000. The columns labeled “Initializa-
tion” and “Main Computation” list the names of the initialization and main computation routines
discovered via gprof, respectively, and the column labeled “Time” reports the fraction of time each
benchmark spends in the computation routines as a percentage of the benchmark’s entire execution

time (the fraction of time spent in the initialization routines is less than 1% for all the benchmarks).
Finally, the last two columns show the total number of iterations executed in the primary loops
from each main computation routine and the number of iterations we simulate in our simulation
windows from Table 1, labeled “Total Iter” and “Sim Iter,” respectively. Although Table 2 shows
we only simulate 4 iterations for Parser, we reiterate these are top-level loops that represent a
significant portion of the overall benchmark. As Table 1 shows, Parser’s 4 iterations account for
roughly 120M instructions.

In Table 1, two simulation regions are reported for Perl. Perl executes both a compile phase
and an execute phase corresponding to the yyparse() and runops standard() main computation
routines listed in Table 2. Although the execute phase runs much longer than the compile phase for
the inputs we use (as indicated by the “Time” column in Table 2), we believe the compile phase can
still be important, particularly for perl scripts that run for short amounts of time. Consequently,
we simulate both phases and treat them as separate applications, called “Perlcomp” and “Perlexec.”

7.3 Compiling

For the majority of our experiments, we use our prototype compiler, described in Section 6.3,
to instrument our benchmarks with multi-chain prefetching. In this case, all steps required for

31

App #Graph
Avg

#Desc
Recurrent Descriptor Composition Type

Depth Array
Linked Nesting

Recurse
List w/o Ind w/ Ind

EM3D 2 3.0(3) 13(7) 2(1) 0(0) 5(3) 6(4) 0(0)
MST 1 6.0(6) 10(10) 0(0) 2(2) 0(0) 9(9) 0(0)
Treeadd 1 2.0(2) 2(2) 0(0) 0(0) 0(0) 1(1) 1(1)
Health 1 5.0(5) 24(24) 1(1) 7(7) 0(0) 23(23) 1(1)
Perimeter 1 2.0(2) 2(2) 0(0) 0(0) 0(0) 1(1) 1(1)
Bisort 1 2.0(2) 2(2) 0(0) 0(0) 0(0) 1(1) 1(1)

MCF 2 3.0(3) 9(5) 1(1) 1(1) 1(1) 6(4) 0(0)
Twolf 6 4.7(6) 74(18) 2(1) 9(3) 4(2) 64(15) 0(0)
Parser 11 3.6(5) 49(10) 2(1) 16(4) 0(0) 38(9) 0(0)
Perlcomp 1 3.0(3) 3(3) 0(0) 1(1) 0(0) 2(2) 0(0)
Perlexec 1 3.0(3) 4(4) 0(0) 1(1) 0(0) 3(3) 0(0)

Table 3: LDS descriptor summary. The number of descriptor graphs in each application is presented
in the column labeled “#Graph.” The average graph depth and the total number of descriptors
are presented in the columns labeled “Avg Depth” and “#Desc,” respectively. The number of
descriptors by type and composition is presented in the remaining columns. Values in parenthesis
report information for the most complex graph from each application.

the instrumentation, including the profiling runs necessary to drive our prototype compiler, are
performed automatically and require no manual intervention. For a few experiments, we also
manually instrumented our benchmarks with multi-chain prefetching. In this case, we followed
the methodology for inserting instrumentation by hand used in our early work on multi-chain
prefetching [17]. Since our instrumentation is performed at the source-code level (for both compiler
and manual approaches), we must compile the instrumented source codes into binaries before
running them on our architectural simulator. For this purpose, we use the gcc cross compiler
provided by the SimpleScalar toolset. (When compiling with gcc, we use the “-O2” optimization
level, which turns on all supported optimizations except for function in-lining).

To provide insight into the nature of our compiler-generated instrumentation, Table 3 shows
the LDS descriptor graphs extracted from the benchmarks by our prototype compiler. For each
benchmark, Table 3 reports the number of descriptor graphs, labeled “# Graph,” the average
depth of each graph, labeled “Avg Depth,” and the total number of descriptors across all graphs,
labeled “# Desc.” Two columns labeled “Recurrent Descriptor” show the number of recurrent
descriptors by the type (array versus linked list). The last 3 columns break down the total number
of descriptors into composition type (whether the descriptor is composed using nesting without
indirection, nesting with indirection, or recursion). Finally, the values in parenthesis in Table 3
report the same statistics, but for the most complex descriptor graph in the benchmark.

7.4 Other Prefetching Techniques

Our experimental evaluation includes an extensive comparison of multi-chain prefetching against
three existing prefetching techniques. The first two are jump pointer techniques, while the third
is an all-hardware prediction-based technique. The two jump pointer techniques we consider are
jump pointer prefetching [21], also known as “software full jumping” [31], and prefetch arrays [14].

32

Of the jump pointer techniques studied in [31], multi-chain prefetching is actually closest to “coop-
erative chain jumping,” a hybrid hardware/software jump pointer technique, rather than software
full jumping (see discussion in Section 9). Although an ideal comparison would pit multi-chain
prefetching versus cooperative chain jumping, a full simulated implementation of that competing
technique is beyond the scope of this work. As a compromise, we implement the less advanced soft-
ware full jumping technique. Since we do not have compilers that can implement either software
full jumping or prefetch arrays automatically (nor do such compilers exist to our knowledge), we
instrument them by hand following the algorithms presented in [21] and [14].

The third prefetching technique we consider is Predictor-Directed Stream Buffers (PSB) [33],
an all-hardware prediction-based technique. PSB employs a stride-filtered markov (SFM) predictor
to predict L1 cache misses. Predictions made by the SFM predictor subsequently guide multiple
stream buffers that prefetch ahead of the CPU. Similar to conventional stream buffers, the SFM
predictor relies on a stride predictor to efficiently prefetch striding memory access patterns. In
addition, the SFM predictor also relies on a markov predictor [12] to form correlations between
non-striding cache-miss addresses, thus enabling prefetching of arbitrary memory access patterns.

We built a PSB model for our simulator that supports a memory interface identical to our
prefetch engine model. Hence, the PSB model can be “plugged” into the same processor and
memory system models described in Section 7.1, enabling a meaningful comparison between PSB
and multi-chain prefetching. We faithfully simulate every aspect of the SFM predictor and stream
buffers proposed in [33]. Specifically, we simulate an SFM predictor consisting of a 256-entry stride
predictor coupled with a 2K-entry 1st-order markov predictor. In addition, we simulate 8 stream
buffers, each containing 8 entries. For stream buffer allocation, we use the confidence allocation
with priority scheduling policy [33].

Our PSB configuration is effectively identical to the best configuration studied in [33]. The only
difference is our stream buffers contain 8 entries, whereas the original PSB uses only 4 entries. We
employ deeper stream buffers because they provide higher performance for our benchmarks. The
deeper stream buffers also make our PSB similar to our prefetch engine in terms of hardware cost.
Together, the 8 stream buffers have a 2 Kbyte capacity, which is identical to our prefetch buffer.
For other hardware structures, there is some difference in cost: our PSB’s markov prediction table
requires 4 Kbytes,5 which is roughly double the size of our ADT and AGT combined. Overall,
however, the PSB and the prefetch engine use similar amounts of hardware. (In addition to this
“baseline PSB,” we also study more aggressive PSBs, which we will explain later).

8 Results

In this section, we conduct a detailed evaluation of multi-chain prefetching. First, we present
the main results for multi-chain prefetching, and compare it against jump pointer techniques and
Predictor-Directed Stream Buffers in Sections 8.1 and 8.2. Then, Section 8.3 studies a limita-
tion of multi-chain prefetching, called early prefetch arrival. These 3 sections consider compiler-
instrumented multi-chain prefetching only. In Section 8.4, we compare the performance of compiler-
and manually-instrumented versions of our benchmarks to evaluate the quality of our compiler in-
strumentation. Next, we perform two other studies that evaluate the sensitivity of multi-chain
prefetching performance to different architectural parameters: Section 8.5 varies prefetch engine

5Note, this only includes the data entries in the markov prediction table, and does not account for the tag entries.
It also does not account for the stride prediction table. We do not include these structures since their sizes are not
given in [33].

33

parameters, and Section 8.6 varies memory bandwidth parameters. Finally, Section 8.7 conducts
a preliminary investigation of speculation to further improve multi-chain prefetching performance,
and Section 8.8 closes by discussing the limitations of our evaluation.

8.1 Multi-Chain Prefetching and Jump Pointer Techniques

Figure 18 presents the results of multi-chain prefetching for our applications, and compares multi-
chain prefetching against jump pointer techniques. For each application, we report the execution
time without prefetching, labeled “NP,” with jump pointer prefetching, labeled “JP,” and with
multi-chain prefetching, labeled “MC.” As mentioned earlier, we use our prototype compiler to
instrument multi-chain prefetching for the “MC” experiments in this section. For applications that
traverse linked lists, we also report the execution time of prefetch arrays in combination with jump
pointer prefetching, labeled “PA” (the other applications do not benefit from prefetch arrays, so we
do not instrument them). Each bar in Figure 18 has been broken down into four components: time
spent executing useful instructions, time spent executing prefetch-related instructions, and time
spent stalled on instruction and data memory accesses, labeled “Busy,” “Overhead,” “I-Mem,” and
“D-Mem,” respectively. All times have been normalized against the NP bar for each application.

Comparing the MC bars versus the NP bars, multi-chain prefetching eliminates a significant
fraction of the memory stall, reducing overall execution time by as much as 74% and by 40% on
average for the Olden benchmarks, and by as much as 8% and by 3% on average for the SPECint2000
benchmarks. Multi-chain prefetching provides a performance boost for all applications except for
Perlcomp and Perlexec, where it degrades performance by 1%. Comparing the MC bars versus the
JP and PA bars, multi-chain prefetching outperforms jump pointer prefetching and prefetch arrays,
reducing execution time by as much as 67% and by 34% on average for the Olden benchmarks,
and by as much as 27% and by 11% on average for the SPECint2000 benchmarks. Multi-chain
prefetching achieves higher performance in all but two applications, MCF and Perlexec, where its
performance is 3% and 1% lower, respectively.

Several factors contribute to multi-chain prefetching’s performance advantage compared to jump
pointer prefetching and prefetch arrays. In the rest of this section, we examine three benefits
of multi-chain prefetching: low software overhead, high cache-miss coverage, and low memory
overhead. Later, in Section 8.3, we will study one limitation of multi-chain prefetching: early
prefetch arrival.

8.1.1 Software Overhead

Multi-chain prefetching incurs noticeably lower software overhead as compared to jump pointer
prefetching and prefetch arrays for EM3D, MST, Health, MCF, Twolf, Parser, and Perlcomp. For
MST and Parser, jump pointer prefetching and prefetch arrays suffer high jump pointer creation
overhead. On the first traversal of an LDS, jump pointer prefetching and prefetch arrays must
create pointers for prefetching subsequent traversals; consequently, applications that perform a
small number of LDS traversals spend a large fraction of time in prefetch pointer creation code.
In MST and Parser, the linked list structures containing jump pointers and prefetch arrays are
traversed 4 times and 10 times on average, respectively, resulting in overhead that costs 37%
(for MST) and 29% (for Parser) as much as the traversal code itself. In addition to prefetch
pointer creation overhead, jump pointer prefetching and prefetch arrays also suffer prefetch pointer
management overhead. Applications that modify the LDS during execution require fix-up code to
keep the jump pointers consistent as the LDS changes. Health performs frequent link node insert

34

1.00
1.09

1.00

0.84

0.26

1.00
1.00

0.40

1.00

0.47
0.45

0.29

1.00
1.00

0.95
1.00

1.02

0.79
0.71

0.99

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

NP
JP

MC
NP

JP
PAMC

NP
JP

MC
NP

JP
PAMC

NP
JP

MC
NP

JP
MC

Normalized Execution Time .

EM3D
Bisort

Perimeter
Health

Treeadd
MST

1.00
0.96

0.96
0.99

1.00
1.11

1.24

0.92
1.00

1.30
1.55

0.94
1.00

1.05
1.06

1.01
1.00

1.01
1.00

1.01

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

NP
JP

PAMC
NP

JP
PAMC

NP
JP

PAMC
NP

JP
PAMC

NP
JP

PAMC

Normalized Execution Time .

D-Mem

I-Mem

Overhead

Busy

MCF
Twolf

Parser
Perl

comp
Perl

exec

F
igu

re
18:

E
x
ecu

tion
tim

e
for

n
o

p
refetch

in
g

(N
P

),
ju

m
p

p
oin

ter
p
refetch

in
g

(J
P

),
p
refetch

array
s

(P
A

),
an

d
com

p
iler-in

stru
m

en
ted

m
u
lti-ch

ain
p
refetch

in
g

(M
C

).
E

ach
ex

ecu
tion

tim
e

b
ar

h
as

b
een

b
roken

d
ow

n
in

to
u
sefu

l
cy

cles
(B

u
sy

),
p
refetch

-related
cy

cles
(O

verh
ead

),
I-cach

e
stalls

(I-M
em

),
an

d
D

-cach
e

stalls
(D

-M
em

).

an
d

d
elete

op
eration

s.
In

H
ealth

,
ju

m
p

p
oin

ter
fi
x
-u

p
co

d
e

is
resp

on
sib

le
for

m
ost

of
th

e
129%

in
crease

in
th

e
traversal

co
d
e

cost.
S
in

ce
m

u
lti-ch

ain
p
refetch

in
g

on
ly

u
ses

n
atu

ral
p
oin

ters
for

p
refetch

in
g,

it
d
o
es

n
ot

su
ff
er

an
y

p
refetch

p
oin

ter
creation

or
m

an
agem

en
t

overh
ead

s.

T
h
e

ju
m

p
p
oin

ter
p
refetch

in
g

an
d

p
refetch

array
version

s
of

E
M

3D
an

d
M

C
F

su
ff
er

h
igh

p
refetch

in
stru

ction
overh

ead
.

J
u
m

p
p
oin

ter
p
refetch

in
g

an
d

p
refetch

array
s

in
sert

ad
d
ress

com
p
u
tation

an
d

p
refetch

in
stru

ction
s

in
to

th
e

ap
p
lication

co
d
e.

In
m

u
lti-ch

ain
p
refetch

in
g,

th
is

overh
ead

is
off

-load
ed

on
to

th
e

p
refetch

en
gin

e
(at

th
e

ex
p
en

se
of

h
ard

w
are

su
p
p
ort).

In
E

M
3D

an
d

M
C

F
,

th
e

traversal
lo

op
s

are
in

ex
p
en

sive,
h
en

ce
th

e
ad

d
ed

co
d
e

in
ju

m
p

p
oin

ter
p
refetch

in
g

an
d

p
refetch

array
s

d
ilates

th
e

lo
op

cost
b
y

84%
an

d
23%

,
resp

ectively.
T

h
e

p
articu

larly
h
igh

overh
ead

in
E

M
3D

resu
lts

in
a

n
et

p
erform

an
ce

d
egrad

ation
of

9%
.

P
refetch

in
stru

ction
s

also
con

trib
u
te

to
th

e
softw

are
overh

ead
s

v
isib

le
in

M
S
T

,
H

ealth
,
an

d
th

e
oth

er
th

ree
S
P

E
C

in
t2000

b
en

ch
m

ark
s.

F
in

ally,
T

w
olf

an
d

P
erlc

o
m

p
su

ff
er

in
creased

I-cach
e

stalls.
D

u
e

to
th

e
large

in
stru

ction
fo

otp
rin

ts
of

th
ese

ap
p
lication

s,
th

e
co

d
e

ex
p
an

sion
cau

sed
b
y

p
refetch

in
stru

m
en

tation
resu

lts
in

h
igh

er
I-cach

e
m

iss
rates.

S
in

ce
m

u
lti-ch

ain
p
refetch

in
g

d
o
es

n
ot

req
u
ire

as
m

u
ch

softw
are

in
stru

m
en

tation
in

th
ese

b
en

ch
m

ark
s,

th
e

im
p
act

on
I-cach

e
p
erform

an
ce

is
n
ot

as
sign

ifi
can

t.

A
lth

ou
gh

m
u
lti-ch

ain
p
refetch

in
g

su
ff
ers

low
er

softw
are

overh
ead

th
an

ju
m

p
p
oin

ter
tech

n
iq

u
es

overall,
it

still
in

cu
rs

n
oticeab

le
overh

ead
in

E
M

3D
,

T
reead

d
,

P
erim

eter,
an

d
B

isort.
(In

fact,
ex

cep
t

for
E

M
3D

,
th

e
softw

are
overh

ead
in

th
ese

ap
p
lication

s
is

h
igh

er
for

m
u
lti-ch

ain
p
refetch

in
g

th
an

for
th

e
ju

m
p

p
oin

ter
tech

n
iq

u
es).

T
h
is

softw
are

overh
ead

is
d
u
e

to
th

e
I
N

I
T

an
d

S
Y

N
C

in
stru

ction
s

as
w

ell
as

th
e

L
D

S
d
escrip

tor
in

stallation
co

d
e

in
serted

at
each

p
refetch

in
itiation

site.
L
ater,

in
S
ection

8.4,
w

e
w

ill
d
iscu

ss
th

ese
sou

rces
of

overh
ead

in
d
etail.

35

1.00
1.16

1.00
1.00

0.91

1.19
1.19

1.00
1.00

0.92
1.00

1.31
1.39

1.21

1.00
1.00

1.00
1.00

1.00
1.05

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

NP
JP

MC
NP

JP
PAMC

NP
JP

MC
NP

JP
PAMC

NP
JP

MC
NP

JP
MC

Cache miss breakdown .

EM3D
Bisort

Perimeter
Health

Treeadd
MST

1.00

1.23

1.45

1.01
1.00

1.05
1.10

1.04
1.00

1.23

1.68

1.03
1.00

1.04

1.42

1.03
1.00

1.00
1.03

1.04

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

NP
JP

PAMC
NP

JP
PAMC

NP
JP

PAMC
NP

JP
PAMC

NP
JP

PAMC

Cache miss breakdown

Inacc
Full
Partial
L2-Hit
Mem

MCF
Twolf

Parser
Perl

comp
Perl

exec

F
igu

re
19:

C
ach

e
m

iss
b
reak

d
ow

n
for

com
p
iler-in

stru
m

en
ted

m
u
lti-ch

ain
p
refetch

in
g

an
d

ju
m

p
p
oin

ter
tech

n
iq

u
es.

E
ach

b
ar

h
as

b
een

b
roken

d
ow

n
in

to
m

isses
to

m
ain

m
em

ory
(M

em
),

h
its

in
th

e
L
2

(L
2-H

it),
p
artially

covered
m

isses
(P

artial),
fu

lly
covered

m
isses

(F
u
ll),

an
d

in
accu

rate
p
refetch

es
(In

acc).

8
.1

.2
C

o
v
e
ra

g
e

T
o

fu
rth

er
com

p
are

m
u
lti-ch

ain
p
refetch

in
g

an
d

ju
m

p
p
oin

ter
tech

n
iq

u
es,

F
igu

re
19

sh
ow

s
a

b
reak

-
d
ow

n
of

cach
e

m
isses

for
th

e
ex

p
erim

en
ts

in
F
igu

re
18.

T
h
e

N
P

b
ars

in
F
igu

re
19

b
reak

d
ow

n
th

e
L
1

cach
e

m
isses

w
ith

ou
t

p
refetch

in
g

in
to

m
isses

satisfi
ed

from
th

e
L
2

cach
e,

lab
eled

“L
2-H

it,”
an

d
m

isses
satisfi

ed
from

m
ain

m
em

ory,
lab

eled
“M

em
.”

T
h
e

J
P
,
P
A

,
an

d
M

C
b
ars

sh
ow

th
e

sam
e

tw
o

com
p
on

en
ts,

b
u
t
in

ad
d
ition

sh
ow

th
ose

cach
e

m
isses

th
at

are
fu

lly
covered

an
d

p
artially

covered
b
y

p
refetch

in
g,

lab
eled

“F
u
ll”

an
d

“P
artial,”

resp
ectively.

F
igu

re
19

also
sh

ow
s

in
accu

rate
p
refetch

es,
lab

eled
“In

acc.”
In

accu
rate

p
refetch

es
fetch

d
ata

th
at

are
n
ever

accessed
b
y

th
e

p
ro

cessor.
A

ll
b
ars

are
n
orm

alized
again

st
th

e
N

P
b
ar

for
each

ap
p
lication

.

M
u
lti-ch

ain
p
refetch

in
g

ach
ieves

h
igh

er
cach

e
m

iss
coverage

for
T
reead

d
,
P
erim

eter,
an

d
B

isort
d
u
e

to
fi
rst-traversal

p
refetch

in
g.

(F
irst-traversal

p
refetch

in
g

also
b
en

efi
ts

M
S
T

,
b
u
t
w

e
w

ill
ex

p
lain

th
is

later
in

S
ection

8.3).
In

m
u
lti-ch

ain
p
refetch

in
g,

all
L
D

S
traversals

can
b
e

p
refetch

ed
.

J
u
m

p
p
oin

ter
p
refetch

in
g

an
d

p
refetch

array
s,

h
ow

ever,
are

in
eff

ective
on

th
e

fi
rst

traversal
b
ecau

se
th

ey
m

u
st

create
th

e
p
refetch

p
oin

ters
b
efore

th
ey

can
p
erform

p
refetch

in
g.

F
or

T
reead

d
an

d
P
erim

eter,
th

e
L
D

S
is

traversed
on

ly
on

ce,
so

ju
m

p
p
oin

ter
p
refetch

in
g

d
o
es

n
ot

p
erform

an
y

p
refetch

in
g.

In
B

isort,
th

e
L
D

S
is

traversed
tw

ice,
so

p
refetch

in
g

is
p
erform

ed
on

on
ly

h
alf

th
e

traversals.
In

con
trast,

m
u
lti-ch

ain
p
refetch

in
g

con
verts

92%
,

59%
,

an
d

34%
of

th
e

origin
al

cach
e

m
isses

in
to

p
refetch

b
u
ff
er

h
its

for
T
reead

d
,

P
erim

eter,
an

d
B

isort,
resp

ectively,
as

sh
ow

n
in

F
igu

re
19.

F
igu

re
18

sh
ow

s
th

is
in

creased
coverage

red
u
ces

ex
ecu

tion
tim

e
b
y

60%
,
5%

,
an

d
1%

for
th

ese
th

ree
ap

p
lication

s.

F
igu

re
19

also
sh

ow
s

th
e

im
p
ortan

ce
of

p
refetch

in
g

early
lin

k
n
o
d
es.

M
S
T

an
d

th
e

fou
r

S
P

E
C

in
t2000

b
en

ch
m

ark
s

p
red

om
in

an
tly

traverse
sh

ort
lin

ked
lists.

In
ju

m
p

p
oin

ter
p
refetch

in
g,

th
e

fi
rst

P
D

(p
refetch

d
istan

ce)
lin

k
n
o
d
es

are
n
ot

p
refetch

ed
b
ecau

se
th

ere
are

n
o

ju
m

p
p
oin

ters

36

that point to these early nodes. However, both prefetch arrays and multi-chain prefetching are
capable of prefetching all link nodes in a pointer chain; consequently, they enjoy much higher cache
miss coverage typically on applications that traverse short linked lists. This explains the perfor-
mance advantage of prefetch arrays and multi-chain prefetching over jump pointer prefetching for
MST in Figure 18. It also explains the performance advantage of multi-chain prefetching over jump
pointer prefetching for Twolf.

8.1.3 Memory Overhead

In addition to software overhead for creating and managing prefetch pointers as discussed in Sec-
tion 8.1.1, jump pointer prefetching and prefetch arrays also incur memory overhead to store the
prefetch pointers. This increases the working set of the application and contributes additional cache
misses. Figure 19 shows that for Health, MCF, Twolf, Parser, and Perlcomp, the total number of
cache misses incurred by prefetch arrays compared to no prefetching has increased by 39%, 45%,
10%, 68%, and 42%, respectively.

The effect of memory overhead is most pronounced in Parser. This application traverses several
hash tables consisting of arrays of short linked lists. Prefetch arrays inserts extra pointers into
the hash table arrays to point to the link elements in each hash bucket. Unfortunately, the hash
array elements are extremely small, so the prefetch arrays significantly enlarge each hash array, often
doubling or tripling its size. Figure 19 shows the accesses to the prefetch arrays appear as additional
uncovered cache misses. In Parser, the increase in uncovered misses outnumber the covered misses
achieved by prefetching. Consequently, Figure 18 shows a net performance degradation of 55% for
Parser due to prefetch arrays. For the same reasons, Twolf and Perlcomp experience performance
degradations of 24% and 6%, respectively. In contrast, multi-chain prefetching does not incur
memory overhead since it does not use prefetch pointers. Figure 18 shows multi-chain prefetching
achieves a gain of 8% and 6% for Twolf and Parser, respectively, and only suffers a 1% performance
degradation for Perlcomp.

In Health and MCF, the memory overhead is primarily due to jump pointers rather than
prefetch arrays. Since the jump pointers themselves can be prefetched along with the link nodes,
the additional cache misses due to memory overhead can be covered via prefetching. Consequently,
memory overhead does not result in performance degradation. In fact for MCF, jump pointer
prefetching and prefetch arrays outperform multi-chain prefetching slightly, as shown in Figure 18.

8.2 Multi-Chain Prefetching and Predictor-Directed Stream Buffers

Figure 20 compares multi-chain prefetching against PSB. The first and last bars in Figure 20,
labeled “NP” and “MC,” report the execution time without prefetching and with multi-chain
prefetching, respectively, and are identical to the corresponding bars in Figure 18. (As was the
case in Section 8.1, our prototype compiler instrumented multi-chain prefetching for all the “MC”
experiments in this section). The bars labeled “2K1” report the execution time for the baseline PSB
configuration consisting of an SFM predictor with a 2K-entry 1st-order markov table, as described
in Section 7.4. The remaining bars, labeled “I1” and “I4,” will be discussed later. Each bar has
been broken down into the same four components as those in Figure 18.

Comparing the MC bars versus the 2K1 bars, multi-chain prefetching outperforms PSB on
7 out of 11 applications (EM3D, MST, Treeadd, Health, Bisort, MCF, and Twolf), while PSB
outperforms multi-chain prefetching on 4 applications (Perimeter, Parser, Perlcomp, and Perlexec).

37

1.00

0.73
0.82

0.71

0.89
0.90

0.82

0.26

1.00

0.51
0.54

0.50
0.40

1.00
0.96

0.49
0.36

0.29

0.920.92
0.91

0.95
1.00

1.00
0.97

0.94
0.99

1.00
0.92

1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC

Normalized Execution Time .

EM3D
Bisort

Perimeter
Health

Treeadd
MST

1.00
1.00

0.89
0.74

0.99
1.00

1.00
0.97

0.97
0.92

1.00
0.90

0.95
0.88

0.94
1.00

0.93
0.93

0.92
1.01

1.00
0.99

0.99
0.99

1.01

0.0

0.2

0.4

0.6

0.8

1.0

1.2

NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC

Normalized Execution Time .

D-Mem

I-Mem

Overhead

Busy

MCF
Twolf

Parser
Perl

comp
Perl

exec

F
igu

re
20:

E
x
ecu

tion
tim

e
for

n
o

p
refetch

in
g

(N
P

),
b
aselin

e
P

S
B

(2K
1),

P
S
B

w
ith

an
in

fi
n
ite

1st-ord
er

m
arkov

tab
le

(I1),
P

S
B

w
ith

an
in

fi
n
ite

4th
-ord

er
m

arkov
tab

le
(I4),

an
d

com
p
iler-

in
stru

m
en

ted
m

u
lti-ch

ain
p
refetch

in
g

(M
C

).
E

ach
ex

ecu
tion

tim
e

b
ar

h
as

b
een

b
roken

d
ow

n
in

to
u
sefu

l
cy

cles
(B

u
sy

),
p
refetch

-related
cy

cles
(O

verh
ead

),
I-cach

e
stalls

(I-M
em

),
an

d
D

-cach
e

stalls
(D

-M
em

).

F
or

th
e

O
ld

en
b
en

ch
m

ark
s,

m
u
lti-ch

ain
p
refetch

in
g

red
u
ces

ex
ecu

tion
tim

e
com

p
ared

to
P

S
B

b
y

27%
on

average.
F
or

th
e

S
P

E
C

in
t2000

b
en

ch
m

ark
s,

h
ow

ever,
P

S
B

red
u
ces

ex
ecu

tion
tim

e
com

p
ared

to
m

u
lti-ch

ain
p
refetch

in
g

b
y

0.2%
on

average.
A

cross
all

11
ap

p
lication

s,
m

u
lti-ch

ain
p
refetch

in
g

p
rov

id
es

h
igh

er
p
erform

an
ce,

ou
tp

erform
in

g
P

S
B

b
y

14%
.

In
th

e
rem

ain
d
er

of
th

is
section

,
w

e
stu

d
y

th
e

p
erform

an
ce

d
iff

eren
tial

b
etw

een
m

u
lti-ch

ain
p
refetch

in
g

an
d

P
S
B

in
d
etail.

W
e

n
ote

th
is

com
p
arison

is
q
u
alitatively

d
iff

eren
t

from
th

e
com

p
ari-

son
b
etw

een
m

u
lti-ch

ain
p
refetch

in
g

an
d

ju
m

p
p
oin

ter
tech

n
iq

u
es

con
d
u
cted

in
th

e
p
rev

iou
s
section

.
B

ecau
se

ju
m

p
p
oin

ter
tech

n
iq

u
es

rely
on

softw
are

in
stru

m
en

tation
to

create
m

em
ory

p
arallelism

,
softw

are
an

d
m

em
ory

overh
ead

s
p
lay

a
cru

cial
role

in
ou

r
an

aly
sis

in
S
ection

8.1.
In

con
trast,

P
S
B

d
o
es

n
ot

in
cu

r
an

y
in

stru
m

en
tation

-related
overh

ead
s

sin
ce

it
is

an
all-h

ard
w

are
tech

n
iq

u
e.

In
stead

,
th

e
key

issu
e

aff
ectin

g
P

S
B

p
erform

an
ce

is
h
a
rd

w
a
re

p
red

ic
to

r
a
cc

u
ra

c
y.

H
en

ce,
ou

r
stu

d
y

fo
cu

ses
on

th
e

tw
o

ty
p
es

of
p
red

ictors
in

P
S
B

,
strid

e
an

d
m

arkov
,

evalu
ates

th
eir

accu
racy,

an
d

stu
d
ies

th
eir

im
p
act

on
overall

p
erform

an
ce

in
com

p
arison

to
m

u
lti-ch

ain
p
refetch

in
g.

8
.2

.1
S
trid

e
P

re
d
ic

to
r

P
e
rfo

rm
a
n
c
e

T
o

p
rov

id
e

in
sigh

t
in

to
P

S
B

’s
b
eh

av
ior,

F
igu

re
21

sh
ow

s
a

b
reak

d
ow

n
of

cach
e

m
isses

u
sin

g
th

e
sam

e
form

at
as

F
igu

re
19.

L
o
ok

in
g

at
th

e
2K

1
b
ars

in
F
igu

re
21,

w
e

see
th

e
b
aselin

e
P

S
B

con
fi
gu

ration
con

verts
a

sign
ifi

can
t

n
u
m

b
er

of
cach

e
m

isses
in

to
fu

lly
covered

m
isses

for
E

M
3D

,
T
reead

d
,
P
erim

e-
ter,

P
arser,

P
erlc

o
m

p ,
an

d
P
erle

x
e
c .

In
p
articu

lar,
for

P
erim

eter,
P
arser,

P
erlc

o
m

p ,
an

d
P
erle

x
e
c ,

P
S
B

ach
ieves

h
igh

er
cach

e
m

iss
coverage

th
an

m
u
lti-ch

ain
p
refetch

in
g,

w
h
ich

ex
p
lain

s
its

p
erform

an
ce

ad
van

tage
over

m
u
lti-ch

ain
p
refetch

in
g

on
th

ese
4

ap
p
lication

s
in

F
igu

re
20.

In
terestin

gly,
th

e
b
ase-

lin
e

P
S
B

con
fi
gu

ration
covers

m
ost

of
its

cach
e

m
isses

th
rou

gh
strid

e
p
refetch

in
g.

T
o

illu
strate

th
is,

T
ab

le
4

b
reak

s
d
ow

n
th

e
total

covered
cach

e
m

isses
in

to
th

e
p
ercen

tage
w

h
ose

p
red

iction
s

com
e

38

1.00
1.13

3.97

1.22

1.00
1.00

2.20
2.23

2.15

1.19
1.00

1.02
0.98

1.07
0.92

1.00
1.07

1.50

1.14
1.21

1.00
1.13

1.14
1.14

1.00
1.00

1.15

2.21

1.19
1.05

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC

Cache miss breakdown .

EM3D
Bisort

Perimeter
Health

Treeadd
MST

1.00
1.08

1.54

1.15
1.01

1.00

1.40
2.14

1.60

1.04
1.00

1.26

1.70

1.27

1.03
1.00

1.17
1.20

1.17
1.03

1.00
1.20

1.25

1.03
1.04

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC
NP

2K1

I1

I4

MC

Cache miss breakdown

Inacc
Full
Partial
L2-Hit
Mem

MCF
Twolf

Parser
Perl

comp
Perl

exec

F
igu

re
21:

C
ach

e
m

iss
b
reak

d
ow

n
for

com
p
iler-in

stru
m

en
ted

m
u
lti-ch

ain
p
refetch

in
g

an
d

P
S
B

.
E

ach
b
ar

h
as

b
een

b
roken

d
ow

n
in

to
m

isses
to

m
ain

m
em

ory
(M

em
),

h
its

in
th

e
L
2

(L
2-H

it),
p
artially

covered
m

isses
(P

artial),
fu

lly
covered

m
isses

(F
u
ll),

an
d

in
accu

rate
p
refetch

es
(In

acc).

from
th

e
strid

e
p
red

ictor
versu

s
th

e
p
ercen

tage
w

h
ose

p
red

iction
s

com
e

from
th

e
m

arkov
p
red

ictor.
W

ith
th

e
ex

cep
tion

of
P
erle

x
e
c ,

th
e

2K
1

row
s

in
T
ab

le
4

clearly
sh

ow
strid

e
p
red

iction
is

resp
on

sib
le

for
th

e
m

a
jority

of
covered

m
isses

in
th

e
b
aselin

e
P

S
B

con
fi
gu

ration
.

T
h
is

resu
lt

is
su

rp
risin

g.
S
in

ce
ou

r
ap

p
lication

s
are

p
oin

ter-in
ten

sive,
w

e
d
id

n
ot

ex
p
ect

a
sign

if-
ican

t
n
u
m

b
er

of
strid

in
g

m
em

ory
referen

ces.
U

p
on

closer
ex

am
in

ation
,
w

e
d
iscovered

th
e

strid
in

g
referen

ce
p
attern

s
are

d
u
e

to
p
oin

ter-ch
asin

g
load

s
th

at
referen

ce
lin

k
n
o
d
es

laid
ou

t
lin

early
in

m
em

ory.
T

h
is

o
ccu

rs
w

ith
som

e
freq

u
en

cy
b
ecau

se
th

e
m

em
ory

allo
cator,

m
a
l
l
o
c
,
ten

d
s

to
allo-

cate
ob

jects
in

a
lin

ear
fash

ion
.

H
en

ce,
p
oin

ter-ch
asin

g
load

s
ex

h
ib

it
strid

in
g

w
ith

h
igh

likelih
o
o
d

w
h
en

ever
lin

k
n
o
d
es

are
v
isited

in
th

e
ord

er
of

th
eir

allo
cation

.
S
u
ch

“d
y
n
am

ically
strid

in
g”

p
oin

ter-
ch

asin
g

load
s

b
en

efi
t

P
S
B

b
ecau

se
strid

in
g

p
attern

s
are

ty
p
ically

easier
to

p
red

ict
accu

rately
th

an
n
on

-strid
in

g
p
attern

s,
an

d
also

b
ecau

se
strid

e
p
red

iction
state

can
b
e

ex
p
ressed

m
u
ch

m
ore

com
-

p
actly

th
an

m
arkov

p
red

iction
state.

In
con

trast,
ex

ecu
tion

-b
ased

p
refetch

in
g

tech
n
iq

u
es

th
at

rely
on

co
d
e

an
aly

sis,
su

ch
as

m
u
lti-ch

ain
p
refetch

in
g,

are
ob

liv
iou

s
to

d
y
n
am

ically
strid

in
g

load
s

an
d

th
u
s

can
n
ot

ex
p
loit

th
em

b
ecau

se
su

ch
load

s
ap

p
ear

to
b
e

p
oin

ter-ch
asin

g
in

th
e

ap
p
lication

co
d
e.

8
.2

.2
M

a
rk

o
v

P
re

d
ic

to
r

P
e
rfo

rm
a
n
c
e

D
esp

ite
th

e
eff

ectiven
ess

of
strid

e
p
refetch

in
g,

F
igu

re
21

sh
ow

s
th

e
2K

1
con

fi
gu

ration
of

P
S
B

ach
ieves

few
er

fu
lly

an
d

p
artially

covered
cach

e
m

isses
com

p
ared

to
m

u
lti-ch

ain
p
refetch

in
g

on
7

ap
p
lication

s,
lead

in
g

to
m

u
lti-ch

ain
p
refetch

in
g’s

p
erform

an
ce

ad
van

tage
for

th
ese

7
ap

p
lication

s,
as

illu
strated

in
F
igu

re
20.

T
h
e

reason
for

P
S
B

’s
low

er
overall

p
erform

an
ce

is
p
o
or

m
arkov

p
refetch

-
in

g.
In

T
ab

le
4,

th
e

2K
1

row
s

sh
ow

th
e

b
aselin

e
P

S
B

’s
m

arkov
p
red

ictor
accou

n
ts

for
on

ly
19.9%

of
all

su
ccessfu

l
p
refetch

es
on

average,
w

ith
8

ap
p
lication

s
receiv

in
g

few
er

th
an

15%
of

th
eir

p
refetch

es
from

th
e

m
arkov

p
red

ictor.
T

h
is

d
ata

in
d
icates

th
e

b
aselin

e
P

S
B

’s
2K

-en
try

1st-ord
er

m
arkov

p
re-

d
ictor

is
in

su
ffi

cien
t

to
cap

tu
re

th
e

im
p
ortan

t
cach

e-m
iss

ad
d
ress

correlation
s

in
ou

r
ap

p
lication

s.

39

EM3D MST Treeadd Health Perimeter Bisort

2K1
Stride 99.8% 95.6% 98.9% 92.4% 99.0% 68.2%
Markov 0.2% 4.4% 1.1% 7.6% 1.0% 31.8%

I1
Stride 42.4% 6.1% 98.8% 0.6% 98.9% 19.7%
Markov 57.6% 93.9% 1.2% 99.4% 1.1% 80.3%

I4
Stride 43.0% 50.8% 98.5% 0.9% 100.0% 14.5%
Markov 57.0% 49.1% 1.5% 99.1% 0.0% 85.5%

MCF Twolf Parser Perlcomp Perlexec Average

2K1
Stride 87.0% 57.0% 85.6% 95.6% 1.6% 80.1%

Markov 13.0% 43.0% 14.4% 4.4% 98.4% 19.9%

I1
Stride 46.0% 2.8% 34.7% 89.9% 0.3% 40.0%

Markov 54.0% 97.2% 65.3% 10.1% 99.7% 60.0%

I4
Stride 7.0% 17.4% 86.6% 95.8% 1.2% 46.9%

Markov 93.0% 82.6% 13.4% 4.2% 98.8% 53.1%

Table 4: Breakdown of total covered cache misses into the percentage whose predictions come
from the stride predictor versus the percentage whose predictions come from the markov predictor.
Breakdowns are given for the 2K1, I1, and I4 PSB configurations.

To better understand the fundamental limitations of markov prefetching for our applications, we
now study ideal markov predictors.

First, we quantify the impact of limited capacity on markov prefetching performance by replac-
ing the 2K1 predictor with an infinite 1st-order markov predictor. The “I1” bars in Figures 20
and 21, and the “I1” rows in Table 4 report the performance of this ideal PSB configuration. Com-
paring the I1 and 2K1 rows in Table 4, we see markov prefetching increases substantially for all
applications, with the infinite markov predictor accounting for 60% of successful prefetches. Due
to this increase in markov prefetching, Figure 21 shows 4 applications (Health, Bisort, MCF, and
Twolf) experience noticeable boosts in cache miss coverage under I1, and the same 4 applications
show noticeable performance increases compared to 2K1 in Figure 20, allowing PSB to outperform
multi-chain prefetching in one additional application, MCF. However, the remaining applications
do not benefit under I1. Worse yet, EM3D, MST, Treeadd, and Parser experience performance
degradations. As a result, multi-chain prefetching still maintains a performance advantage of 14%
overall as illustrated in Figure 20, even when PSB uses an infinite markov predictor.

While the I1 predictor makes more predictions than the 2K1 predictor due to its unlimited
capacity, unfortunately, the majority of the additional predictions are incorrect. Why? In many
applications, each cache-missing address often has multiple immediate successors at runtime. Since
a 1st-order markov predictor correlates a miss address with its immediate predecessor only, multiple
successors cause aliasing, leading to poor prediction accuracy. This affects performance in two ways.
First, it increases inaccurate prefetches. As shown in Figure 21, EM3D, MST, Health, Bisort, MCF,
Twolf, and Parser have much larger “Inacc” components under I1 compared to MC. For bandwidth-
limited applications (especially EM3D), the inaccurate prefetches degrade performance. Second,
poor markov prediction accuracy can also disrupt stride prefetching. In EM3D and Parser, the
markov and stride prediction streams overlap. Since the markov predictor is given priority over the
stride predictor [33], markov mispredictions often interrupt a string of correct stride predictions,
thus reducing cache miss coverage.

To address mispredictions arising from aliasing, we study an infinite 4th-order markov predic-
tor. This predictor correlates each cache-missing address with its 4 sequential predecessors rather

40

than its immediate predecessor only. The increased context for each correlation virtually eliminates
aliasing even when cache-missing addresses have the same immediate successor since the additional
predecessors are usually unique. The “I4” bars in Figures 20 and 21, and the “I4” rows in Table 4
report PSB performance using an infinite 4th-order markov predictor. Similar to the I1 configu-
ration, Table 4 shows a significant number of prefetches are due to markov predictions under the
I4 configuration, 53%. Compared to I1, however, I4’s markov predictions are much more accurate.
Figure 21 shows the inaccurate prefetches in the I4 bars are back down to the levels in the 2K1
bars. Furthermore, cache miss coverage is higher in I4 as compared to 2K1 for all the applications,
with the exception of Perlexec. Figure 20 shows the reduced inaccurate prefetches and higher overall
cache miss coverage permits I4 to outperform 2K1 by 10% across all 11 applications.

Comparing the MC and I4 bars in Figure 20, we see PSB performance begins to approach multi-
chain prefetching performance. Multi-chain prefetching outperforms PSB in EM3D, MST, Treeadd,
Health, and Twolf by 23%, while PSB outperforms multi-chain prefetching in Perimeter, Bisort,
MCF, Parser, Perlcomp, and Perlexec by 11%. Across all 11 applications, multi-chain prefetching
maintains a small advantage of 6%. Considering PSB is a completely transparent technique whereas
multi-chain prefetching requires a compiler to insert software instrumentation, this is a positive
result for PSB. On the other hand, PSB requires large prediction tables to achieve comparable
performance to multi-chain prefetching. For applications that benefit from the I4 predictor, we
ran several simulations to determine the smallest predictor that achieves similar performance to
the I4 bars in Figure 20. We found 64K- to 512K-entries are necessary to come within 20% of
the I4 predictor, with Health requiring 64K-entries, MCF requiring 128K-entries, Bisort and Twolf
requiring 256K-entries, and MST requiring 512K-entries. (Practically speaking, such predictors are
too large for the L1 cache; however, they are feasible for integration with the L2 cache. Although
we have not evaluated L2 prefetching using PSB, we expect similar results to those in Figure 20
because our aggressive processor can tolerate the L1-L2 latency in many cases.)

8.2.3 Limits on Predictability

We tried to improve PSB performance further, but was unable to outperform the I4 configuration.
In so doing, we found 4 bottlenecks that limit the accuracy of PSB’s markov predictor. Two of these
are familiar: LDS modification and first-traversal prefetching. As we saw in Section 8.1.1, LDS
insert and delete operations in Health require fixup code to keep jump pointers consistent. Similarly,
the markov predictor requires retraining after LDS modifications because predictor entries become
outdated. In addition to Health, we also found LDS modification limits predictor accuracy in Bisort
as well. In Section 8.1.2, we saw jump pointer techniques cannot perform first-traversal prefetching
because jump pointers have yet to be created. Similarly, the markov predictor cannot perform
first-traversal prefetching because the predictor has yet to be trained. First-traversal prefetching
limits PSB performance in MST, Treeadd, and Bisort.6

The two remaining bottlenecks limiting prediction accuracy are unique to PSB. First, out-of-
order execution reorders cache misses across traversals of the same LDS if multiple misses occur in
the processor’s instruction window simultaneously (this happens frequently in EM3D). Reordered
misses limit markov prediction accuracy, especially in the I4 predictor where each predictor lookup
must match a sequence of 4 miss addresses. And finally, even when an application traverses the same

6First-traversal prefetching is also a factor in Perimeter; however, PSB achieves high performance for this appli-
cation because of stride prefetching, as discussed in Section 8.2.1. Unlike the markov predictor which requires a full
traversal of the LDS for training, the stride predictor is trained after only 3 misses. Hence, it can perform prefetching
on the first traversal.

41

LDS multiple times, low prediction accuracy occurs if the traversals are not sufficiently similar. For
example, in MST, several linked lists are traversed repeatedly. Because each list is short, stream
buffers must prefetch continuously from one list to the next to achieve performance. Unfortunately,
separate traversals of the same linked list terminate at different link nodes, making the combined
address streams of multiple list traversals unpredictable. Similar dynamic runtime behavior reduces
prediction accuracy in Twolf as well.

8.3 The Early Prefetch Arrival Problem

Multi-chain prefetching begins prefetching a chain of pointers prior to their traversal by the proces-
sor in order to overlap a portion of the serialized memory latency with work outside of the traversal
code. Early initiation of pointer chain prefetching is fundamental to the multi-chain prefetching
technique. Unfortunately, it also leads to early prefetch arrival. Prefetches issued for link nodes near
the beginning of a pointer chain tend to arrive early. Until the processor references the prefetched
data, these early prefetches occupy the prefetch buffer. For applications with long pointer chains
or small traversal loops, the number of early prefetches can exceed the prefetch buffer capacity,
causing prefetched data to be evicted before the processor has had a chance to reference the data.

This section examines the early prefetch arrival problem. First, we discuss the performance
impact of early prefetch arrival. Then, we evaluate the potential for mitigating early prefetches by
reducing the prefetch distance computed by the scheduling algorithm in our compiler.

8.3.1 Performance Impact of Early Prefetches

The early prefetch arrival problem manifests itself as thrashing in the prefetch buffer. To see
whether any of our applications experience prefetch buffer thrashing, we instrumented our simulator
to count each useful prefetch (i.e. a prefetch for which there is a processor reference sometime after
the prefetch arrives) that is evicted from the prefetch buffer before the processor has had a chance to
reference it. We call these evicted useful prefetches. The column labeled “MC” in Table 5 reports
the number of evicted useful prefetches seen by the prefetch buffer as a percentage of the total
useful prefetches. Three of our applications exhibit an unusually high percentage of evicted useful
prefetches, indicating prefetch buffer thrashing: EM3D, MST, and Health. Two other applications,
Bisort and Parser, also exhibit the problem, though to a lesser extent.

Prefetch buffer thrashing due to early prefetch arrival reduces the number of fully covered
misses. In many cases, however, a reference to an evicted block will at least be partially covered.
Since prefetches that miss all the way to main memory are placed in the L2 cache en route to the
prefetch buffer, the processor will normally enjoy an L2 hit for prefetches from main memory. This
is because the L2 cache has considerably more capacity than the prefetch buffer, allowing it to
avoid thrashing even when prefetches arrive early. Figure 19 (as well as Figure 21) confirms these
observations. For MST and Health, the “MC” bars in Figure 19 show multi-chain prefetching is
unable to achieve any fully covered misses due to prefetch buffer thrashing. Similarly in EM3D,
many prefetches are only partially covered. (Note that Perimeter, MCF, Twolf, and Perlcomp also
exhibit partially covered misses, but these are due to late rather than early prefetches since Table 5
shows these applications do not suffer prefetch buffer thrashing).

Despite early prefetch arrival in EM3D, MST, and Health, multi-chain prefetching still outper-
forms jump pointer prefetching, prefetch arrays, and PSB for these applications. In EM3D, limited
prefetch buffer capacity causes thrashing even for jump pointer prefetching. Since multi-chain

42

prefetching has lower software overhead, it achieves a 41% performance gain over jump pointer
prefetching on EM3D, as shown in Figure 18. In contrast, PSB does not suffer thrashing because
stream buffers perform dynamic flow control (i.e. prefetching is suspended when a stream buffer
fills and is resumed only after some data is consumed by the processor). As Figure 21 shows, most
cache misses covered by PSB in EM3D are fully covered, and under the I4 configuration, PSB
achieves higher coverage than multi-chain prefetching. However, inaccurate prefetches limit PSB
performance, allowing multi-chain prefetching to achieve a 23% gain over PSB on EM3D, as shown
in Figure 20. Comparing prefetch arrays and multi-chain prefetching for MST, we see that prefetch
arrays leaves 76% of the original misses to memory unprefetched. This is due to the inability to per-
form first-traversal prefetching using prefetch arrays. In contrast, multi-chain prefetching converts
all of MST’s “D-Mem” component into L2 hits (these appear as partially covered misses), allowing
multi-chain prefetching to achieve a 67% performance gain over prefetch arrays on MST, as shown
in Figure 18. Similar to prefetch arrays, PSB also cannot perform first-traversal prefetching. In
addition, as discussed in Section 8.2.3, the cache-miss stream in MST is difficult to predict due
to dynamic runtime behavior. Consequently, PSB covers 4 times fewer cache misses compared to
multi-chain prefetching, allowing multi-chain prefetching to achieve a 68% performance gain over
PSB on MST, as shown in Figure 20.

Finally, for Health, Figure 19 shows prefetch arrays converts 49% of the original cache misses
into fully covered misses, while multi-chain prefetching converts only 33% of the original misses into
partially covered misses due to early prefetch arrival. As a result, prefetch arrays tolerates more
memory latency than multi-chain prefetching. However, due to the large software overhead neces-
sary to manage prefetch pointers in Health, multi-chain prefetching outperforms prefetch arrays by
35%, as shown in Figure 18. Similarly, Figure 21 shows PSB also has higher cache-miss coverage
than multi-chain prefetching in Health under the I1 and I4 configurations. However, because PSB
is unable to remove all of the “Mem” misses, it does not eliminate as much memory stall as multi-
chain prefetching. As a result, multi-chain prefetching outperforms the I4 configuration of PSB by
19% on Health, as shown in Figure 20.

8.3.2 Optimal Prefetch Distance Performance

While early prefetch arrival is a fundamental limitation in multi-chain prefetching, the number of
early prefetches in our experiments is excessively large due to two overly conservative assumptions
made by our prototype compiler. First, as discussed in Section 4.3, our scheduling algorithm
computes a bounded prefetch distance to accommodate unknown list lengths and recursion depths.
The bounded prefetch distance is a worst-case prefetch distance, and thus guarantees that prefetches
never arrive late. But depending on the actual size of data structures, the bounded prefetch distance
may initiate prefetching of pointer chains earlier than necessary, exacerbating the early prefetch
arrival problem. Second, our scheduling algorithm conservatively assumes all prefetch requests
incur the full latency to physical memory (i.e. the “l” parameter introduced in Section 4.1). At
runtime, many prefetch requests may hit in the L1 or L2 cache, reducing the effective memory
latency. Similar to bounded prefetch distances, using the full main memory latency to compute the
prefetch chain schedule results in unnecessarily large prefetch distances.

To evaluate the degree to which early prefetch arrival is caused by the conservative assumptions
made in our prototype compiler, we varied the prefetch distance for EM3D, MST, Health, Bisort,
and Parser to identify an optimal prefetch distance that minimizes the number of early prefetches,
hence reducing thrashing in the prefetch buffer. Figure 22 shows the result of this experiment. The
bars labeled “MC” are the same as those from Figure 18, and the bars labeled “MCo” report the

43

App MC App MC

EM3D 23.6 % MCF 0.0 %
MST 54.2 % Twolf 0.0 %
Treeadd 0.0 % Parser 6.4 %
Health 60.6 % Perlcomp 0.0 %
Perimeter 0.0 % Perlexec 0.0 %
Bisort 7.6 %

Table 5: Percentage of evicted useful prefetches in the prefetch buffer using computed prefetch
distances (labeled “MC”).

1.00 1.00 1.00

0.85

1.00 0.97 1.00 1.00 1.00
0.94

9211042715 4109278615
0.0

0.2

0.4

0.6

0.8

1.0

MC MCo MC MCo MC MCo MC MCo MC MCoNo
rma

liz
ed

Ex
ec

ut
io

nT
ime

Mem

Overhead

Busy

EM3D HealthMST Bisort Parser

Figure 22: Multi-chain prefetching performance when prefetch distances are reduced to an optimal
value determined experimentally. The “MC” and “MCo” bars show performance with the computed
prefetch distance and the optimal prefetch distance, respectively. The number appearing at the
base of each bar reports the prefetch distance used.

normalized execution time using the optimal prefetch distance. (Note, except for manually varying
the prefetch distance to find the optimal value, both the “MC” and “MCo” bars otherwise use
the instrumentation generated by our prototype compiler). The actual prefetch distance used for
the most important LDS descriptor appears at the base of each bar, indicating by how much the
optimal prefetch distance is smaller than the computed prefetch distance. Reducing the prefetch
distance to an optimal value increases multi-chain prefetching performance by 15%, 3%, and 6%
for MST, Health, and Parser, respectively. For EM3D and Bisort, there is no performance change.

Figure 22 suggests that performance increases can be achieved in some cases if a reduced prefetch
distance is used instead of the conservative prefetch distance computed by our prototype compiler.
However, a positive result is that the computed prefetch distance seems to work well for most
applications.

8.4 Quality of Compiler Instrumentation

In Sections 8.1 – 8.3, we evaluated the performance of multi-chain prefetching using compiler
instrumentation. An important question is how good is the instrumentation generated by our
compiler? This section provides insight into this question by comparing compiler- and manually-
instrumented versions of our benchmarks. Our goal is to study the performance differential between
these two versions, and to identify sources of inefficiency due to limitations in our compiler.

Figure 23 reports the execution time with both compiler-instrumented multi-chain prefetching,

44

1.00
0.91

1.00
1.00

0.94
1.00

1.03
1.00

1.00
1.00

0.94
1.00

0.98
1.00

0.98
1.00

1.00
0.97

1.00
1.00

1.00
1.00

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MCMCm
MCMCm

MCMCm
MCMCm

MCMCm
MCMCm

MCMCm
MCMCm

MCMCm
MCMCm

MCMCm

Normalized Execution Time .

D-Mem

I-Mem

Overhead

Busy

Perl
comp

EM3D
Parser

Twolf
MCF

Bisort
Perimeter

Health
Treeadd

MST
Perl

exec

F
igu

re
23:

E
x
ecu

tion
tim

e
for

com
p
iler-in

stru
m

en
ted

(M
C

)
an

d
m

an
u
ally

-in
stru

m
en

ted
(M

C
m

)
m

u
lti-ch

ain
p
refetch

in
g.

E
ach

ex
ecu

tion
tim

e
b
ar

h
as

b
een

b
roken

d
ow

n
in

to
u
sefu

l
cy

cles
(B

u
sy

),
p
refetch

-related
cy

cles
(O

verh
ead

),
I-cach

e
stalls

(I-M
em

),
an

d
D

-cach
e

stalls
(D

-M
em

).

lab
eled

“M
C

,”
an

d
m

an
u
ally

-in
stru

m
en

ted
m

u
lti-ch

ain
p
refetch

in
g,

lab
eled

“M
C

m
.”

(A
s

d
iscu

ssed
in

S
ection

7.3,
w

e
follow

th
e

m
eth

o
d
ology

for
in

sertin
g

in
stru

m
en

tation
b
y

h
an

d
d
escrib

ed
in

[17
]).

E
ach

b
ar

h
as

b
een

b
roken

d
ow

n
in

to
th

e
fou

r
com

p
on

en
ts,

“B
u
sy,”

“O
verh

ead
,”

“I-M
em

,”
an

d
“D

-M
em

,”
an

d
th

en
n
orm

alized
again

st
th

e
corresp

on
d
in

g
“M

C
”

ex
ecu

tion
tim

e.
E

x
cep

t
for

n
or-

m
alization

,
th

e
“M

C
”

b
ars

in
F
igu

re
23

are
id

en
tical

to
th

ose
in

F
igu

res
18

an
d

20.
C

om
p
arin

g
th

e
“M

C
”

b
ars

versu
s

th
e

“M
C

m
”

b
ars,

w
e

see
m

an
u
al

in
stru

m
en

tation
ou

tp
erform

s
com

p
iler

in
-

stru
m

en
tation

in
6

b
en

ch
m

ark
s

(E
M

3D
,

T
reead

d
,

B
isort,

M
C

F
,

T
w

olf,
an

d
P
erlc

o
m

p),
red

u
cin

g
ex

ecu
tion

tim
e

b
y

as
m

u
ch

as
9%

,
an

d
b
y

4.6%
on

average.
F
or

1
b
en

ch
m

ark
(H

ealth
),

com
p
iler

in
stru

m
en

tation
ou

tp
erform

s
m

an
u
al

in
stru

m
en

tation
b
y

3%
.

A
n
d

in
th

e
rem

ain
in

g
4

b
en

ch
m

ark
s,

th
ere

is
n
o

ch
an

ge.

T
h
ese

d
iff

eren
ces

arise
b
ecau

se
of

d
iscrep

an
cies

in
h
ow

th
e

com
p
iler

an
d

m
an

u
al

ap
p
roach

es
p
erform

th
e

follow
in

g
th

ree
task

s:
p
refetch

in
itiation

site
selection

,
L
D

S
d
escrip

tor
grap

h
ex

trac-
tion

,
an

d
sy

n
ch

ron
ization

in
stru

m
en

tation
.

In
th

e
rem

ain
d
er

of
th

is
section

,
w

e
in

vestigate
each

of
th

ese
in

greater
d
etail.

W
e

b
egin

b
y

stu
d
y
in

g
th

e
d
iff

eren
ces

in
selectin

g
p
refetch

in
itiation

sites.
In

B
isort,

ou
r

com
p
iler

selects
on

e
of

th
e

recu
rsive

fu
n
ction

s
from

th
e

p
rogram

as
a

p
refetch

in
itiation

site;
h
ow

ever,
in

itiatin
g

p
refetch

in
g

from
a

d
iff

eren
t

recu
rsive

fu
n
ction

y
ield

s
sligh

tly
h
igh

er
p
er-

form
an

ce.
T

h
e

m
an

u
al

ap
p
roach

ch
o
oses

th
e

altern
ate

p
refetch

in
itiation

site
after

ex
p
erim

en
tally

d
eterm

in
in

g
th

at
th

ere
is

a
p
erform

an
ce

ad
van

tage
in

d
oin

g
so.

O
u
r

com
p
iler

m
isses

th
is

op
p
ortu

-
n
ity

for
ach

iev
in

g
h
igh

er
p
erform

an
ce

sin
ce

it
ch

o
oses

p
refetch

in
itiation

sites
sy

stem
atically

b
ased

on
th

e
algorith

m
in

F
igu

re
14

rath
er

th
an

sam
p
lin

g
p
oten

tial
solu

tion
s

in
an

ad
h
o
c

fash
ion

.
In

H
ealth

,
on

e
of

th
e

p
refetch

ab
le

L
D

S
traversals

is
n
ested

u
n
d
ern

eath
m

u
ltip

le
p
aren

ts
in

th
e

traver-
sal

n
estin

g
grap

h
,
G

T
.
7

S
in

ce
th

is
L
D

S
traversal

is
a

p
oin

ter
ch

asin
g

lo
op

,
in

itiation
of

p
refetch

in
g

sh
ou

ld
o
ccu

r
from

all
of

th
e

traversal’s
p
aren

ts
in

G
T

(see
S
ection

6.1).
O

u
r

com
p
iler

su
ccessfu

lly
selects

all
th

ese
p
refetch

in
itiation

sites;
h
ow

ever,
th

e
m

an
u
al

ap
p
roach

m
isses

on
e

of
th

e
sites

d
u
e

to
h
u
m

an
error.

8
C

on
seq

u
en

tly,
th

e
com

p
iler

in
stru

m
en

tation
covers

m
ore

cach
e

m
isses

th
an

th
e

m
an

u
al

in
stru

m
en

tation
,
resu

ltin
g

in
a

3%
p
erform

an
ce

ad
van

tage.

B
esid

es
B

isort
an

d
H

ealth
,
th

ere
are

fou
r

oth
er

ap
p
lication

s
w

h
ose

in
stru

m
en

tation
is

aff
ected

b
y

p
refetch

in
itiation

site
selection

,
b
u
t
in

th
ese

cases,
p
erform

an
ce

is
n
ot

aff
ected

.
In

T
w

olf,
P
arser,

P
erlc

o
m

p ,
an

d
P
erle

x
e
c ,

th
e

m
an

u
al

in
stru

m
en

tation
con

tain
s

sligh
tly

m
ore

p
refetch

in
itiation

sites
com

p
ared

to
th

e
com

p
iler

in
stru

m
en

tation
b
ecau

se
it

u
ses

a
low

er
th

resh
old

for
id

en
tify

in
g

cach
e-

7T
h
is

L
D

S
trav

ersa
l
o
ccu

rs
in

th
e

fu
n
ctio

n
a
d
d
L
i
s
t
.

It
d
o
es

n
o
t

a
p
p
ea

r
in

th
e

ex
a
m

p
le

k
ern

el
co

d
e

fro
m

H
ea

lth
in

F
ig

u
res

1
3

a
n
d

1
5
,
b
u
t

is
sim

ila
r

to
th

e
r
e
m
o
v
e
L
i
s
t

fu
n
ctio

n
w

h
ich

d
o
es.

8W
e

d
iscov

ered
th

e
erro

r
in

th
e

m
a
n
u
a
l
in

stru
m

en
ta

tio
n

a
fter

co
m

p
a
rin

g
a
g
a
in

st
th

e
co

m
p
iler

in
stru

m
en

ta
tio

n
.

A
t

th
a
t

tim
e,

w
e

co
u
ld

h
av

e
fi
x
ed

th
e

p
ro

b
lem

in
w

h
ich

ca
se

th
ere

w
o
u
ld

b
e

n
o

p
erfo

rm
a
n
ce

a
d
va

n
ta

g
e

fo
r

th
e

co
m

p
iler

a
p
p
ro

a
ch

.
H

ow
ev

er,
w

e
b
eliev

e
th

is
h
o
n
estly

illu
stra

tes
o
n
e

o
f
th

e
b
en

efi
ts

o
f
a
u
to

m
a
tin

g
m

u
lti-ch

a
in

p
refetch

in
g
.

45

missing LDS traversals [17]. However, these prefetch initiation sites do not cover a significant
number of additional cache misses since the cache-miss threshold used by our compiler is already
quite low. Consequently, none of the “MCm” bars in Figure 23 experience a performance boost
compared to the “MC” bars due to this additional prefetching.

Next, we study the differences in how the compiler and manual approaches extract LDS de-
scriptor graphs. Overall, the compiler-extracted LDS descriptor graphs are less efficient than their
manual counterparts. Specifically, we have observed four sources of inefficiency. First, our pro-
totype compiler does not recognize write-once LDS descriptor graph parameters. As described in
Section 6.3, LDS descriptor graph parameters that are not compile-time constants are installed into
the prefetch engine at every prefetch initiation site, thus incurring runtime overhead repeatedly.
In many cases, these dynamic parameters are written only during program initialization; hence,
it is safe to install them into the prefetch engine once (after initialization). This optimization is
performed in the manual approach, but not by our compiler. For two applications, Twolf and MCF,
wasteful reinstallation of runtime constants into the prefetch engine accounts for the compiler in-
strumentation’s higher overhead compared to the manual instrumentation. In Figure 23, the effect
is particularly noticeable for Twolf.

Second, our prototype compiler does not minimize initial address expressions at prefetch initia-
tion sites. As described in Section 6.2, a dummy init node is added to each LDS descriptor graph
(e.g. Figure 16g), and code is generated to install the initial address for this init node into the
prefetch engine at runtime. In EM3D, the initial address expressions are fairly complex, so they
incur noticeable runtime overhead. In the manual approach, this runtime overhead is partly miti-
gated by off-loading as much of the initial address computation from the instrumentation code onto
the prefetch engine as possible, thus stream-lining the instrumentation code. No such optimization
is attempted by our compiler; hence, the manual instrumentation achieves a 9% performance gain
over the compiler instrumentation for EM3D.

Third, the compiler instrumentation incurs more I-cache misses than the manual instrumenta-
tion in Perlcomp due to increased cache conflicts. Both the manual and compiler approaches gener-
ate a single procedure to install LDS descriptor graph parameters that are compile-time constants
into the prefetch engine at the beginning of the application. The two approaches typically place
this initialization procedure in different locations, causing the code for compiler- and manually-
instrumented benchmarks to be laid out differently. Normally, this discrepancy does not impact
performance. However, in Perlcomp, the number of I-cache misses is highly sensitive to code layout
due to an unusually large instruction footprint. Unfortunately, the location of the initialization
procedure chosen by our compiler results in more I-cache conflict misses than the location chosen
by the manual approach, causing a 3% performance degradation.

And fourth, our prototype compiler extracts descriptors for some memory references that do
not incur many cache misses. Recall from Section 6.3 that our compiler uses cache-miss pro-
files to select prefetch initiation sites only. When extracting LDS descriptor graphs, our compiler
extracts descriptors for all memory references identified inside code fragments. In contrast, the
manual approach does use cache-miss profiles to guide LDS descriptor extraction. Consequently,
the compiler-extracted LDS descriptor graphs contain significantly more descriptors than their
manually-extracted counterparts. Fortunately, the additional LDS descriptors are singleton de-
scriptors whose parameters are always compile-time constants. Furthermore, the prefetch engine
resources consumed at runtime by the additional LDS descriptors do not impede the progress of
critical prefetches, as we will see in Section 8.5. For these reasons, the larger LDS descriptor graphs
extracted by our compiler do not degrade performance in any of our benchmarks.

46

Finally, we study the differences in how the compiler and manual approaches instrument syn-
chronization. As described in Section 6.3, the “Instrumentor” module depicted in Figure 17 inserts
SY NC instructions to synchronize the prefetch engine with the main processor. For tree traversals,
our compiler inserts a SY NC instruction at the top of the recursive function that performs the
traversal, thus issuing a SY NC on every recursive call. However, SY NCs are unnecessary for calls
that traverse beyond a leaf node. This can occur if the recursive function performs each recursive
call without first testing whether the current node is a leaf, and instead tests the current node
pointer for a NULL value at the top of the function. In this case, the SY NC instruction can be
moved past the NULL conditional test, avoiding SY NCs for calls that traverse beyond leaf nodes.
This optimization is performed by the manual approach for Treeadd, Perimeter, and Bisort, but is
not performed by our compiler. Hence, the manual instrumentation achieves lower overhead than
the compiler instrumentation for these benchmarks, as illustrated in Figure 23.

8.5 Impact of Hardware Parameters

In Sections 8.1 through 8.4, we studied multi-chain prefetching assuming the baseline architecture
parameters described in Section 7. This section and the next (Section 8.6) study the sensitivity
of our results to variations in these parameters. In this section, we vary the size of the AGT and
the prefetch buffer, two structures that dominate the hardware budget of multi-chain prefetching
(see Section 5.4). Our goal is to evaluate the performance of the prefetch engine under different
hardware budgets. Then later in Section 8.6, we vary the available memory bandwidth, and eval-
uate multi-chain prefetching under limited memory bandwidth conditions. (Note, all multi-chain
prefetching experiments performed in these two sections use the compiler-instrumented versions of
our benchmarks).

8.5.1 Varying AGT Size

Our baseline prefetch engine assumes an AGT with 128 entries. Before varying the AGT size, we
first measure the number of active AGT entries in the baseline AGT to see whether our benchmarks
can benefit from a larger AGT. In Table 6, we report the maximum and average number of active
entries in the AGT across our benchmarks. Table 6 shows that for 8 applications (EM3D, Treeadd,
Health, Perimeter, Bisort, Twolf, Perlcomp, and Perlexec), the maximum number of active AGT
entries, reported in the column labeled “Max AGT,” is less than the total number of AGT entries.
For these applications, increasing the AGT size will not provide any benefit since the baseline AGT
already provides more entries than these applications can use.

For 3 applications (MST, MCF, and Parser), the maximum number of active AGT entries is the
entire AGT. Increasing the AGT size could potentially benefit these applications by reducing AGT
stalls that occur when the AGT runs out of entries (see Section 7.1). To determine whether a larger
AGT can improve performance, we measured the execution time of these 3 applications as the size
of the AGT is increased from the baseline size of 128 entries to 512 entries. We also simulated an
AGT with only 64 entries. The result of this experiment appears in Figure 24. Figure 24 shows
that varying the size of the AGT has very little impact on performance. Across the entire range
of AGT sizes we simulated, execution time varies by less than 1% in all 3 applications, even when
the AGT is reduced to 64 entries. (We also verified that the other 8 benchmarks are similarly
insensitive to variations in AGT size within the range 64-512 entries.)

The reason why varying the AGT size does not impact performance is because the average
number of active AGT entries is low. The column labeled “Avg AGT” in Table 6 shows the

47

App Max AGT Avg AGT App Max AGT Avg AGT

EM3D 103 17.85 MCF 128 1.63
MST 128 21.12 Twolf 38 0.73
Treeadd 55 33.19 Parser 128 3.40
Health 95 34.70 Perlcomp 6 0.01
Perimeter 32 14.45 Perlexec 2 0.00
Bisort 37 9.68

Table 6: Maximum and average AGT-entry utilization on the baseline configuration with 128 AGT
entries.

0.990

0.995

1.000

1.005

1.010

64 128 256 512

AGT Size

No
rm

al
iz

ed
Ex

ec
ut

io
n

Ti
me

MST

MCF

Parser

Figure 24: Execution time with varying number of AGT entries.

number of active AGT entries on average in all our benchmarks is much smaller than the number
of entries available in the baseline AGT. Based on these results, we conclude that allocating more
hardware to the AGT is not cost effective. Furthermore, reducing the AGT to 64 entries would
cause minimal performance loss.

8.5.2 Varying Prefetch Buffer Size

As we did for the evaluation of AGT size variation, we first measure the number of active entries in
the prefetch buffer assuming the baseline prefetch buffer size, 64 entries, before varying the number
of entries. In Table 7, we report the maximum and average number of active entries in the prefetch
buffer across our benchmarks. Our simulator assumes an entry in the prefetch buffer is active from
the moment it enters the prefetch buffer until it leaves the prefetch buffer which occurs either on a
processor reference to the entry or on an eviction, whichever comes first. The column labeled “Max
Buffer” in Table 7 shows that 5 applications (Treeadd, Perimeter, Twolf, Perlcomp, and Perlexec)
do not make use of the full prefetch buffer, and the column labeled “Avg Buffer” shows that 1
additional application (MCF) has low average prefetch buffer usage. For these 6 applications,
increasing the number of prefetch buffer entries will not improve performance. Hence, we focus on
the remaining 5 applications, and measure their performance as the prefetch buffer size is varied.

Figure 25 reports the prefetch buffer size variation experiments for the 5 selected applications.
Both the normalized execution time and the percentage of evicted useful prefetches are plotted as
the number of prefetch buffer entries is varied. The execution times are normalized against the
execution time with a 64-entry prefetch buffer, the baseline configuration, for each application. We
varied the number of prefetch buffer entries between 32 and 4096, representing prefetch buffer sizes
between 1 and 128 Kbytes. Although the high end in this range is unrealistic, we simulate the
entire range to understand application behavior.

48

App Max Buffer Avg Buffer App Max Buffer Avg Buffer

EM3D 64 59.74 MCF 64 7.77
MST 64 62.51 Twolf 51 5.29
Treeadd 36 22.45 Parser 64 26.25
Health 64 61.76 Perlcomp 10 0.00
Perimeter 41 12.87 Perlexec 10 0.00
Bisort 64 22.69

Table 7: Maximum and average prefetch buffer utilization on the baseline configuration with 64
entries (2 KBytes).

EM3D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

32 128 512 2048

Prefetch Buffer Entries

MST

0.0

0.2

0.4

0.6

0.8

1.0

1.2

32 128 512 2048

Prefetch Buffer Entries

Health

0.0

0.2

0.4

0.6

0.8

1.0

1.2

32 128 512 2048

Prefetch Buffer Entries

Bisort

0.0

0.2

0.4

0.6

0.8

1.0

1.2

32 128 512 2048

Prefetch Buffer Entries

Parser

0.0

0.2

0.4

0.6

0.8

1.0

1.2

32 128 512 2048

Prefetch Buffer Entries

Normalized Execution
Time

Percentage of Evicted
Useful Prefetches

Figure 25: Normalized execution time and percentage of evicted useful prefetches as the number
of prefetch buffer entries is varied between 32 and 4096 in powers of two.

MST and Health experience a significant improvement in performance with larger prefetch
buffers, 23% and 24%, respectively. But EM3D, Bisort, and Parser show no gain at all. The
performance gains visible in Figure 25 are due to reduced prefetch buffer thrashing. Section 8.3.2
showed that prefetch buffer thrashing can be reduced in some cases by refining the prefetch distance.
Thrashing can also be reduced by increasing the prefetch buffer size. A larger prefetch buffer permits
early prefetches to remain in the prefetch buffer longer, increasing the likelihood that a prefetched
cache block will be accessed by the processor before it is evicted. Figure 25 supports this intuition
since improvements in the execution time of MST and Health are correlated with drops in the
percentage of evicted useful prefetches. Figure 25 also shows anomalous behavior for EM3D. We
found that EM3D is bandwidth limited, so even though the number of evicted useful prefetches is
reduced for larger prefetch buffers, performance does not improve.

Unfortunately, large prefetch buffers are necessary to fully mitigate thrashing. For EM3D,
thrashing is eliminated with a 128-entry (4 Kbyte) buffer, MST requires a 256-entry (8 Kbyte)
buffer, and Health requires a 1024-entry (32 Kbyte) buffer. Based on these results, we conclude

49

3723

2878
2934

1527
1709

3511

404

802
1001

2910
2701

3751

151
166

159
416

503
442

2848

3194

2150

358
477

284
182

227
193

115
131

119
2

4
2

0

500

1000

1500

2000

2500

3000

3500

4000

JP
2K1

MC
PA

I4
MC

JP
2K1

MC
PA

I4
MC

JP
2K1

MC
JP

I4
MC

PA
I4

MC
JP

I4
MC

JP
2K1

MC
JP

2K1
MC

PA
2K1

MC

Bandwidth (MB/s)

Wasted

Useful

Perl
comp

EM3D
Parser

Twolf
MCF

Bisort
Perimeter

Health
Treeadd

MST
Perl

exec

F
igu

re
26:

M
em

ory
b
an

d
w

id
th

con
su

m
p
tion

for
ex

p
erim

en
ts

rep
orted

in
F
igu

res
18

an
d

20.
T

h
e

“U
sefu

l”
com

p
on

en
ts

sh
ow

m
em

ory
b
an

d
w

id
th

con
su

m
ed

b
y

cach
e

b
lo

ck
s

th
at

are
referen

ced
b
y

u
sefu

l
com

p
u
tation

,
an

d
th

e
“W

astefu
l”

com
p
on

en
ts

sh
ow

m
em

ory
b
an

d
w

id
th

con
su

m
ed

b
y

all
oth

er
cach

e
b
lo

ck
s.

th
at

in
creasin

g
th

e
h
ard

w
are

b
u
d
get

for
th

e
p
refetch

b
u
ff
er

can
p
rov

id
e

m
ore

p
erform

an
ce,

b
u
t

u
n
realistically

large
b
u
ff
ers

are
n
eed

ed
to

accom
m

o
d
ate

all
ap

p
lication

s.

8
.6

L
im

ite
d

M
e
m

o
r
y

B
a
n
d
w

id
th

P
e
r
fo

r
m

a
n
c
e

S
ection

s
8.1

th
rou

gh
8.5

evalu
ated

m
u
lti-ch

ain
p
refetch

in
g

assu
m

in
g

a
fi
x
ed

m
em

ory
su

b
-sy

stem
m

o
d
el

th
at

p
rov

id
es

an
aggressive

6.4
G

b
y
tes/sec

p
eak

m
em

ory
b
an

d
w

id
th

.
In

th
is

section
,
w

e
vary

m
em

ory
b
an

d
w

id
th

to
q
u
an

tify
th

e
sen

sitiv
ity

of
ou

r
earlier

resu
lts

to
th

e
availab

le
b
an

d
w

id
th

.

T
o

p
rov

id
e

m
ore

in
sigh

t,
w

e
fi
rst

ch
aracterize

th
e

m
em

ory
b
an

d
w

id
th

con
su

m
p
tion

of
ou

r
ap

-
p
lication

s
b
efore

stu
d
y
in

g
sen

sitiv
ity.

F
igu

re
26

p
lots

th
e

m
em

ory
b
an

d
w

id
th

con
su

m
ed

in
each

ap
p
lication

for
3

p
refetch

in
g

tech
n
iq

u
es.

T
h
e

fi
rst

is
th

e
b
est

p
erform

in
g

ju
m

p
p
oin

ter
tech

n
iq

u
e,

eith
er

ju
m

p
p
oin

ter
p
refetch

in
g

or
p
refetch

array
s.

T
h
e

secon
d

is
on

e
of

th
e

P
S
B

tech
n
iq

u
es:

w
e

ch
o
ose

th
e

2K
1

con
fi
gu

ration
if

it
ach

ieves
go

o
d

p
erform

an
ce

in
F
igu

re
20,

oth
erw

ise
w

e
ch

o
ose

I4.
(O

u
r

goal
is

to
ch

aracterize
m

em
ory

b
an

d
w

id
th

for
th

e
b
est

tech
n
iq

u
e.

W
e

p
refer

2K
1

over
I4

if
it

h
as

go
o
d

p
erform

an
ce

sin
ce

2K
1

gen
erally

h
as

few
er

in
accu

rate
p
refetch

es,
an

d
h
en

ce
w

ill
con

su
m

e
less

m
em

ory
b
an

d
w

id
th

).
A

n
d

th
e

th
ird

is
m

u
lti-ch

ain
p
refetch

in
g

u
sin

g
in

stru
m

en
ta-

tion
gen

erated
b
y

ou
r

p
rototy

p
e

com
p
iler.

E
ach

m
em

ory
b
an

d
w

id
th

con
su

m
p
tion

b
ar

is
b
roken

d
ow

n
in

to
tw

o
com

p
on

en
ts.

T
h
e

“U
sefu

l”
com

p
on

en
ts

rep
ort

th
e

m
em

ory
b
an

d
w

id
th

con
su

m
ed

fetch
in

g
cach

e
b
lo

ck
s

th
at

are
referen

ced
b
y

u
sefu

l
com

p
u
tation

,
i.e

.
th

e
“B

u
sy

”
com

p
on

en
ts

in
F
igu

res
18

an
d

20.
T

h
e

m
em

ory
b
an

d
w

id
th

con
su

m
ed

fetch
in

g
all

oth
er

cach
e

b
lo

ck
s

is
rep

orted
in

th
e

“W
astefu

l”
com

p
on

en
ts.

F
igu

re
26

sh
ow

s
tw

o
im

p
ortan

t
featu

res.
F
irst,

th
e

ap
p
lication

s
con

su
m

in
g

th
e

m
ost

m
em

ory
b
an

d
w

id
th

ten
d

to
b
e

th
e

on
es

for
w

h
ich

p
refetch

in
g

is
th

e
m

ost
eff

ective,
n
am

ely
E

M
3D

,
M

S
T

,
H

ealth
,

an
d

M
C

F
.

F
or

th
ese

ap
p
lication

s,
p
refetch

in
g

p
rov

id
es

a
sign

ifi
can

t
p
erform

an
ce

b
o
ost

(see
F
igu

res
18

an
d

20).
T

h
is

p
erform

an
ce

b
o
ost

in
creases

th
e

rate
at

w
h
ich

th
e

ap
p
lication

con
su

m
es

d
ata,

resu
ltin

g
in

h
igh

er
m

em
ory

b
an

d
w

id
th

con
su

m
p
tion

.
S
econ

d
,
com

p
ared

to
m

u
lti-

ch
ain

p
refetch

in
g,

ju
m

p
p
oin

ter
an

d
P

S
B

tech
n
iq

u
es

ten
d

to
h
ave

h
igh

er
w

astefu
l
com

p
on

en
ts.

T
h
e

ju
m

p
p
oin

ter
tech

n
iq

u
es

in
F
igu

re
26

ex
h
ib

it
a

sign
ifi

can
t

w
astefu

l
com

p
on

en
t

for
E

M
3D

,
M

S
T

,
H

ealth
,

M
C

F
,

T
w

olf,
an

d
P
arser.

J
u
m

p
p
oin

ter
tech

n
iq

u
es

req
u
ire

in
sertin

g
ex

tra
p
oin

ters
in

to
lin

ked
d
ata

stru
ctu

res.
T

h
ese

ex
tra

p
oin

ters
m

u
st

b
e

fetch
ed

alon
g

w
ith

th
e

ap
p
lication

s’
“u

sefu
l”

50

0.0

0.5

1.0

1.5

2.0

2.5

JP2K1

MC
JP

2K1

MC
JP

2K1

MC
PA

I4 MC
PA

I4 MC
PA

I4 MC
JP

2K1

MC
JP

2K1

MC
JP

2K1

MC
PA

I4 MC
PA

I4 MC
PA

I4 MC
JP

2K1

MC
JP

2K1

MC
JP

2K1

MC
JP

I4 MC
JP

I4 MC
JP

I4 MC

6.4GB
3.2GB

1.6GB
6.4GB

3.2GB
1.6GB

6.4GB
3.2GB

1.6GB
6.4GB

3.2GB
1.6GB

6.4GB
3.2GB

1.6GB
6.4GB

3.2GB
1.6GB

Normalized Execution Time

EM3D
MST

Treeadd
Health

Perimeter
Bisort

0.0

0.5

1.0

1.5

2.0

2.5

PA

I4

MC
PA

I4

MC
PA

I4

MC
JP

I4

MC
JP

I4

MC
JP

I4

MC
JP

2K1

MC
JP

2K1

MC
JP

2K1

MC
JP

2K1

MC
JP

2K1

MC
JP

2K1

MC
PA

2K1

MC
PA

2K1

MC
PA

2K1

MC

6.4GB
3.2GB

1.6GB
6.4GB

3.2GB
1.6GB

6.4GB
3.2GB

1.6GB
6.4GB

3.2GB
1.6GB

6.4GB
3.2GB

1.6GB

Normalized Execution Time

Mem

Overhead

Busy

MCF
Twolf

Parser
Perl

com
Perl

exec

F
igu

re
27:

N
orm

alized
ex

ecu
tion

tim
e

for
ju

m
p

p
oin

ter
tech

n
iq

u
es

(J
P

an
d

P
A

b
ars),

P
S
B

tech
-

n
iq

u
es

(2K
1

an
d

I4
b
ars),

an
d

m
u
lti-ch

ain
p
refetch

in
g

(M
C

b
ars)

at
6.4,

3.2,
an

d
1.6

G
B

y
tes/sec.

d
ata,

th
u
s

in
creasin

g
m

em
ory

b
an

d
w

id
th

con
su

m
p
tion

.
T

h
e

P
S
B

tech
n
iq

u
es

in
F
igu

re
26

ex
h
ib

it
a

sign
ifi

can
t

w
astefu

l
com

p
on

en
t

for
M

S
T

,
H

ealth
,

B
isort,

M
C

F
,

T
w

olf,
an

d
P
arser.

P
S
B

in
cu

rs
in

accu
rate

p
refetch

es
d
u
e
to

m
isp

red
iction

s.
S
u
ch

in
accu

rate
p
refetch

es
in

crease
m

em
ory

b
an

d
w

id
th

con
su

m
p
tion

as
w

ell.
In

con
trast,

m
u
lti-ch

ain
p
refetch

in
g

d
o
es

n
ot

req
u
ire

ex
tra

p
oin

ters
n
or

ad
d
ress

p
red

iction
,
so

th
ere

is
n
o

w
astefu

l
com

p
on

en
t

for
m

ost
ap

p
lication

s
in

F
igu

re
26.

T
w

o
ex

cep
tion

s
are

M
S
T

an
d

H
ealth

.
M

u
lti-ch

ain
p
refetch

in
g

ex
h
ib

its
w

astefu
l
com

p
on

en
ts

for
M

S
T

an
d

H
ealth

d
u
e

to
lin

ked
list

traversals
in

w
h
ich

lin
k

n
o
d
es

are
con

d
ition

ally
accessed

.
O

u
r

tech
n
iq

u
e

fetch
es

each
lin

ked
list

en
tirely,

resu
ltin

g
in

w
astefu

l
fetch

es
an

y
tim

e
th

e
p
ro

cessor
d
o
es

n
ot

traverse
to

th
e

en
d

of
th

e
list.

F
in

ally,
F
igu

re
27

p
resen

ts
ou

r
b
an

d
w

id
th

sen
sitiv

ity
resu

lts.
In

F
igu

re
27,

w
e

vary
m

em
ory

b
an

d
w

id
th

from
6.4

G
B

y
tes/sec

d
ow

n
to

1.6
G

B
y
tes/sec

in
p
ow

ers
of

2.
A

t
each

m
em

ory
b
an

d
w

id
th

settin
g

an
d

for
each

ap
p
lication

,
w

e
p
lot

th
e

n
orm

alized
ex

ecu
tion

tim
e

for
all

th
e

p
refetch

in
g

tech
n
iq

u
es

from
F
igu

re
26.

F
igu

re
27

sh
ow

s
p
erform

an
ce

gen
erally

d
egrad

es
(i.e

.
ex

ecu
tion

tim
e

in
creases)

as
m

em
ory

b
an

d
w

id
th

is
d
ecreased

,
w

ith
E

M
3D

,
M

S
T

,
H

ealth
,
an

d
M

C
F

ex
p
erien

cin
g

th
e

largest
red

u
ction

s
in

p
erform

an
ce.

A
s

illu
strated

in
F
igu

re
26,

th
ese

fou
r

ap
p
lication

s
ex

h
ib

it
th

e
h
igh

est
m

em
ory

b
an

d
w

id
th

con
su

m
p
tion

,
so

th
ey

are
th

e
m

ost
sen

sitive
to

availab
le

m
em

ory
b
an

d
w

id
th

.
C

om
p
arin

g
th

e
b
ars

w
ith

in
each

grou
p

across
all

th
e

ap
p
lication

s,
w

e
see

th
at

in
cases

w
h
ere

m
u
lti-ch

ain
p
refetch

in
g

starts
ou

t
w

ith
h
igh

er
p
erform

an
ce,

it
m

ain
tain

s
its

p
erform

an
ce

ad
van

tage
as

m
em

ory
b
an

d
w

id
th

is
red

u
ced

.
In

fact,
th

e
p
erform

an
ce

ad
van

tage
w

id
en

s
for

som
e

ap
p
lication

s.
R

ecall
from

F
igu

re
26

th
at

ju
m

p
p
oin

ter
an

d
P

S
B

tech
n
iq

u
es

ex
h
ib

it
a

h
igh

er
w

astefu
l
com

p
on

en
t

th
an

m
u
lti-ch

ain
p
refetch

in
g.

T
h
is

ad
d
ition

al
m

em
ory

traffi
c

cau
ses

th
e

p
erform

an
ce

of
ju

m
p

p
oin

ter
an

d
P

S
B

tech
n
iq

u
es

to
d
egrad

e
at

a
faster

rate
com

p
ared

to
m

u
lti-ch

ain
p
refetch

in
g

w
h
en

m
em

ory
b
an

d
w

id
th

is
red

u
ced

.
F
or

th
e

ju
m

p
p
oin

ter
tech

n
iq

u
es,

th
is

eff
ect

is
m

ost
p
ron

ou
n
ced

in
E

M
3D

,
M

C
F
,
T

w
olf,

an
d

P
arser,

an
d

for
th

e
P

S
B

tech
n
iq

u
es,

it
is

m
ost

p
ron

ou
n
ced

in
M

C
F
.
In

p
articu

lar,
for

M
C

F
,

th
is

b
an

d
w

id
th

sen
sitiv

ity
d
iscrep

an
cy

p
erm

its
m

u
lti-ch

ain
p
refetch

in
g

to
ou

tp
erform

p
refetch

array
s

at
3.2

G
B

y
tes/sec,

an
d

to
ou

tp
erform

P
S
B

at
1.6

G
B

y
tes/sec.

T
h
e

on
ly

ex
cep

tion
is

H
ealth

,
w

h
ere

th
e

op
p
osite

o
ccu

rs.
A

s
F
igu

re
26

sh
ow

s
for

H
ealth

,
it

is
m

u
lti-ch

ain
p
refetch

in
g

51

that exhibits the higher wasteful component (in comparison to PSB). Hence, multi-chain prefetching
performance degrades at a faster rate, allowing PSB performance to catch up. However, even in
Health, multi-chain prefetching still maintains its performance advantage over the other techniques
across the entire range of memory bandwidths simulated.

8.7 Speculative Multi-Chain Prefetching

In this article, we have developed multi-chain prefetching and evaluated its performance for static
LDS traversals only. As described in Section 2.2, handling dynamic traversals presents some diffi-
cult challenges. Unlike static traversals, the order in which pointer chains are traversed for dynamic
traversals is not known until runtime. Consequently, we cannot determine the pointer-chain traver-
sal order for dynamic traversals through static analysis of the source code, as is possible for static
traversals. Without this static information, the off-line techniques developed in Sections 4 and 6
for our compiler cannot be used.

One possible approach for addressing dynamic traversals is to use speculation. Given a dynamic
traversal, we can speculatively select the most likely pointer-chain traversal order, or when a likely
ordering is not apparent, we can speculatively pursue multiple pointer chains simultaneously. Then,
for each speculatively selected pointer-chain traversal order, our scheduling algorithm can be used
to compute a prefetch chain schedule. Since incorrect speculation may increase the number of
inaccurate prefetches and in some cases even degrade performance, speculation should not be used
in an overly aggressive fashion. We call this approach speculative multi-chain prefetching.

While a complete investigation of speculative multi-chain prefetching is beyond the scope of
this article, this section conducts a preliminary investigation of the approach. More specifically, we
apply speculative multi-chain prefetching to MCF, an application for which multi-chain prefetching
achieves only modest performance gains due to limited memory parallelism. Using MCF as an
example, we hope to understand the potential for speculation to enable multi-chain prefetching
for dynamic traversals in the future. Note, in this study, we instrument speculative multi-chain
prefetching manually. Our intent is to conduct a preliminary study only, so we leave automation
of speculative multi-chain prefetching to future work.

In MCF, a complex structure consisting of multiple backbone and rib structures is traversed. At
each backbone node, there are 3 possible “next” pointers to pursue, leading to 3 different backbone
nodes. A loop is used to traverse one of the next pointers until a NULL pointer is reached. This
loop performs the traversal of one backbone chain statically, so our basic multi-chain prefetching
technique can be used to prefetch the traversal. Unfortunately, this loop yields very little inter-chain
memory parallelism. However, when this loop terminates, another backbone and rib structure is
selected for traversal from a previously traversed backbone node. Since the selection of the new
backbone node is performed through a data-dependent computation, the next backbone and rib
traversal is not known a priori.

To enable the simultaneous traversal of multiple backbone and rib structures, we use our prefetch
engine to launch prefetches down all 3 pointers speculatively at every backbone node traversed.
Although we cannot guarantee that any one of these pointers will be traversed in the future, by
pursuing all of them, we are guaranteed that the next selected backbone and rib structure will get
prefetched. To limit the number of inaccurate prefetches caused by the mis-speculated pointers,
we prefetch each chain speculatively to a depth of 5. Figure 28 evaluates the performance of this
approach. In Figure 28, the bars labeled “NP,” “PA,” “I4,” “MC,” and “MCm” are identical to the
corresponding bars for MCF from Figures 18, 20, and 23. (The only difference is in Figure 28, the

52

1.00
0.96

0.74

0.99
0.97

0.80

0.0

0.2

0.4

0.6

0.8

1.0

1.2

NP
PA

I4
MC

MCm
SP

Normalized Execution Tim e

Mem

Overhead

Busy

F
igu

re
28:

P
relim

in
ary

p
erform

an
ce

resu
lts

for
sp

ecu
lative

m
u
lti-ch

ain
p
refetch

in
g

on
M

C
F
.
T

h
e

fi
rst

5
b
ars

are
taken

from
F
igu

res
18,

20,
an

d
23.

T
h
e

b
ar

lab
eled

“S
P

”
rep

orts
p
erform

an
ce

for
sp

ecu
lative

m
u
lti-ch

ain
p
refetch

in
g.

“M
C

m
”

b
ar

is
n
orm

alized
again

st
th

e
“N

P
”

b
ar,

w
h
ereas

it
w

as
n
orm

alized
again

st
th

e
“M

C
”

b
ar

in
F
igu

re
23).

T
h
e

b
ar

lab
eled

“S
P

”
sh

ow
s

th
e

ex
ecu

tion
tim

e
for

M
C

F
u
sin

g
sp

ecu
lative

m
u
lti-

ch
ain

p
refetch

in
g.

C
om

p
arin

g
th

e
“S

P
”

b
ar

again
st

th
e

“M
C

”
an

d
“M

C
m

”
b
ars,

w
e

see
sp

ecu
lation

in
creases

p
erform

an
ce

b
y

rou
gh

ly
22%

over
n
o

sp
ecu

lation
.

C
om

p
arin

g
th

e
“S

P
”

an
d

“P
A

”
b
ars,

w
e

see
sp

ecu
lative

m
u
lti-ch

ain
p
refetch

in
g

ou
tp

erform
s

p
refetch

array
s

b
y

21%
.

H
ow

ever,
P

S
B

still
h
old

s
a

p
erform

an
ce

ad
van

tage.
F
igu

re
28

sh
ow

s
th

e
I4

con
fi
gu

ration
of

P
S
B

ou
tp

erform
s

sp
ecu

lative
m

u
lti-ch

ain
p
refetch

in
g

b
y

7.5%
.

8
.8

L
im

ita
tio

n
s

o
f
th

e
E
x
p
e
r
im

e
n
ta

l
E
v
a
lu

a
tio

n

O
u
r

ex
p
erim

en
tal

evalu
ation

h
as

p
resen

ted
an

in
-d

ep
th

in
vestigation

of
m

u
lti-ch

ain
p
refetch

in
g.

B
efore

d
raw

in
g

con
clu

sion
s

from
th

is
stu

d
y,

it
is

im
p
ortan

t
to

n
ote

its
lim

itation
s.

T
h
e

p
rim

ary
lim

itation
is

ou
r

ch
oice

of
m

em
ory

sy
stem

sim
u
lation

p
aram

eters,
an

d
th

eir
im

p
act

on
p
erform

an
ce

gain
s

rep
orted

in
S
ection

s
8.1,

8.2,
an

d
8.7.

O
u
r

b
aselin

e
m

em
ory

sy
stem

assu
m

es
6.4

G
b
y
tes/sec.

W
h
ile

th
is

is
realizab

le
u
sin

g
cu

rren
t

D
R

A
M

tech
n
ology

an
d

an
aggressive

m
em

ory
su

b
sy

stem
ar-

ch
itectu

re,
it

rep
resen

ts
a

fairly
h
igh

-en
d

m
em

ory
sy

stem
.

L
ess

costly
(an

d
p
erh

ap
s
m

ore
com

m
on

)
m

em
ory

sy
stem

s
w

ill
p
rov

id
e

low
er

b
an

d
w

id
th

,
an

d
w

ill
n
ot

ach
ieve

th
e

sam
e

levels
of

p
erform

an
ce.

H
en

ce,
th

e
resu

lts
in

S
ection

s
8.1,

8.2,
an

d
8.7

are
op

tim
istic

(for
all

tech
n
iq

u
es,

n
ot

on
ly

m
u
lti-

ch
ain

p
refetch

in
g),

an
d

p
erh

ap
s

th
e

resu
lts

in
S
ection

8.6
are

m
ore

in
d
icative

of
b
eh

av
ior

on
th

e
m

a
jority

of
sy

stem
s.

In
ad

d
ition

,
all

ex
p
erim

en
tal

stu
d
ies

are
lim

ited
b
y

th
e

ch
oice

an
d

n
u
m

b
er

of
b
en

ch
m

ark
s–ou

rs
is

n
o

ex
cep

tion
.

F
in

al
con

clu
sion

s
ab

ou
t

m
u
lti-ch

ain
p
refetch

in
g

p
erform

an
ce

can
on

ly
b
e

d
raw

n
after

con
d
u
ctin

g
fu

rth
er

stu
d
ies

u
sin

g
ad

d
ition

al
ap

p
lication

s.

9
R

e
la

te
d

W
o
r
k

T
h
e

w
ork

p
resen

ted
in

[17
]

d
escrib

es
th

e
early

version
of

ou
r

m
u
lti-ch

ain
p
refetch

in
g

tech
n
iq

u
e.

C
om

p
ared

to
ou

r
early

w
ork

,
th

is
article

ex
ten

d
s
m

u
lti-ch

ain
p
refetch

in
g

in
several

w
ay

s.
F
orem

ost,
th

is
article

au
tom

ates
th

e
tech

n
iq

u
e,

p
rov

id
in

g
algorith

m
s

an
d

a
p
rototy

p
e

com
p
iler

for
ex

tractin
g

all
th

e
n
ecessary

in
form

ation
fu

lly
au

tom
atically.

In
ad

d
ition

,
th

is
article

d
evelop

s
a

p
refetch

sch
ed

u
lin

g
fram

ew
ork

th
at

h
an

d
les

recu
rsion

v
ia

d
escrip

tor
u
n
rollin

g,
an

d
p
rop

oses
lim

it
an

aly
sis

for
com

p
u
tin

g
b
ou

n
d
ed

p
refetch

d
istan

ces
w

h
en

d
ata

stru
ctu

re
size

is
n
ot

k
n
ow

n
.

In
con

trast,
th

e
fram

ew
ork

in
[17

]
d
o
es

n
ot

h
an

d
le

recu
rsion

n
or

d
ata

stru
ctu

res
w

ith
u
n
k
n
ow

n
ex

ten
ts.

A
lso,

th
is

53

article presents a hardware implementation of our prefetch engine, and analyzes its complexity.
Finally, this article presents a more comprehensive evaluation of our technique compared to [17],
providing a comparison against PSB, a detailed study of the early prefetch arrival problem, and
the impact of varying architecture parameters on multi-chain prefetching performance.

Compared to the work of other researchers, this article is the first to develop a complete and
systematic method for scheduling prefetch chains, and to apply it to prefetching arbitrary pointer-
based data structures. However, as we stated in the Introduction to this article, exploiting inter-
chain memory parallelism is not a new idea. Our work builds upon a long list of recent pointer
prefetching techniques, some of which prefetch simple data structures in a multi-chain fashion.

Dependence-Based Prefetching (DBP) by Roth, Moshovos, and Sohi [30] identifies recurrent
pointer-chasing loads in hardware, and prefetches them sequentially using a prefetch engine. DBP
exploits inter-chain memory parallelism for simple backbone and rib traversals, but cannot do so for
more complex traversals. In comparison, our technique exploits inter-chain memory parallelism for
any data structure composed of lists, trees, and arrays. Furthermore, our work provides a compiler-
implemented off-line algorithm for systematically scheduling prefetch chains, whereas DBP relies
on hardware to perform prefetch scheduling in a greedy fashion. By identifying and scheduling
recurrent loads in a compiler, our approach requires less hardware support than DBP, and more
exactly times the arrival of prefetches which can reduce thrashing. On the other hand, DBP does
not require compiler support.

Similar to DBP, Mehrotra and Harrison propose a hardware mechanism called the Indirect
Reference Buffer (IRB) [23] to identify and prefetch recurrent loads. The IRB only identifies
recurrences between dynamic instances of the same static load, so it is less general than DBP
(which detects recurrences between multiple static loads). Also, the IRB does not exploit any
memory parallelism.

The Push Model by Yang and Lebeck [37] performs pointer prefetching under control of the
compiler through a series of prefetch engines attached to different levels of the memory hierarchy.
These memory-side prefetch engines actively “push” prefetched data towards the CPU. By perform-
ing memory-side prefetching, the Push Model reduces the round-trip latency to and from memory,
thus increasing the throughput of back-to-back pointer-chasing memory references. However, the
Push Model still incurs serialized memory latency during pointer-chain traversal, and does not
attempt to exploit memory parallelism between pointer chains.

Greedy Prefetching by Luk and Mowry [21] inserts software prefetches into LDS traversal loops
to speculatively prefetch all successor nodes at each link node traversed. For linked list traversals,
Greedy Prefetching does not exploit any memory parallelism because there is only one successor
node. For traversals of data structures with multiple successor nodes (e.g. trees), Greedy Prefetch-
ing exploits some inter-chain overlap because multiple successor nodes are prefetched simultane-
ously (resulting in improved performance if future traversals pursue some or all of the speculatively
prefetched successors). Our speculative multi-chain prefetching technique, described in Section 8.7,
employs a similar form of speculation, but pursues entire pointer chains speculatively rather than
single successor nodes, resulting in greater multi-chain overlap when speculation is correct.

In contrast to DBP, the IRB, the Push Model, and Greedy Prefetching which only use natural
pointers to perform prefetching, several researchers have proposed jump pointer techniques. Jump
Pointer prefetching by Luk and Mowry [21] (also known as History Pointer prefetching) inserts
special pointers into the LDS to connect non-consecutive link elements. These jump pointers
enable prefetch instructions to name link elements further down a pointer chain, thus creating
memory parallelism along a single chain of pointers. Prefetch Arrays by Karlsson, Dahlgren, and

54

Stenstrom [14] extends Jump Pointer prefetching with additional pointers that point to the first
few link elements in a linked list to permit prefetching of early nodes. This article conducts an
extensive quantitative comparison of multi-chain prefetching against both Jump Pointer prefetching
and Prefetch Arrays. Previous sections in this article have discussed their relative merits and
shortcomings.

Roth and Sohi [31] propose several variations on Jump Pointer prefetching, and study hardware,
software, and hybrid implementations of these variations. Cooperative Chain Jumping, one of
their proposed techniques, exploits inter-chain memory parallelism for backbone and rib structures.
In Cooperative Chain Jumping, jump pointers are created along the backbone, and a hardware
prefetch engine (similar to the one in DBP) is used to prefetch each rib sequentially. The backbone
jump pointers enable initiation of prefetching for multiple ribs simultaneously, thus overlapping
independent rib traversals. Although Cooperative Chain Jumping exploits inter-chain memory
parallelism, it does so only for backbone and rib structures, and it requires jump pointers. In
contrast, our work seeks to exploit inter-chain memory parallelism for arbitrary pointer-based
data structures using only natural pointers. Moreover, our work provides a systematic method
for scheduling prefetch chains. Similar to DBP, Cooperative Chain Jumping performs prefetch
scheduling in a greedy fashion.

Another approach for creating memory parallelism within a single chain of pointers is to lin-
earize link node layout. When logically consecutive nodes in a linked list are laid out linearly in
physical memory, the linked list effectively becomes an array and can be prefetched using stride
prefetching [5]. Stoutchinin et al [34] observe that linked lists are often allocated on the heap in a
linear fashion and apply stride prefetching in software (our results confirm Stoutchinin’s observa-
tion since we found stride prefetching is effective in several of our benchmarks). Data Linearization
prefetching by Luk and Mowry [21] proposes a memory allocator that performs the linearization
at node allocation time.

In addition to the techniques described thus far, other techniques exist that do not specifically
target pointer-chasing references, yet are effective for LDS traversals nonetheless. One such tech-
nique is pre-execution [7, 8, 15, 19, 20, 24, 32, 38]. Pre-execution uses idle execution resources (for
example spare hardware contexts in a simultaneous multithreading processor [36]) to run one or
more helper threads in front of the main computation. The helper threads trigger cache misses
on behalf of the main thread so that it executes with fewer stalls. In order for cache misses to be
triggered sufficiently early, multiple data streams must be pursued simultaneously using multiple
helper threads, much like our prefetch engine pursues multiple pointer chains simultaneously. Com-
pared to multi-chain prefetching, however, pre-execution is more general since helper threads can
execute arbitrary code. In contrast, our prefetch engine is designed specifically for LDS traversal.

Like pre-execution, Markov Predictors [12, 33] are another general latency tolerance technique.
Markov Predictors store temporally correlated cache miss addresses in a hardware table to predict
non-striding cache misses; hence, they can prefetch LDS traversals. Markov Predictors, like other
hardware prediction-based techniques, have the advantage that they are transparent to software.
Execution-based techniques, like multi-chain prefetching, require compiler support, but they have
the potential to be more accurate since they do not suffer mispredictions due to insufficient history
or limited prediction table capacity. In addition, execution-based techniques require less hardware
since they do not need to store the address correlations. This article conducts an extensive quan-
titative comparison of multi-chain prefetching against Predictor-Directed Stream Buffers [33], a
markov prediction technique, and evaluated their relative merits and shortcomings.

Unroll-and-jam by Pai and Adve [27] is a loop transformation that exploits memory parallelism.

55

For loops that traverse data structures with multiple independent pointer chains, like array of
lists, unroll-and-jam initiates independent instances of the inner loop from separate outer loop
iterations, thus exposing multiple read misses within the same instruction window. Like all loop
transformations, unroll-and-jam can only be applied if it does not change the original program
semantics. Prefetching techniques are not limited by such legality criteria.

Finally, preceding the literature on pointer prefetching is a large body of work on prefetching for
array data structures. These include hardware prefetching techniques by Chen [5], Palacharla [28],
Fu [9], and Jouppi [13], software prefetching techniques by Mowry [25, 26], Klaiber [16], and
Callahan [2], and hybrid techniques by Temam [35], Chen [4], and Chiueh [6]. Since these techniques
rely on the regular memory access patterns exhibited by array traversals, they are ineffective for
LDS traversals.

10 Conclusion

This article investigates exploiting inter-chain memory parallelism for memory latency tolerance.
Our technique, called multi-chain prefetching, issues prefetches along a single chain of pointers
sequentially. However, multi-chain prefetching aggressively pursues multiple independent pointer
chains simultaneously, thus exploiting the natural memory parallelism that exists between separate
pointer-chasing traversals. Although the idea of overlapping chained prefetches is not new and
has been demonstrated for simple backbone and rib traversals [30, 31], our work seeks to exploit
inter-chain memory parallelism for arbitrary data structures consisting of lists, trees, and arrays.

Our work makes the following contributions. We introduce a framework for compactly describ-
ing static LDS traversals, providing the data layout and traversal code work information necessary
for prefetching. We present an off-line algorithm for computing a prefetch schedule from the LDS
descriptors that overlaps serialized cache misses across separate pointer-chain traversals. While our
algorithm is designed for static LDS traversals, we also propose the use of speculation to handle
dynamic LDS traversal codes as well. In addition, we present the design of a programmable prefetch
engine that performs LDS traversal outside of the main CPU, and prefetches the LDS data accord-
ing to the computed prefetch schedule. Next, we develop several algorithms for extracting LDS
descriptors via static analysis of the application source code, and implement them in a prototype
compiler, thus automating multi-chain prefetching. Finally, we conduct an in-depth experimental
evaluation of compiler-instrumented multi-chain prefetching, and compare its performance against
jump pointer prefetching, prefetch arrays, and predictor-directed stream buffers.

Based on our experimental results, we make several observations regarding the effectiveness
of multi-chain prefetching. First, our results show multi-chain prefetching can provide significant
performance gains, reducing overall execution time by 40% across six Olden benchmarks, and
by 3% across four SPECint2000 benchmarks. Second, multi-chain prefetching outperforms jump
pointer prefetching and prefetch arrays by 34% and 11% for the selected Olden and SPECint2000
benchmarks, respectively. The performance advantage of multi-chain prefetching over jump pointer
techniques comes from its stateless nature. Multi-chain prefetching avoids software overhead for
managing prefetch pointers incurred by jump pointer techniques. Multi-chain prefetching also
avoids prefetch pointer storage overhead which can significantly increase the number of cache misses,
particularly for applications employing small link structures. In addition, multi-chain prefetching
can perform first-traversal prefetching, and can effectively tolerate the cache misses of early nodes
in short lists.

56

Third, multi-chain prefetching achieves 27% higher performance than PSB across the selected
Olden benchmarks, but PSB outperforms multi-chain prefetching by 0.2% across the selected
SPECint2000 benchmarks. Overall, multi-chain prefetching achieves 16% higher performance than
PSB across all 11 of our applications. PSB’s performance gains come from prefetching “dynamically
striding” pointer-chasing loads. Unfortunately, markov prefetching using the baseline 2K-entry 1st-
order markov predictor provides only small gains on top of stride prefetching due to insufficient
capacity and predictor aliasing. With an infinite 4th-order markov predictor, PSB draws to within
6% of multi-chain prefetching across all applications; however, markov predictors with 64K- to
512K-entries are necessary to realize most of this performance gain. Based on these results, we
conclude multi-chain prefetching offers a significant savings in hardware compared to PSB since it
relies on the compiler rather than large prediction tables to generate the prefetch address stream.

Fourth, a fundamental limitation in multi-chain prefetching is early prefetch arrival. Since
multi-chain prefetching initiates the traversal of a pointer chain prior to the traversal loop, some
prefetches necessarily arrive early, in some cases causing eviction before the data is accessed by
the processor. For some applications, additional performance may be achieved by reducing the
prefetch distance due to the conservative nature of our compiler. However, a positive result is that
the computed prefetch distance seems to work well for most of our applications.

Fifth, we find manual instrumentation of multi-chain prefetching can achieve slightly higher
performance than our prototype compiler. For 6 applications, manually-instrumented multi-chain
prefetching further reduces execution time by 4.6%. For 4 applications, manual instrumentation
achieves no additional gain, and in 1 application, it performs slightly worse. Averaged across all
11 of our applications, the manual approach outperforms our compiler by 2.4%. The additional
performance gains achieved via manual instrumentation are due to several factors (and no single
factor is primarily responsible): ad hoc selection of prefetch initiation sites, identification of write-
once LDS descriptor graph parameters, initial address expression minimization, cache-conscious
code layout, and optimization of SY NC instructions for tree traversals. From this study, we
conclude there is still room for improvement in our compiler algorithms, but the current algorithms
seem to get most of the gain.

Finally, our results suggest that speculation can potentially uncover inter-chain memory par-
allelism in dynamic traversals. For MCF, we show speculation increases multi-chain prefetching
performance by 22%, though PSB still outperforms speculative multi-chain prefetching by 7.5%. In
future work, we plan to apply speculation more aggressively, and to identify the types of dynamic
traversals amenable to speculation. However, we conclude multi-chain prefetching loses its effective-
ness for highly dynamic traversals where inter-chain memory parallelism is difficult or impossible
to identify.

References

[1] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. CS TR 1342, University of
Wisconsin-Madison, June 1997.

[2] David Callahan, Ken Kennedy, and Allan Porterfield. Software Prefetching. In Proceedings of the 4th

International Conference on Architectural Support for Programming Languages and Operating Systems,
pages 40–52, April 1991.

[3] M. J. Charney and A. P. Reeves. Generalized Correlation Based Hardware Prefetching. February 1995.

[4] Tien-Fu Chen. An Effective Programmable Prefetch Engine for On-Chip Caches. In Proceedings of the

28th Annual Symposium on Microarchitecture, pages 237–242. IEEE, 1995.

57

[5] Tien-Fu Chen and Jean-Loup Baer. Effective Hardware-Based Data Prefetching for High-Performance
Processors. Transactions on Computers, 44(5):609–623, May 1995.

[6] Tzi cker Chiueh. Sunder: A Programmable Hardware Prefetch Architecture for Numerical Loops. In
Proceedings of Supercomputing ’94, pages 488–497. ACM, November 1994.

[7] Jamison D. Collins, Dean M. Tullsen, Hong Wang, and John P. Shen. Dynamic Speculative Precompu-
tation. In Proceedings of the 34th International Symposium on Microarchitecture, Austin, TX, December
2001.

[8] Jamison D. Collins, Hong Wang, Dean M. Tullsen, Christopher Hughes, Yong-Fong Lee, Dan Lavery, and
John P. Shen. Speculative Precomputation: Long-range Prefetching of Delinquent Loads. In Proceedings

of the 28th Annual International Symposium on Computer Architecture, Goteborg, Sweden, June 2001.
ACM.

[9] John W. C. Fu, Janak H. Patel, and Bob L. Janssens. Stride Directed Prefetching in Scalar Proces-
sors. In Proceedings of the 25th Annual International Symposium on Microarchitecture, pages 102–110,
December 1992.

[10] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a Call Graph Execution Profiler.
In Proceedings of 1982 SIGPLAN Symp. Compiler Construction, pages 120–126, June 1982.

[11] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, E. Bugnion, and M. Lam. Maximizing
multiprocessor performance with the SUIF compiler. IEEE COMPUTER, 29(12), December 1996.

[12] Doug Joseph and Dirk Grunwald. Prefetching using Markov Predictors. In Proceedings of the 24th

International Symposium on Computer Architecture, pages 252–263, Denver, CO, June 1997. ACM.

[13] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers. In Proceedings of the 17th Annual International Symposium

on Computer Architecture, pages 364–373, Seattle, WA, May 1990. ACM.

[14] Magnus Karlsson, Fredrik Dahlgren, and Per Stenstrom. A Prefetching Technique for Irregular Accesses
to Linked Data Structures. In Proceedings of the 6th International Conference on High Performance

Computer Architecture, Toulouse, France, January 2000.

[15] Dongkeun Kim and Donald Yeung. Design and Evaluation of Compiler Algorithms for Pre-Execution. In
Proceedings of the 10th International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 159–170, San Jose, CA, October 2002. ACM.

[16] Alexander C. Klaiber and Henry M. Levy. An Architecture for Software-Controlled Data Prefetching.
In Proceedings of the 18th International Symposium on Computer Architecture, pages 43–53, Toronto,
Canada, May 1991. ACM.

[17] Nicholas Kohout, Seungryul Choi, Dongkeun Kim, and Donald Yeung. Multi-Chain Prefetching: Ef-
fective Exploitation of Inter-Chain Memory Parallelism for Pointer-Chasing Codes. In Proceedings of

the 10th Annual International Conference on Parallel Architectures and Compilation Techniques, pages
268–279, Barcelona, Spain, September 2001. IEEE.

[18] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In Proceedings of 8th Inter-

national Symposium on Computer Architecture, pages 81–87. ACM, May 1981.

[19] Steve S. W. Liao, Perry H. Wang, Hong Wang, Gerolf Hoflehner, Daniel Lavery, and John P. Shen.
Post-Pass Binary Adaptation for Software-Based Speculative Precomputation. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation, Berlin, Germany,
June 2002. ACM.

[20] Chi-Keung Luk. Tolerating Memory Latency through Software-Controlled Pre-Execution in Simul-
taneous Multithreading Processors. In Proceedings of the 28th Annual International Symposium on

Computer Architecture, Goteborg, Sweden, June 2001. ACM.

58

[21] Chi-Keung Luk and Todd C. Mowry. Compiler-Based Prefetching for Recursive Data Structures. In Pro-

ceedings of the Seventh International Conference on Architectural Support for Programming Languages

and Operating Systems, pages 222–233, Cambridge, MA, October 1996. ACM.

[22] J. R. Lyle and D. R. Wallace. Using the unravel program slicing tool to evaluate high integrity software.
In Proceedings of 10th International Software Quality Week, USA, May 1997.

[23] Sharad Mehrotra and Luddy Harrison. Examination of a Memory Access Classification Scheme for
Pointer-Intensive and Numeric Programs. In Proceedings of the 10th ACM International Conference on

Supercomputing, Philadelphia, PA, May 1996. ACM.

[24] Andreas Moshovos, Dionisios N. Pnevmatikatos, and Amirali Baniasadi. Slice-Processors: An Imple-
mentation of Operation-Based Prediction. In Proceedings of the International Conference on Supercom-

puting, June 2001.

[25] Todd Mowry. Tolerating Latency in Multiprocessors through Compiler-Inserted Prefetching. Transac-

tions on Computer Systems, 16(1):55–92, February 1998.

[26] Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-Controlled Prefetching in
Shared-Memory Multiprocessors. Journal of Parallel and Distributed Computing, 12(2):87–106, June
1991.

[27] Vijay S. Pai and Sarita Adve. Code Transformations to Improve Memory Parallelism. In Proceedings

of the International Symposium on Microarchitecture, November 1999.

[28] Subbarao Palacharla and R. E. Kessler. Evaluating Stream Buffers as a Secondary Cache Replacement.
In Proceedings of the 21st Annual International Symposium on Computer Architecture, pages 24–33,
Chicago, IL, May 1994. ACM.

[29] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Supporting Dynamic Data Structures on Distributed
Memory Machines. ACM Transactions on Programming Languages and Systems, 17(2), March 1995.

[30] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence Based Prefetching for Linked
Data Structures. In Proceedings of the Eigth International Conference on Architectural Support for

Programming Languages and Operating Systems, October 1998.

[31] Amir Roth and Gurindar S. Sohi. Effective Jump-Pointer Prefetching for Linked Data Structures. In
Proceedings of the 26th International Symposium on Computer Architecture, Atlanta, GA, May 1999.

[32] Amir Roth and Gurindar S. Sohi. Speculative Data-Driven Multithreading. In Proceedings of the 7th

International Conference on High Performance Computer Architecture, pages 191–202. ACM, January
2001.

[33] Timothy Sherwood, Suleyman Sair, and Brad Calder. Predictor-Directed Stream Buffers. In Proceedings

of the 33rd International Symposium on Microarchitecture, December 2000.

[34] Artour Stoutchinin, Jose Nelson Amaral, Guang R. Gao, James C. Dehnert, Suneel Jain, and Alban
Douillet. Speculative Pointer Prefetching of Induction Pointers. In Compiler Construction 2001, Euro-

pean Joint Conferences on Theory and Practice of Software, Genova, Italy, April 2001.

[35] O. Temam. Streaming Prefetch. In Proceedings of Europar’96, Lyon,France, 1996.

[36] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L. Stamm.
Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithreading
Processor. In Proceedings of the 1996 International Symposium on Computer Architecture, Philadelphia,
May 1996.

[37] Chia-Lin Yang and Alvin R. Lebeck. Push vs. Pull: Data Movement for Linked Data Structures. In
Proceedings of the International Conference on Supercomputing, May 2000.

[38] Craig Zilles and Gurindar Sohi. Execution-Based Prediction Using Speculative Slices. In Proceedings

of the 28th Annual International Symposium on Computer Architecture, Goteborg, Sweden, June 2001.
ACM.

59

