
A General Framework for quantifying Aleatoric and Epistemic uncertainty in
Graph Neural Networks

Sai Munikotia,∗, Deepesh Agarwala, Laya Dasb, Balasubramaniam Natarajana

aDepartment of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506, USA
bReliability and Risk Engineering Lab, ETH Zurich, 8092, Zurich, Switzerland.

Abstract

Graph Neural Networks (GNN) provide a powerful framework that elegantly integrates Graph theory with Machine
learning for modeling and analysis of networked data. We consider the problem of quantifying the uncertainty in
predictions of GNN stemming from modeling errors and measurement uncertainty. We consider aleatoric uncertainty
in the form of probabilistic links and noise in feature vector of nodes, while epistemic uncertainty is incorporated via a
probability distribution over the model parameters. We propose a unified approach to treat both sources of uncertainty
in a Bayesian framework, where Assumed Density Filtering is used to quantify aleatoric uncertainty and Monte Carlo
dropout captures uncertainty in model parameters. Finally, the two sources of uncertainty are aggregated to estimate
the total uncertainty in predictions of a GNN. Results in the real-world datasets demonstrate that the Bayesian model
performs at par with a frequentist model and provides additional information about predictions uncertainty that are
sensitive to uncertainties in the data and model.

Keywords: Uncertainty quantification, Graph Neural Network, Bayesian model, Assumed Density Filtering, Node
classification

1. Introduction

Learning representations and relations over graphs
finds applications in a wide range of networked sys-
tems such as social networks [1, 2], biological networks
[3], transportation networks [4] and communication net-
works [5]. Uncertainty in measured quantities and im-
precise information about the underlying structure and
features of a network can pose a serious impediment to
the efficiency of the learning process and quality of the
resulting models. Uncertainty in estimated parameters
and structure of trained model is a fundamental modeling
challenge that imposes restrictions on the confidence of
predictions. Learning representations in an uncertainty-
aware manner is fundamental to producing robust models
and reliable predictions. Models that do not account for
these sources of uncertainty can be over-confident in
their predictions [6]. Moreover, neural network models
are often prone to overfitting that limits their ability to
generalise [7]. These factors can pose serious problems
to effective utilization of the available information in the
model building process as well as reliable interpretation

∗Corresponding author. Email:saimunikoti@ksu.edu

of the model predictions under adverse situations [8, 9]
. Furthermore, quantification of uncertainty in predic-
tions is also crucial for uncertainty sampling approach in
active learning [10, 11]. Existing methods of analyzing
graph structured data with Graph Neural Network (GNN)
models are ill-equipped to handle uncertainty. We there-
fore consider the problem of quantifying the impact of
different sources of uncertainty on the predictions of a
GNN model.

Uncertainty quantification ubiquitously arises in mod-
eling, and has been extensively addressed in the context
of deep neural networks in computer vision [12], natural
language processing [13] and robotics [14]. It has been
addressed in several ways including Laplace approxima-
tions, deep Gaussian processes and Bayesian methods
[15]. A Bayesian approach to uncertainty quantification
has the advantage of a principled treatment of different
sources of uncertainty along with prior beliefs. Bayesian
approaches have been very successful in handling uncer-
tainty in neural networks for domain-invariant learning
with uncertainty [16], addressing catastrophic forgetting
[17], imitation learning [18] and many more [19].

In the context of GNN, uncertainty quantification
and incorporation has received relatively less attention.

Preprint submitted to Neural Networks May 23, 2022

ar
X

iv
:2

20
5.

09
96

8v
1

 [
cs

.L
G

]
 2

0
M

ay
 2

02
2

Zhang et al [20] propose a Bayesian framework where
an observed graph is considered as a realization of a
parametric family of random graphs. This subsequently
allows a joint inference of the graph structure and pa-
rameters of GNN from the data, resulting in a model
that is resilient to noise and adversarial attacks. Pal et
al. [21] follow up on the above idea, use a maximum
a posteriori (MAP) estimate of the graph and perform
all learning tasks on the estimated graph instead of the
measured graph. Since the MAP estimate corresponds to
the mode of the probability density function of the graph
structure, the authors consider it to inherently incorpo-
rate aleatoric uncertainty. The epistemic uncertainty in
the resulting models are quantified with a Monte-Carlo
dropout approach and the variance in the resulting pre-
dictions is reported [20, 21]. While these methods adopt
a Bayesian approach to mitigate the effect of uncertainty
on the predictions, they consider the links and features
of nodes to be deterministic and thus, do not consider
the measurement uncertainty therein. In the presence
of such measurement uncertainty, the GNN model prop-
agates the true values as well as noise through all the
layers, which in turn influences the model predictions.
This phenomenon and its impact on the confidence of
predictions is not captured in the literature. Moreover,
the MAP estimates are obtained by processing the node
features, which renders the approach sensitive to any
uncertainty in the features. An explicit and systematic
quantification of the uncertainty in predictions is also not
provided.

1.1. Contributions

In this paper, we address the lack of systematic and ex-
plicit incorporation of different sources of uncertainty in
GNNs within a Bayesian framework. We formally define
the different sources of aleatoric and epistemic uncer-
tainty in GNNs. Specifically, we consider the aleatoric
uncertainty arising from (i) imprecise information about
the graph structure via probabilistic links and (ii) mea-
surement noise in feature vectors of nodes. We propagate
the aleatoric uncertainty through the node embedding
layers and classification layers of the GNN model via
Assumed Density Filtering (ADF). We quantify the epis-
temic uncertainty arising from probabilistic parameters
of the GNN model with Monte-Carlo sampling. The
proposed framework exhibits the following advantages:

• Quantification of total uncertainty due to aleatoric
and epistemic sources

• Propagation of aleaotric uncertainty through all lay-
ers of a GNN model

• Generic framework that can be applied at the time
of fresh training, as well as to pre-trained networks
without the need of a computationally expensive
retraining process.

We present the different sources of uncertainty in GNNs
and discuss the related literature on handling uncertainty
in Section 2. We discuss the specific problem defini-
tion targeted in this work and the proposed approach
to quantify the total uncertainty in GNNs in Section 3.
Experiments and results are presented in Section 4 and
the article ends with concluding remarks in Section 5.

2. Background and Related Work

Consider a graph G represented as a tuple G = (V, E)
of a set of nV vertices/nodes V and nE edges/links E.
Each node ui, i ∈ [1, nV] of the graph consists of d fea-
tures, represented as a vector hi = [hi j], j = 1, 2, 3, ..., d.
Each link ei j, between the ith and jth nodes in the graph is
associated with a weight pi j, which signifies the strength
of the link. We consider the weight to be normalised
between 0 and 1 and interpret the weight as the prob-
ability of the corresponding link ei j. In the following
subsections, we discuss the different types and sources
of uncertainty, and the existing literature on quantify-
ing their impact on model predictions in vanilla neural
networks and GNN.

2.1. Aleatoric Uncertainty in Graph Neural Networks
Aleatoric uncertainty refers to intrinsic randomness of

the data due to noisy or inaccurate measurements. In the
case of a GNN, the input data is in the form of graphs that
model a real-world network. This data consists of the
feature vectors hi of the nodes and probabilities/weights
pi j of the links. The different sources of aleatoric uncer-
tainty in GNN are as follows:

AU1 Measurement uncertainty associated with feature
vectors of nodes hi, i.e., the measured feature vec-
tors are considered as being the sum of true fea-
ture vectors (h∗i) and measurement noise (εi) as:
hi = xi + εi, with εi ∼ p(ε).

AU2 Structural uncertainty of the graph captured via
probabilities of links pi j, i = 1, 2, 3, ..., nV , j =

1, 2, 3, ..., nV .

Uncertainty AU1 refers to the uncertainty in features of
the nodes. The feature vectors can represent physical
quantities such as the coverage of a cell tower in a com-
munication network, or the functionalities of a protein in
a biological network. For instance, every node (research
article) in the citation dataset “Cora” is characterized by

2

a feature vector of size 1433, where each unit indicates
the absence/presence of predefined words from the dic-
tionary. These measured quantities can be uncertain in
many scenarios because of the sensing process or im-
precise information about the system. For example, in
a protein network, the exact functionality of all proteins
is rarely accurately known. This type of uncertainty
propagates through the layers of the GNN and ultimately
affects the model predictions.

Uncertainty AU2, on the other hand, represents the un-
certainty in the existence of links. In the protein network
scenario, the knowledge of interactions between different
proteins and protein complexes is also highly uncertain,
which results in probabilistic links between different
nodes. Since the interactions are derived through noisy
and error-prone lab experiments, each link is associated
with an uncertainty value [22]. For instance, a graph
with 5 nodes and binary weights of links has 25 = 32
possible configurations. In a graph with continuous val-
ued weights, these weights influence the extent to which
information between any two nodes is exchanged and
assimilated. This type of uncertainty therefore results in
fundamentally different information exchange and pro-
cessing through the graph.

A variety of Bayesian methods are used in the lit-
erature to handle aleatoric uncertainty in deep neural
networks [23, 24, 25, 26]. However, there are very few
works for GNN models. The authors in Zhang et al. [20]
propose a Bayesian framework using joint estimation of
graph structure and GNN parameters. The authors make
use of families of parametric random graphs to estimate
the structure and parameters. This makes the approach
sensitive to the choice of the random graph model and the
extent to which the random network can accurately rep-
resent the characteristics of the true underlying network.
As a result, inferences can be inconsistent for different
problems and datasets. Another significant drawback of
the technique is that the posterior inference of the graph
is carried out solely conditioned on the observed graph.
As a result, any information provided by the node fea-
tures and the training labels is completely disregarded.
Therefore, Pal et al. [21] proposed an alternative ap-
proach which formulates the posterior inference of the
graph in a non-parametric fashion, conditioned on the ob-
served graph, features and training labels. Precisely, they
obtain MAP estimate of graph, and conducted all the clas-
sification/regression tasks on this estimate. It is argued
that MAP estimate handles aleatoric uncertainty of the
input graph. However, the approach does not systemati-
cally define/quantify the sources of uncertainty and their
impact on the predictions. Specifically, the uncertainties
AU1 and AU2 are not considered in the framework. We

address these shortcomings by explicitly incorporating
AU1 and AU2 in our framework. Specifically, ADF is
leveraged to propagate the aleatoric uncertainty from the
input of the GNN to final node predictions through all
the intermediate layers.

2.2. Epistemic Uncertainty in Graph Neural Networks

Epistemic uncertainty is the scientific uncertainty in
the model that exists because of model in-competency
to completely explain the underlying process. A GNN
model Ξ(Θ) typically consists of several layers of com-
plex aggregation and combination operations followed
by feedforward processing. The different forms of epis-
temic uncertainty in the context of GNNs are:

EU1 Parametric uncertainty in the GNN model, i.e., the
parameters Θ of the GNN are assumed to be proba-
bilistic with a probability density function p(Θ)

EU2 Uncertainty in activation functions of neurons of
the GNN model

Uncertainty EU1 represents the uncertainty of the
learnable parameters Θ of the GNN model, and is rep-
resented by by placing a distribution over the neural
network weights. However, estimation of the posterior
density function of the parameters p(Θ|D) given the data
D is mathematically intractable to compute for deep neu-
ral networks and is approximated by different methods.
Among these methods, variational inference [27], and
sampling-based approaches [28] are the most effective
ones. Monte-Carlo sampling methods involve sampling
the parameters from a distribution and are generally ob-
tained using an ensemble of neural network predictions.
The prediction ensemble could either be generated by
differently trained networks [29], or by using dropout at
test-time [28].

Similar to aleatoric uncertainty, the literature on han-
dling epistemic uncertainty in GNN is limited. Zhang
et al.[20] and Pal et al. [21] are some of the few ef-
forts that generated multiple Monte-Carlo samples by
using dropout at test time. To address the problem of
huge dependency of Zhang et al.[20] on the assumed
random graph model, Hasan et al. [30] introduces a
stochastic regularization technique for GNN by adaptive
connection sampling. Specifically, it adaptively learns
the dropout rate for each layer of GNN. Akin to many of
the aforementioned methods, we use the dropout-at-test
approach to generate Monte-Carlo samples and estimate
the epistemic uncertainty in predictions.

Uncertainty EU2 represents the randomness in the ac-
tivation function of neurons in the GNN, and is not well
considered in the literature. We also restrict our analysis

3

to AU1, AU2 and EU1 in GNN and construct the total
uncertainty from the contributions of these components.

3. Methodology

A graph neural network typically involves two mod-
ules - node embedding and feedforward modules. The
node embedding module performs aggregation and com-
bination operations in the embedding layers of the model
and produces a vector of node embeddings. These opera-
tions capture the information propagation and processing
phenomena in networked data. The feedforward module
processes the node embeddings with non-linear transfor-
mations via feedforward layers and produces the final
output. We next describe the proposed approach for
quantification of the total uncertainty involved in GNN
models.

3.1. Problem definition
We consider a network G = (V, E) as described in

Section 2 where nodes are associated with noisy feature
vectors (AU1) and links are associated with probabilities
(AU2) as follows:

1. The noise in the features is considered to be Gaus-
sian with zero mean and known variance. For a
node u in the network, we have:

hu = h∗u + εu

εu ∼ N(0,Σu)
(1)

where h and h∗ are the measured and true feature
vector respectively, εu is the noise in feature vector
and Σu is a diagonal matrix consisting of the known
variances of noise in individual features. The noise
in the features of different nodes are assumed to be
uncorrelated, i.e., for any two nodes u and ν in the
network, we have:

E[εuεν] = 0

2. The probabilities puν of links are assumed to be
known a priori.

3. The learnable parameters Θ of the GNN are as-
sumed to be random variables with an unknown
probability density function:

Θ ∼ pΘ(ψ)

These sources of uncertainty result in a probabilistic
propagation of the feature vectors through the model, and
thus result in probabilistic outputs, i.e., ŷ ∼ p(y|h, p,Θ).
Obtaining the exact distribution of ŷ is mathematically

intractable. The problem of uncertainty quantification
considered here is to systematically obtain the variance
in the predictions because of the different sources of
uncertainty. In the following subsections, we discuss how
these effects are quantified in the proposed framework.

3.2. Propagation of Aleatoric Uncertainty in GNN

We propose a Bayesian approach to propagate the un-
certainty in feature vectors through a GNN while also
explicitly incorporating probabilistic links in the sys-
tem. We achieve this with Assumed Density Filtering
(ADF) and moment matching. We consider propagating
and matching the mean and variance of the probabil-
ity density function of outputs of all node embedding
and feedforward layers of the model. While this can
be achieved with existing approaches for feedforward
layers, the following result formalises the result for node
embedding layers.

Theorem 1. The expected value (µu) and variance
(vu) of the node embedding for node u, accounting for
aleatoric uncertainty AU1 and AU2 with mean aggrega-
tion and linear activation functions are:

µ(i)
u = θ(i)

C µ
(i−1)
u + θ(i)

A
1
|N(u)|

∑
ν∈N(u)

puνµ
(i−1)
ν (2)

v(i)
u = θ(i)2

C v(i−1)
u + θ(i)2

A
1

|N(u)|D(u)

∑
ν∈N(u)

p2
uνv

(i−1)
ν (3)

where the superscript (i) represents the corresponding
quantities of the ith node embedding layer; θC and θA

represent the parameters of the combination and ag-
gregation operations of GNN respectively; N(u) and
D(u) represent the neighbourhood and degree of node
u, respectively; puν represents the probability of the link
between nodes u and ν.

Proof. Consider the noisy feature vector for a node u of
the observed graph. This feature vector, along with the
probabilistic graph structure are fed as input to the GNN.
According to Eq. (1), feature vector can be expressed as:

hu ∼ N(h∗u,Σ) (4)

This random variable is processed by the node embed-
ding layers of the GNN model via aggregation and com-
bination operations. The aggregation operation in the
ith layer aggregates the embeddings of the neighbouring
nodes h(i−1)

N(u) in the (i−1)th embedding layer and is equiva-
lent to information collection operation from neighbours
in the network. The combination operation combines
the aggregated embeddings with the node embedding of

4

Figure 1: Proposed BGNN architecture for incorporating aleatoric and epistemic uncertainty in a GNN.

the node u and is equivalent to assimilating information
from a network. The operation performed by the ith node
embedding layer can be expressed as [31]:

h(i)
u = f (i)

(
h(i−1)

u , h(i−1)
N(u)

)
= g

[
θ(i)

C h(i−1)
u + θ(i)

A Ã
(
h(i−1)

N(u)
)] (5)

where g[·] represents the activation function and Ã(·)
denotes the aggregation operation. This operation is
performed recursively lg number of times for a GNN with
lg node embedding layers. The embeddings generated
at the ith layer are dependent solely on the embeddings
of the (i − 1)th layer. As a result, joint density of all
embeddings generated for a node u, i.e., p(h(0:lg)

u) can be
expressed as:

p
(
h(0:lg)

u
)

= p
(
h(0)

u
) lg∏

i=1

p
(
h(i)

u |h
(i−1)
u

)
p
(
h(i)

u |h
(i−1)
u

)
= δ

[
h(i)

u − f i
(
h(i−1)

u , h(i−1)
N(u)

)] (6)

where, δ[·] is the Dirac delta function. This process is
shown in Figure 1. Propagating the uncertainty through
the node embedding layers requires obtaining the joint
density function described in Eq. (6), which is mathe-
matically intractable.

We employ ADF to approximate the joint density
function. We choose ADF because of its low compu-
tational demand for a systematic propagation of uncer-
tainty through all layers of a neural network [32, 33].
ADF approximates this intractable distribution as fol-
lows (we remove the subscript u from the feature vector

for the sake of brevity):

p
(
h(0:lg)

)
≈ q

(
h(0:lg)

)
= q

(
h(0)

) lg∏
i=1

q
(
h(i)

)
(7)

ADF makes the first approximation by assuming that
the probability density of the embeddings in the differ-
ent layers are independent of each other. Furthermore,
q
(
h(i)

)
is assumed to be Gaussian, so that we have:

q
(
h(0)

)
= p

(
h(0)

)
q
(
h(i)

)
=

mi∏
j=1

N
(
µ(i)

j , v
(i)
j

) (8)

where mi represents the size of the embedding vector
at ith layer of the model, µ(i)

j and v(i)
j are the mean and

variance of the jth element of the embedding vector h(i).
The approximate joint density function of all node em-
beddings till the ith layer can be expressed as:

p̃
(
h(0:i)

)
= p

(
h(i)|h(i−1)

) i−1∏
j=0

q
(
h(j)

)
(9)

This step replaces the conditionals in Eq. (6) by the
corresponding approximations from Eq. (8) to obtain an
approximate density p̃

(
h(0:i)

)
. ADF then finds the best

approximate distribution q
(
h(0:i)

)
by minimizing the KL

divergence with p̃
(
h(0:i)

)
as:

q
(
h(0:i)

)
= arg min

q̃(h(0:i))
KL

(
q̃
(
h(0:i)

)
||p̃

(
h(0:i)

))
(10)

This can be solved by matching the moments between
the two distributions [34]. Thus, any layer h(i)

u =

5

f (i)
(
h(i−1)

u , h(i−1)
N(u)

)
can be converted into an uncertainty

propagation layer by matching first two moments as:

µ(i)
u = Eq

(
h(i−1)

u

) [f (i)
(
h(i−1)

u , h(i−1)
N(u)

)]
(11)

v(i)
u = varq

(
h(i−1)

u

) [f (i)
(
h(i−1)

u , h(i−1)
N(u)

)]
(12)

where, E and var are the expectation and variance op-
erators respectively. When the aggregation operation Ã
is the mean operator, and the activation function g(·) is
linear, substituting Eq. (5) in Eqs. (11) and (12) yields
Eqs. (2) and (3), and hence proves Theorem 1.

This makes use of the following two identities: (1)
Expectation of mean is equivalent to mean of expecta-
tions; and (2) Variance of means is the normalized form
of mean of variances.

Equations (11) and (12) can be determined analytically
for most of the functions used in neural network such
as ReLu, sigmoid, convolution, etc. For instance if the
function g is ReLu, then the modified mean and variance
are [35]:

µ̂u
(i)

(
µ(i)

u , v
(i)
u

)
= µ(i)

u Φ

 µ(i)
u

σ(i)
u

 + σ(i)
u φ

 µ(i)
u

σ(i)
u

 (13)

v̂u
(i)

(
v(i)

u , v
(i)
u

)
=

(
µ(i)

u + v(i)
u

)
Φ

 µ(i)
u

σ(i)
u

 +

σ(i)
u µ

(i)
u φ

 µ(i)
u

σ(i)
u

 − (
µ̂u

(i)
)2

(14)

where, σ(i)
u =

√(
v(i)

u

)
, Φ and φ are the cumulative nor-

mal and standard normal distributions, respectively. Ba-
sically, Eqs. (13) and (14) are recursive formulae to
compute mean

(
µ(i)

u

)
and uncertainty

(
v(i)

u

)
of the embed-

dings, given the parameters of the embedding distribu-
tion q

(
h(i−1)

)
in previous layer.

Typically, node embeddings from GNN are fed to feed-
forward layers for classification/regression task. There-
fore, µ(lg)

u , v(lg)
u serve as an input to feed-forward layers,

and mean and variance is propagated in a similar way as
shown in Gast & Roth [33], Loquercio et al. [14]. In a
nutshell, ADF reshapes the forward pass of a GNN to
generate not only output predictions µ(l)

u , but also their
respective aleatoric uncertainties v(l)

u . This is achieved
by considering two values per dimension of both em-
beddings in GNN layers as well as neural units in feed-
forward layers.

3.3. Propagation of Epistemic uncertainty in GNN
Epistemic uncertainty, also known as model uncer-

tainty refers to the model confidence on its prediction.
This uncertainty arises because of the single adoption of
weights out of many combinations that can attain same
loss values on training data. This is usually captured by
assuming a probability distribution for neural network
weights rather than a scalar value. However, computa-
tion of this distribution p(ω|X, y) is usually intractable.
Therefore, MC based approaches have been used to ob-
tain different weight samples by using dropout at test
time [36, 28, 37]. Specifically, in our case, epistemic
uncertainty is the variance of M MC samples obtained
via different dropout masks as shown below:

p(ω|X, y) ≈ q(Θ; φ) = Bernoulli(Θ; φ)

σ2
model =

1
T

M∑
t=1

(yt − ŷ)2 (15)

where, {yt}
M
t is a set of M sampled outputs for different

weight instances from the distribution ωt ∼ q(ω, φ) and
ŷ = 1

T
∑

t yt. Authors in Gal et al.[28] have shown that
the optimal dropout rate φ for the computation of σmodel
is same as training dropout rate.

3.4. Total uncertainty in GNN
Total variance of GNN predictions y for a sample node

with feature vector X corrupted by noise variance v0 can
be written as:

σtot =
1
T

T∑
t=1

v(L)
t +

(
µ(L)

t − µ̂
)2
,

where, µ̂ =
1
T

T∑
t=1

µ(L)
t .

(16)

The first term
(
v(L)

t

)
in denotes aleatoric variance and

the second term
(
µ(L)

t − µ̂
)2

represents the model uncer-
tainty from M MC predictions. L = lg + l f is the total
number of layers in GNN. Thus, the first part of total vari-
ance captures ensembles of propagated variance and the
second part handles the ensembles of mean prediction,
thereby, addressing both aleatoric and epistemic uncer-
tainty. The overall algorithm to compute total uncertainty
can be summarized in following steps: (i) Transform
GNN into a bayesian network by associating mean and
variance to each embedding vector and neuron unit; (ii)
Obtain M mean and variance predictions by forwarding(
X, v0

)
to network with weights ωt sampled from q(ω, φ);

(iii) Compute output predictions and its variances accord-
ing to Eq. (16).

6

4. Experiments

We apply our method to three standard datasets,
namely, Cora, Amazon Computers and PubMed, with
varying number of nodes, links, features and classes. The
details of these datasets are as follows:

1. Cora: This is a citation graph of scientific publi-
cations [38]. Each node in this network represents
a publication with binary features that indicate the
presence/absence of different words from the dic-
tionary. The edges represent citation links between
different publications.

2. Amazon Computers: This is a subgraph of the
Amazon co-purchase graph [39], where each node
represents a product and two nodes are connected
by an edge if those two products are frequently
bought together.

3. PubMed: This is a network of scientific publica-
tions from PubMed database pertaining to diabetes
[38]. Each node is described by a TF/IDF weighted
word vector from a dictionary and the undirected
edges correspond to the citation links.

These datasets encompass a wide range of graph-
theoretic properties, i.e., numbers of nodes and links,
dimension of feature vectors, average degree of nodes
and average clustering coefficient. These properties of
the datasets are summarized in Table 1.

Table 1: Summary of the datasets considered. Avg. Deg.: Average
Degree, Avg. CC: Average clustering coefficient.

Dataset Nodes Links Features Classes Avg. Deg. Avg. CC
Cora 2708 5429 1433 7 4.00 0.24
Amazon
Computers 13752 491722 767 10 36.74 0.35

PubMed 19717 44338 500 3 6.34 0.06

In order to test the effectiveness and generalizability of
the method, we address the node classification task in the
three networks with 3, 7 and 10 classes. We compare the
method with the state-of-the-art in the literature [21] and
highlight the stark contrast in computational efficiency
and quantification of uncertainty. We also demonstrate
this ability of the model to capture the uncertainty via a
sensitivity study. It is important to note that the training
of GNN is accomplished with standard cross entropy loss
function that solely involves the mean prediction. As a
part of future work, both mean and variance will be incor-
porated in the loss function via conditional log likelihood.
This will allow using the information about estimated un-
certainties for improving model performance/robustness,
rather than just quantifying it.

4.1. Baselines

We compare the performance of the proposed method
with Bayesian Graph Convolutional Network (BGCN)
proposed by [21]. This work captures the aleatoric uncer-
tainty through MAP estimation of the network structure
and quantifies the epistemic uncertainty with Monte-
Carlo sampling. However, uncertainties AU1 and AU2
are not explicitly incorporated. Moreover, the MAP es-
timation is dependent on accurate knowledge of node
features, and hence the method is incapable of handling
AU1. Finally, the approach is computationally expensive
because of the MAP estimation step. These drawbacks
are addressed with our method through explicit incorpo-
ration of uncertainty with the added advantage of reduced
computational complexity.

4.2. Experimental Setup

All training and evaluation experiments are performed
on a computer with Intel i9-4820K processor running at
3.70GHz with 8 cores, one Nvidia RTX 2080 Ti GPU
with 12 GB memory, and 64 GB RAM. The implemen-
tation is performed with the help of deep graph library
in PyTorch. Evaluation is repeated 100 times and aver-
age of metrics are reported for each dataset described in
Section 4.4.

GNN is trained with the GraphSAGE algorithm [31].
The detailed architecture of the GNN is as follows:
Depth i.e., no. of node embedding modules: 2; no. of
neurons in 2 layers: 64, 32; no. of Multi-layer percep-
tron (MLP) layers: 3; no. of neurons in MLP layers:
12,8,1; Activation function: Linear (except last layer
with softmax); Aggregation function: Mean.

The data is divided into training, validation and test-
ing subsets by randomly masking 70%, 10% and 20%
of the nodes respectively. Since the core task of the
GNN is node classification, the node embeddings are
concatenated with feedforward layers to provide class
probabilities. The loss function is categorical cross en-
tropy with ADAM optimizer.

The training is carried out in a mini-batch manner.
The batch size is set to 50, the learning rate is set to
0.001 with a dropout rate of 0.1. The models are trained
50 epochs in total.

4.3. Sources of Uncertainty

We introduce uncertainty in nodes feature (AU1) by
adding Gaussian white noise to the true feature values
with zero mean and a known variance as shown in Eq. (1).
The proposed method is compared with the baseline with
different levels of noise. The variance of noise is also
varied to highlight the ability of the proposed method to

7

capture the impact of this noise as it propagates through
the model. We introduce uncertainty in links (AU2)
with probability of nodes. These probabilities are not
available in the datasets for all links in the networks. We
therefore perform link prediction in a supervised manner
following the approach presented by Zhang & Chen [40]
and obtain the probabilities of links. These predicted
probabilities are then used for training Bayesian models
in the proposed method. We introduce uncertainty in
parameters of GNN (EU1) with a Bernoulli distribution
of parameters according to Eq. (15).

4.4. Results

The results demonstrate the computational efficiency
of the proposed approach, the ability to reflect different
levels of uncertainty in predictions and generalizability
of the approach. The source code to regenerate all the
results can be accessed at this link.

4.4.1. Adequacy of BGNN
We compare the proposed approach in this paper with

Pal et al. [21]. To the best of authors’ knowledge, Pal
et al. [21] is the only work in the literature that deals
with aleatoric uncertainty in GNN. A summary of results
evaluated on Cora dataset based on 100 MC runs ob-
tained via different dropout masks is presented in Table
2. The results in Table 2 show that the proposed method
yields higher classification accuracy as compared to the
baseline BGCN in all the cases of input variance. In
this work, we specify input variance as the percentage
of mean features across all nodes in the dataset. The
similar trends were observed in PubMed and Amazon
Computers datasets as well. This demonstrates that learn-
ing MAP estimate of the input graph does not add much
value in quantifying uncertainty related to noisy node
feature vectors and link weights. On the other hand, the
proposed method systematically propagates uncertain-
ties through all the layers of GNN, as discussed in the
forthcoming subsections.

Table 2: Performance comparison of BGCN and BGNN on Cora
dataset (average of 100 MC runs). Standard deviation is shown under-
neath the average classification accuracy.

Input Variance Classification Accuracy (%)
BGCN BGNN (ours)

0.0% 97.71 ± 0.0 97.96 ± 0.0
2.5% 89.25 ± 0.00357 90.21 ± 0.00311
5.0% 76.16 ± 0.00966 78.11 ± 0.0088

12.0% 58.60 ± 0.01153 61.22 ± 0.0108

4.4.2. Effectiveness of BGNN
We demonstrate the effectiveness of the proposed ap-

proach by selecting a few samples from the datasets
randomly, and examining the variations in class proba-
bilities with changes in input variance. Table 3 presents
a summary of the results for three random samples, one
from each class of the PubMed dataset. Firstly, it can
be seen that the class probabilities corresponding to the
true class decreases with increase in the levels of in-
put variance. This is intuitive as a higher amount of
input variance will introduce more uncertainty in the
network, specifically in the node embeddings of GNN
layers, thereby leading to reduction in class probabilities
(i.e., moving towards a more uniform distribution). Sec-
ondly, in some cases like Sample ID 28, increasing levels
of input variance may lead to mis-classification. This is
because the prediction probability corresponding to the
true class in no variance case is much lesser as compared
to other samples. Finally, the total propagated variance at
the output is observed to increase with increase in input
variance across all samples. These examples illustrate
the systematic propagation of uncertainties across all
layers of GNN for different cases of input variance.

Table 3: Longitudinal analysis of a few test samples selected at random
from PubMed dataset. The values of prediction probabilities corre-
spond to the class probabilities of true class for the respective samples.
The values in bold indicate the misclassification at corresponding vari-
ance levels. The values of total propagated variance are the averages
of total propagated variances across all classes.

Sample
ID

True
Class

Metrics across different levels of input variance
Prediction Probabilities Total propagated variance

0.0% 2.5% 5.0% 12.0% 0.0% 2.5% 5.0% 12.0%
12 1 0.923 0.835 0.767 0.578 0.0003 0.0031 0.0062 0.0166
13 2 0.775 0.716 0.689 0.635 0.0031 0.0081 0.0119 0.0218
28 3 0.551 0.353 0.262 0.131 0.0023 0.0034 0.0044 0.0063

4.4.3. Generalizability of BGNN
The generalizability of proposed approach is exam-

ined by performing experiments over graphs of different
sizes and characteristics. The model performance is
evaluated using classification accuracy. Owing to the
absence of ground truth for variance assessment, it is
evaluated using average per-class negative log likelihood
(NLL) [37, 33, 14]. The value of NLL for a specific class
is evaluated as:

NLL =
1
2

log(σtot) +
1

2σtot
(y − ŷ)2 (17)

where, ŷ is the mean prediction of class probabilities
across 100 MC runs and y is a 0/1 value indicating
whether the given node belongs to a specific class. σtot
is the total variance comprising of propagated input vari-
ance and that due to model uncertainty. Tables 4, 5 and

8

https://github.com/saimunikoti/Uncertainty-BGNN

6 depict the metrics values for Cora, Amazon Comput-
ers and PubMed datasets, respectively. These values
are obtained based on the average of 100 MC runs, and
mean of per-class NLL is reported. It can be observed
for all the datsets that the mean classification accuracy
of the model decreases with the increase in the input
variance. It is intuitive in a sense that as variance in the
input feature vector increases, it consistently becomes
hard for the model to uniquely identify nodes with the
node embeddings and thereby their labels. This idea is
also reinforced by the increasing values of prediction
loss observed with increase in input variance.

The total variance propagated at output (σtot) in all
the cases is also indicated in Tables 4 - 6. It can be seen
that σtot lies between 0 and 1 in all the cases of datsets
considered in this work. Therefore, the first term in right
hand side (RHS) of eq. (17) will always be negative. If
the values of σtot are relatively higher, as in Cora (Table
4) and Amazon Computers (Table 5) datasets, the val-
ues of first term in eq. (17) dominate, the second term
will not be positive enough and consequently, the overall
NLL values turn out to be negative. In these cases, the
NLL values increase with increase in input variance as
log(σtot) is a monotonically increasing function. This
is clearly evident from the NLL values in Tables 4 and
5. On the other hand, if the values of σtot are relatively
lower, as in PubMed (Table 6) dataset, the values of
second term in eq. (17) dominate and the overall NLL
values are positive. In such cases, the NLL values de-
crease with increase in input variance, as observed in
Table 6. Thus, NLL demonstrates the high quality esti-
mates of uncertainty without changing or re-training the
GNN.

Table 4: Results for Cora dataset (average of 100 MC runs). Input
variance is specified as percentage of mean features across all nodes in
the dataset.

Input
Variance

Classification
Accuracy

Prediction
Loss

Avg. per
class NLL

Variance
propagated
at Output

0.0% 97.96% 0.19 - -
2.5% 90.21% 0.45 -0.98 0.12
5.0% 78.11% 0.76 -0.65 0.24

12.0% 61.22% 1.64 -0.23 0.57

Table 5: Results for Amazon-copurchase computer dataset

Input
Variance

Classification
Accuracy

Prediction
Loss

Avg. per
class NLL

Variance
propagated
at Output

0.0% 82.56% 0.599 - -
2.5% 81.88 % 0.624 -1.58 0.0137
5.0% 80.79 % 0.6435 -1.47 0.0246

12.0% 78.26 % 0.6938 -1.24 0.0549

Table 6: Results for PubMed dataset.

Input
Variance

Classification
Accuracy

Prediction
Loss

Avg. per
class NLL

Variance
propagated
at Output

0.0% 84.00% 0.40 - -
2.5% 82.83% 0.46 10.75 0.0029
5.0% 80.70% 0.52 6.83 0.0046

12.0% 76.03% 0.70 3.90 0.0092

5. Conclusions

In this paper, we propose a generic framework for in-
corporating aleatoric and epistemic uncertainty in GNN.
The aleatoric uncertainty arising from imprecise informa-
tion about graph structure (probabilistic links) and node
features is propagated via ADF. On the other hand, epis-
temic uncertainity arising from the probabilistic param-
eters of GNN model is quatified through MC sampling.
The proposed method, BGNN, systematically propagates
these uncertainites through the layers of GNN to final
predictions without the need of retraining. Furthermore,
this method is agnostic to network architecture, algo-
rithm and the learning tasks. Experimental results show
that BGNN achieves superior performance in quantify-
ing unceratinites for different levels of input noise across
several types of graphs. The future extension of this work
shall focus on leveraging this knowledge of propagated
uncertainty to modify training objectives and thereby,
improve model performance and robustness.

Acknowledgement

This material is based upon work supported by Na-
tional Science Foundation under award number 1855216.

References

[1] A. Rassil, H. Chougrad, H. Zouaki, Augmented graph neural net-
work with hierarchical global-based residual connections, Neural
Networks 150 (2022) 149–166.

[2] W. Ju, X. Luo, Z. Ma, J. Yang, M. Deng, M. Zhang, Ghnn:
Graph harmonic neural networks for semi-supervised graph-level
classification, Neural Networks 151 (2022) 70–79.

[3] H. Liu, J. Zhang, Q. Liu, J. Cao, Minimum spanning tree based
graph neural network for emotion classification using eeg, Neural
Networks 145 (2022) 308–318.

[4] A. Ali, Y. Zhu, M. Zakarya, Exploiting dynamic spatio-temporal
graph convolutional neural networks for citywide traffic flows
prediction, Neural networks 145 (2022) 233–247.

[5] H. Jiang, L. Li, Z. Wang, H. He, Graph neural network based
interference estimation for device-to-device wireless commu-
nications, in: 2021 International Joint Conference on Neural
Networks (IJCNN), IEEE, 2021, pp. 1–7.

[6] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, M. Bennamoun,
Hands-on bayesian neural networks–a tutorial for deep learning
users, arXiv preprint arXiv:2007.06823 (2020).

9

[7] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, R. Fergus, Intriguing properties of neural net-
works, arXiv preprint arXiv:1312.6199 (2013).

[8] S. Munikoti, L. Das, B. Natarajan, Bayesian graph neural net-
work for fast identification of critical nodes in uncertain complex
networks, arXiv preprint arXiv:2012.15733 (2020).

[9] S. Munikoti, L. Das, B. Natarajan, Scalable graph neural network-
based framework for identifying critical nodes and links in com-
plex networks, Neurocomputing 468 (2022) 211–221.

[10] Y. Gal, R. Islam, Z. Ghahramani, Deep bayesian active learn-
ing with image data, in: International Conference on Machine
Learning, PMLR, 2017, pp. 1183–1192.

[11] K. Madhawa, T. Murata, Active learning for node classification:
An evaluation, Entropy 22 (10) (2020) 1164.

[12] W. J. Maddox, P. Izmailov, T. Garipov, D. P. Vetrov, A. G. Wilson,
A simple baseline for bayesian uncertainty in deep learning,
Advances in Neural Information Processing Systems 32 (2019)
13153–13164.

[13] F. Liu, P. Zhou, S. J. Baccei, M. J. Masciocchi, N. Amornsiripan-
itch, C. I. Kiefe, M. P. Rosen, Qualifying certainty in radiology
reports through deep learning–based natural language processing,
American Journal of Neuroradiology 42 (10) (2021) 1755–1761.

[14] A. Loquercio, M. Segu, D. Scaramuzza, A general framework
for uncertainty estimation in deep learning, IEEE Robotics and
Automation Letters 5 (2) (2020) 3153–3160.

[15] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. R.
Acharya, et al., A review of uncertainty quantification in deep
learning: Techniques, applications and challenges, Information
Fusion (2021).

[16] Z. Xiao, J. Shen, X. Zhen, L. Shao, C. G. Snoek, A bit more
bayesian: Domain-invariant learning with uncertainty, arXiv
preprint arXiv:2105.04030 (2021).

[17] P.-H. Chen, W. Wei, C.-J. Hsieh, B. Dai, Overcoming catas-
trophic forgetting by bayesian generative regularization, in: In-
ternational Conference on Machine Learning, PMLR, 2021, pp.
1760–1770.

[18] Z. Javed, D. S. Brown, S. Sharma, J. Zhu, A. Balakrishna,
M. Petrik, A. D. Dragan, K. Goldberg, Policy gradient bayesian
robust optimization for imitation learning, arXiv preprint
arXiv:2106.06499 (2021).

[19] H. Wang, D.-Y. Yeung, A survey on bayesian deep learning,
ACM Computing Surveys (CSUR) 53 (5) (2020) 1–37.

[20] Y. Zhang, S. Pal, M. Coates, D. Ustebay, Bayesian graph convo-
lutional neural networks for semi-supervised classification, in:
Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 33, 2019, pp. 5829–5836.

[21] S. Pal, F. Regol, M. Coates, Bayesian graph convolutional neural
networks using non-parametric graph learning, arXiv preprint
arXiv:1910.12132 (2019).

[22] S. Asthana, O. D. King, F. D. Gibbons, F. P. Roth, Predicting pro-
tein complex membership using probabilistic network reliability,
Genome research 14 (6) (2004) 1170–1175.

[23] A. Graves, Practical variational inference for neural networks,
Advances in neural information processing systems 24 (2011).

[24] C. Blundell, J. Cornebise, K. Kavukcuoglu, D., wierstra. weight
uncertainty in neural network, in: Proceedings, of the 32nd
International Conference on Machine Learning,(ICML-15), 2015,
pp. 1613–1622.

[25] J. M. Hernández-Lobato, R. Adams, Probabilistic backpropa-
gation for scalable learning of bayesian neural networks, in:
International conference on machine learning, PMLR, 2015, pp.
1861–1869.

[26] Y. Mae, W. Kumagai, T. Kanamori, Uncertainty propagation for
dropout-based bayesian neural networks, Neural Networks 144

(2021) 394–406.
[27] D. P. Kingma, T. Salimans, M. Welling, Variational dropout and

the local reparameterization trick, Advances in neural informa-
tion processing systems 28 (2015) 2575–2583.

[28] Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation:
Representing model uncertainty in deep learning, in: interna-
tional conference on machine learning, PMLR, 2016, pp. 1050–
1059.

[29] K. Lee, Z. Wang, B. Vlahov, H. Brar, E. A. Theodorou, Ensem-
ble bayesian decision making with redundant deep perceptual
control policies, in: 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), IEEE, 2019,
pp. 831–837.

[30] A. Hasanzadeh, E. Hajiramezanali, S. Boluki, M. Zhou,
N. Duffield, K. Narayanan, X. Qian, Bayesian graph neural
networks with adaptive connection sampling, in: International
conference on machine learning, PMLR, 2020, pp. 4094–4104.

[31] W. L. Hamilton, R. Ying, J. Leskovec, Inductive representation
learning on large graphs, in: Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017, pp.
1025–1035.

[32] X. Boyen, D. Koller, Tractable inference for complex stochastic
processes, arXiv preprint arXiv:1301.7362 (2013).

[33] J. Gast, S. Roth, Lightweight probabilistic deep networks, in:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 3369–3378.

[34] T. P. Minka, A family of algorithms for approximate bayesian
inference, Ph.D. thesis, Massachusetts Institute of Technology
(2001).

[35] B. J. Frey, G. E. Hinton, Variational learning in nonlinear gaus-
sian belief networks, Neural Computation 11 (1) (1999) 193–213.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
R. Salakhutdinov, Dropout: a simple way to prevent neural net-
works from overfitting, The journal of machine learning research
15 (1) (2014) 1929–1958.

[37] A. Kendall, Y. Gal, What uncertainties do we need in
bayesian deep learning for computer vision?, arXiv preprint
arXiv:1703.04977 (2017).

[38] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-
Rad, Collective classification in network data, AI magazine 29 (3)
(2008) 93–93.

[39] J. McAuley, C. Targett, Q. Shi, A. Van Den Hengel, Image-based
recommendations on styles and substitutes, in: Proceedings of
the 38th international ACM SIGIR conference on research and
development in information retrieval, 2015, pp. 43–52.

[40] M. Zhang, Y. Chen, Link prediction based on graph neural net-
works, Advances in Neural Information Processing Systems 31
(2018) 5165–5175.

10

	1 Introduction
	1.1 Contributions

	2 Background and Related Work
	2.1 Aleatoric Uncertainty in Graph Neural Networks
	2.2 Epistemic Uncertainty in Graph Neural Networks

	3 Methodology
	3.1 Problem definition
	3.2 Propagation of Aleatoric Uncertainty in GNN
	3.3 Propagation of Epistemic uncertainty in GNN
	3.4 Total uncertainty in GNN

	4 Experiments
	4.1 Baselines
	4.2 Experimental Setup
	4.3 Sources of Uncertainty
	4.4 Results
	4.4.1 Adequacy of BGNN
	4.4.2 Effectiveness of BGNN
	4.4.3 Generalizability of BGNN

	5 Conclusions

