
Lawrence Berkeley National Laboratory
Recent Work

Title
A general framework for quantitatively assessing ecological stochasticity.

Permalink
https://escholarship.org/uc/item/74s9j2rr

Journal
Proceedings of the National Academy of Sciences of the United States of America, 116(34)

ISSN
0027-8424

Authors
Ning, Daliang
Deng, Ye
Tiedje, James M
et al.

Publication Date
2019-08-01

DOI
10.1073/pnas.1904623116
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/74s9j2rr
https://escholarship.org/uc/item/74s9j2rr#author
https://escholarship.org
http://www.cdlib.org/


A general framework for quantitatively assessing ecological 
stochasticity

Daliang Ninga,b,c, Ye Denga,b,d,e, James M. Tiedjef,1, and Jizhong Zhoua,b,c,g,1

a Institute for Environmental Genomics, Department of Microbiology and 
Plant Biology, University of Oklahoma, Norman, OK 73019; b School of Civil 
Engineering and Environmental Sciences, University of Oklahoma, Norman, 
OK 73019; c State Key Joint Laboratory of Environment Simulation and 
Pollution Control, School of Environment, Tsinghua University, 100084 
Beijing, China; d Research Center for Eco-Environmental Sciences, Chinese 
Academy of Sciences, 100085 Beijing, China; e Institute for Marine Science 
and Technology, Shandong University, 266237 Qingdao, China; f Center for 
Microbial Ecology, Michigan State University, East Lansing, MI 48824; and g 
Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, 
Berkeley, CA 94720
1 To whom correspondence may be addressed. Email: tiedjej@msu.edu or 
jzhou@ou.edu

Abstract

Understanding the community assembly mechanisms controlling biodiversity
patterns is a central issue in ecology. Although it is generally accepted that 
both deterministic and stochastic processes play important roles in 
community assembly, quantifying their relative importance is challenging. 
Here we propose a general mathematical framework to quantify ecological 
stochasticity under different situations in which deterministic factors drive 
the communities more similar or dissimilar than null expectation. An index, 
normalized stochasticity ratio (NST), was developed with 50% as the 
boundary point between more deterministic (<50%) and more stochastic 
(>50%) assembly. NST was tested with simulated communities by 
considering abiotic filtering, competition, environmental noise, and spatial 
scales. All tested approaches showed limited performance at large spatial 
scales or under very high environmental noise. However, in all of the other 
simulated scenarios, NST showed high accuracy (0.90 to 1.00) and precision 
(0.91 to 0.99), with averages of 0.37 higher accuracy (0.1 to 0.7) and 0.33 
higher precision (0.0 to 1.8) than previous approaches. NST was also applied 
to estimate stochasticity in the succession of a groundwater microbial 
community in response to organic carbon (vegetable oil) injection. Our 
results showed that community assembly was shifted from more 
deterministic (NST = 21%) to more stochastic (NST = 70%) right after 
organic carbon input. As the vegetable oil was consumed, the community 
gradually returned to be more deterministic (NST = 27%). In addition, our 
results demonstrated that null model algorithms and community similarity 
metrics had strong effects on quantifying ecological stochasticity.

Keywords: stochasticity | community assembly | microbial ecology



One of the major goals in community ecology is to understand the processes 
and mechanisms underlying the biodiversity patterns across space and time 
(1–5). There are 2 types of processes controlling community assembly: 
deterministic and stochastic. The former is generally referred to as any 
ecological process that involves nonrandom, niche-based mechanisms, 
including environmental filtering (e.g., pH, temperature, moisture, and 
salinity) and various biological interactions (e.g., competition, facilitation, 
mutualisms, predation, and tradeoffs) (3, 5–7). In contrast, the latter signifies
ecological processes generating community diversity patterns 
indistinguishable from random chance alone, which typically include random 
birth–death events, probabilistic dispersal (e.g., random chance for 
colonization), and ecological drift (random changes in organism abundances)
(2, 3, 5, 7, 8). After over a decade’s debate, now it is generally believed that 
both deterministic and stochastic processes work together simultaneously in 
structuring ecological communities (9–11). However, determining their 
relative importance in governing community diversity, especially in microbial
ecology, is still challenging (3, 5, 12, 13). Quantifying their relative 
importance is even more difficult (14).

Several different types of approaches have been used to infer the 
importance of deterministic and stochastic processes in determining 
ecological communities (4), including multivariate analysis (15–17), null 
modeling (18–20), and theory-based approaches (2, 21). Null model-based 
methods are most widely used (5–7, 13, 19, 20, 22–27). However, most null 
model-based inferences on community assembly mechanisms are qualitative
rather than quantitative (6, 7, 13, 19, 22, 25). Previously, we proposed 
selection strength (SS) to quantify the relative importance of determinism 
and stochasticity in a fluidic groundwater ecosystem in response to a carbon 
source addition, in this case emulsified vegetable oil (EVO) to stimulate 
bioremediation (5). EVO has low solubility and provides diverse organic 
carbon sources for longer-term stimulation of the microbial community. The 
selection strength for a pairwise comparison is defined as the proportion of 
the difference between the observed similarity and the null expected 
similarity divided by the observed similarity, and their average across all 
pairwise comparisons is used as a quantitative index for measuring the 
importance of determinism vs. stochasticity (5). Since its publication, many 
readers have expressed interest in using this approach in their studies. This 
approach, however, is not general enough and sometimes gave values 
exceeding expected maximum (>100%) because it only considers the 
situation when deterministic forces drive communities more similar than 
random patterns. Thus, in this study, we refined the model to suit more 
general situations in quantifying ecological stochasticity underlying 
community assembly. We first developed a general mathematical framework
with a normalized index, followed by testing it with different simulated 
communities by considering environmental noise, biotic interactions, and 
spatial scales. We then used it to reassess the importance of determinism 



and stochasticity in mediating the succession of groundwater microbial 
communities in response to organic carbon injection (5). In addition, we 
evaluated the effects of different null model algorithms and similarity metrics
on quantitative assessment of stochasticity in governing the groundwater 
microbial community assembly in response to the carbon amendment. To 
avoid confusion, in this paper, we refer to the random changes in community
structure with respect to species identities and/or functional traits due to 
stochastic processes of birth, death, immigration and emigration, 
spatiotemporal variation, and/or historical contingency as “ecological 
stochasticity” (or stochasticity if not specified) (4) and the random 
fluctuations of deterministic environmental factors (e.g., temperature, 
moisture, and salinity) over space and time as “environmental noise,” which 
is also commonly called “environmental stochasticity” (28, 29). In addition, 
“community similarity” (or “dissimilarity”) here serves as a general term to 
describe any measure used to quantify the resemblance (or difference) 
between 2 local communities.

Mathematical Framework.

Theoretically, deterministic processes can drive ecological communities 
more similar or more dissimilar than null expectation (12, 30, 31). For 
instance, since phylogenetically closely related species are ecologically more
similar, they could cooccur more than expected upon abiotic environmental 
selection (32). Thus, this type of deterministic process (e.g., environmental 
filtering) is expected to drive the community to be more similar under 
homogeneous environmental conditions or more dissimilar if the 
environment is heterogeneous. In contrast, some other deterministic factors 
(e.g., competition and trophic interactions) generally drive the communities 
to be more dissimilar because closely related species should cooccur less 
than randomly expected due to competitive exclusion (31, 33). However, 
competition could also cause communities to be more similar if competitive 
exclusion could eliminate more different and less related species which lack 
certain competitive traits (30, 31). We provide quantitative assessment of 
community assembly mechanisms by considering both situations below.

Assume that there is a metacommunity consisting of m communities. Let Cij 
represent the observed similarity (ranging from 0 to 1) between the ith 

community and the jth community . If a similarity metric 
does not range from 0 to 1, it can be standardized (SI Appendix, 
Supplementary Text A). Dij is the dissimilarity between the ith community 

and the jth community, that is, . Let Eij represent the randomly 
expected similarity between the ith community and the jth community after 
randomization of the metacommunity, which is repeated for 1,000 times to 

generate a set of null expected communities. Then, we will have  as the 
average of the null expected similarity between the ith and jth communities.



 is the average of the null expected dissimilarity between the ith and jth 
communities. The SD of the null expected similarity is Vij.

If communities are structured by the deterministic factors leading to 
communities more similar, the actual similarity values (Cij) between the ith 

and the jth communities will be greater than the null expectation . Thus,
the difference between the observed and average null expectation can be 
used to assess the strength of determinism acting against otherwise 
stochastic forces with respect to the ith and jth communities (18), which is 

referred to as selection strength between the ith and jth communities 
(5), ranging from 0 to 1. In this case,

so-called type A selection strength. Correspondingly, the type A stochasticity
ratio is

If communities are structured by the deterministic factors which produce 
communities more dissimilar, the actual similarity values (Cij) between the 
ith and the jth communities should be less than the null expectation between

 with a SD Vij (i.e., ). In other words, the actual dissimilarity,

 will be larger than the randomly expected dissimilarity,

. The larger the differences between the actual dissimilarity 
and the null expected dissimilarity, the greater the roles of this type of 
deterministic factors. Thus, in this case, we should use dissimilarity to 

measure the selection strength , that is,

so-called type B selection strength. Correspondingly, the type B stochasticity
ratio is



Let nA and nB be the numbers of the pairwise similarities which are larger or 
less than null expectations, respectively; then the total number of pairwise 
comparisons (n) is the sum of nA and nB. The average of the selection 
strength of type A, type B, and total are

The average strength of stochasticity (ST) is

Ideally, if the community assembly is extremely deterministic without any 
stochasticity, the selection strength index should be 100%, and the 
stochasticity index should be 0%. Similarly, when the community assembly is
completely stochastic without any determinism, the selection strength index 
should be 0%, and the stochasticity index should be 100%. However, the SS 

and ST described above do not necessarily vary from 0 to 100% because 
always have substantial deviations from 0 and 1. We applied the following 
formula to obtain normalized selection strength (NSS) and normalized 
stochasticity ratio (NST), which range from 0 to 100%, and hence, they could
be better measures than SS and ST for assessing determinism and 
stochasticity (see SI Appendix, Supplementary Text B, for mathematical 
details).



where DSS and TSS are the extreme values of SS under completely 
deterministic and stochastic assembly, respectively. The superscript A and B 

indicate type A  and type B  pairwise comparisons.

 is the similarity between community i and j under extremely 

deterministic assembly.  is one of the null expected values of similarity 
between community i and j under stochastic assembly. ξ is a generalized 
function for SSij under observed, extremely deterministic, or stochastic 
assembly.

Results

Validation with Simulated Communities.

Since there is not yet a gold-standard experimental dataset for assessing the
relative importance of determinism and stochasticity, simulated communities
with known levels of stochasticity are needed. In the simulated communities,
the ground truth of assembly processes is known, and hence, the 
performances with different approaches can be systematically evaluated. In 
this study, we used a spatially implicit model which simply considers the 
communities under the scenario of type A selection. The communities consist



of a combination of 2 types of species: one is under completely deterministic
assembly (so-called deterministic species), and the other is under completely
stochastic assembly (so-called stochastic species). The levels of stochasticity
were predetermined by assigning different ratios of stochastic species. We 
simulated 21 datasets with different levels of expected stochasticity ranging 
from 0 to 100% (see SI Appendix, Supplementary Text C, Table S1, and Fig. 
S1A, for details). The synthetic datasets were used to evaluate the 
performance of ST, NST, and the neutral species percentage (NP) calculated 
from Sloan’s neutral model (34, 35), based on the accuracy and precision 
coefficients derived from concordance correlations (36, 37).

NST had considerably higher accuracy and precision than ST, which was in 
turn better than NP for the majority of similarity metrics examined (Fig. 1 
and SI Appendix, Table S2). Also, the performance of NST varied 
substantially with similarity metrics. The 13 incidence-based metrics tested 
can be classified into 3 major categories based on relative ratio of unique 
taxa (e.g., Jaccard), the number of unique taxa (e.g., Manhattan), or the 
squared root of the number of unique taxa (Euclidean and modified 
Euclidean) (SI Appendix, Supplementary Text A). NST had high accuracy and 
precision (>0.99) with all incidence-based metrics (SI Appendix, Table S2). 
About 2 to 3 times of differences in accuracy and precision were observed for
NST with various abundance-based similarity metrics (SI Appendix, Table 
S2). The 15 abundance-based metrics tested can be categorized into 4 major
groups based on relative difference (e.g., Ružička), average relative 
difference (e.g., Canberra), absolute difference (e.g., Manhattan), and 
squared sum of difference (e.g., Euclidean) (SI Appendix, Supplementary 
Text A). Abundance-based NST showed very high accuracy and precision 
(>0.95) with all relative difference metrics (Ružička, Bray–Curtis, Kulczynski, 
and Chao), some average relative difference (modified Gower), and some 
absolute difference metrics (Manhattan and modified Manhattan) but always 
worse using squared-sum metrics (SI Appendix, Table S2). In addition, it 
seems that the performance of NST and ST indexes varied with stochasticity 
levels. For instance, at lower stochasticity levels (0 to 5%), NST performed 
much better than ST (22 to 50% improvement) (Fig. 1). At the high 
stochasticity levels, ST showed similar or slightly higher accuracy than NST 
(Fig. 1). By considering their overall performance, characteristics, and 
popularity, NST based on Jaccard/Ružička similarity metrics is recommended 
for estimating the magnitude of stochasticity in community assembly.



Since community diversity patterns and the underlying assembly 
mechanisms are scale dependent (38), we also evaluated the accuracy and 
precision of different stochasticity indexes using spatially explicit models by 
considering scales, environmental noise, and biotic competitive interactions 
(Fig. 2 and SI Appendix, Supplementary Text C, Figs. S1B and S2, and Table 
S1). Communities and metacommunities were constructed in a hierarchical 
way to simulate different spatial scales, including cells (local communities), 
plots, sites, regions, continents, and global (Fig. 2A and SI Appendix, Fig. 
S1B). These scale levels used are to facilitate description of multilevel scales 
but do not mean the corresponding real spatial scales. Scale dependence 
was examined by estimating stochasticity in pairwise comparisons among all
samples within individual spatial scales, and the main results were 
summarized as below (Fig. 2 and SI Appendix, Fig. S2). First, in contrast to ST 
and NP, NST showed high accuracy and precision (both coefficients >0.9) at 
local scale (i.e., plot and site levels) in all scenarios (Fig. 2 and SI Appendix, 
Fig. S1B) except that with very high environmental noise (σt/σf = 200%, 
where σt is temperature deviation and σf is fitness deviation as defined in SI 

Appendix, Supplementary Text C and Fig. S2C). Second, all of the approaches
examined (NST, ST, and NP) showed scale dependence. The accuracy and/or 
precision of stochasticity estimation dramatically decreased at larger spatial 



scales (e.g., global scale in all scenarios; Fig. 2 and SI Appendix, Fig. S2 B and
C), suggesting that it might be better to apply NST and other null/neutral 
model-based approaches to study community assembly at local scale (e.g., 
within plot or site). Under the scenario of competition without noise (Fig. 2D),
NST had high accuracy and precision below site scales but not above 
regional scales, suggesting the influence of competition on diversity patterns
could be very sensitive to spatial scale. Third, NST precision considerably 
decreased if sample size was very small (≤6 samples in our simulation; SI 

Appendix, Fig. S2A), although accuracy did not. Fourth, none of the tested 
indexes showed sufficient accuracy when environmental noise was very high 
(σt/σf = 200%; SI Appendix, Fig. S2C). Interestingly, ST still had high precision 
(>0.95) across all spatial scales with high environmental noise (SI Appendix, 
Fig. S2C), implying that the variation of ST could be still useful in examining 
the relative change of ecological stochasticity even with high environmental 
noise. In addition, when the simulated communities were purely controlled 
by deterministic forces (i.e., expected stochasticity to be 0), the observed 
similarity can still be close to random pattern if environmental filtering and 
competition simultaneously affect the communities and/or the spatial scale is
too large, leading to overestimation of stochasticity. In this case, NST 
generally performed better than other approaches (SI Appendix, Fig. S2 D–F), 
with relatively low overestimation (NST < 20%) within small scales (plot and 
site) when 1 deterministic process is predominant (filtering or competition > 
80%; SI Appendix, Fig. S2G). However, even NST still obviously overestimated
stochasticity when filtering and competition were comparable (NST > 50%) 
and/or spatial scale is too large (NST up to 100% at regional to global scale; 
SI Appendix, Fig. S2G), indicating pure but complex deterministic forces can 
lead to random diversity pattern which is more obvious at larger spatial 
scales.



Applications to the Microbial Community Succession in a Fluidic Ecosystem.

Previously, SS was used to quantify the degree of determinism in controlling 
the succession of the groundwater microbial communities in response to 
organic carbon injection (5) by focusing only on the situation in which 
deterministic forces drive the communities to be more similar. However, it 
seems that both situations (more similar or more dissimilar than null 
expectation) exist at day 140, although the latter occur for a relatively small 
portion of the pairwise comparisons (19.0% more dissimilar than null 
expectation). We reanalyzed the experimental data using the above 
framework. By considering different situations, the estimated stochasticity at
day 140 (ST = 79 ± 15%; NST = 70 ± 23%; Fig. 3A) is lower than previously 
reported (previous ST = 92 ± 12%) (5). Also, as shown previously (5), the 
estimated stochasticity varied substantially with time (Fig. 3). In addition, the
estimated NST at the beginning and end (21% at day 0 and 27% at day 269 
on average; Fig. 3A) were similar to the control well (22% on average), which
is considerably below the 50% boundary point (Wilcoxon test P < 0.0001). In 
contrast, the estimated NST during the middle phase of the succession were 
70% on average with Jaccard (Fig. 3A) and 74% on average with Ružička 
(Fig. 3B), which are considerably above the 50% boundary (Wilcoxon test P <
0.003). All of these results indicate that stochastic processes could play more
important roles in controlling community succession in its middle phase, 
while deterministic processes could be more important in its early (before 
injection) and late phases, which are consistent with theoretical expectations
and site geochemistry (5). The result in the middle phase seems counter to 
intuition that adding fresh carbon should drive selection and hence leads to a



more deterministic outcome. However, since the groundwater is highly 
contaminated and carbon poor (39, 40), the existing communities are under 
strong selection pressure. Consequently, adding fresh complex carbon would
relieve the selection pressure and drive the communities more stochastic 
(5).

Since the results from null model analyses are very sensitive to the model 
algorithms and similarity metrics (41), further analyses were performed to 
understand how the choice of model algorithms and similarity metrics affects
the estimation of stochasticity based on NST. For the incidence (presence–
absence) data, there are basically 9 null model algorithms (also referred to 
as null models), differing in whether rows (representing different taxa) and 
columns (representing sites, samples, or communities) are treated as fixed 
sums, equiprobable, or proportional (41) (SI Appendix, Supplementary Text D
and Table S4). Equiprobable means every taxon has equal probability to be 
present in a sample, or every sample has equal probability to hold a taxon; 
proportional means the probability is proportional to observed occurrence 
frequency or taxon richness; and fixed means the occurrence frequency of 
each taxon or taxon richness in each sample is the same as observed. 
Among all 9 null model algorithms tested, the 4 null models with fixed or 



proportional taxa richness and equiprobable or proportional taxa occurrence 
frequency (SI Appendix, Fig. S3) gave obvious trends which are very similar 
to what we previously reported (5). However, no clear or less consistent 
patterns were observed for the other 5 null models (SI Appendix, Fig. S3), 
suggesting that the estimated stochasticity is null model dependent. In 
general, a more constrained null model (fixed > proportional > 
equiprobable) restricts the null results closer to observed values and thus 
leads to higher estimated stochasticity. For example, considerably higher 
stochasticity was obtained with proportional taxa occurrence frequency (NST
up to 69 to 70%; e.g., SI Appendix, Fig. S3) than with equiprobable taxa 
occurrence frequency (NST < 38%; e.g., SI Appendix, Fig. S3; Wilcoxon test P
< 0.0001) for the samples from different time points.

The null model analysis is also dependent on the community similarity 
metrics used (41). To understand whether and how community similarity 
metrics affect the estimation of stochasticity, 13 different incidence-based 
community similarity metrics were tested (SI Appendix, Fig. S4). Since the 
algorithm PF (proportional taxa occurrence frequency, fixed richness) has 
been used more often (19, 26), we examined different metrics based on this 
null model. With respect to the 3 types of incidence-based metrics, only 
squared-root metrics showed relatively stochastic (NST > 50%; SI Appendix, 
Fig. S4) assembly before the organic carbon input, which is not expected 
under such a highly stressful environment. All other incidence-based metrics 
showed very similar trends in the changes of stochasticity with time (SI 
Appendix, Fig. S4). However, the magnitude of NST could be different. For 
example, higher (Wilcoxon test P < 0.008) stochasticity was obtained with 
Grower (NST up to 79%; SI Appendix, Fig. S4) than with Jaccard (NST less 
than 70%; Fig. 3A) similarity metrics. We also tested different abundance-
based similarity metrics (Fig. 3B and SI Appendix, Fig. S4). Compared to 
other types of metrics, the absolute difference and squared-sum metrics 
showed obviously higher stochasticity before organic carbon input (NST > 
45%) or large variation (interquartile range up to 50%, Morisita and Morisita–
Horn; SI Appendix, Fig. S4), which appear less preferred. All other 
abundance-based metrics revealed a trend of stochasticity similar to the 
incidence-based metrics. However, the magnitude of NST is generally higher 
(around 20% higher on average in NST; Fig. 3B and SI Appendix, Fig. S4) 
than those based on their corresponding incidence-based metrics, 
suggesting higher stochasticity in terms of quantitative change than 
qualitative change. In addition, compared to ST, NST showed much less 
variations or even no significant difference when using different metrics 
(e.g., Jaccard vs. Sørensen, incidence-based mGower, or Ružička vs. Bray–
Curtis, abundance-based mGower; SI Appendix, Fig. S5), suggesting higher 
robustness of NST to metrics variations. Altogether, these results suggest 
that appropriate selections of community similarity indexes are also 
important in quantitative estimation of stochasticity underlying community 
assembly.



Discussion

Quantifying stochasticity in governing community assembly is important but 
difficult, and even more so in microbial ecology. To address this challenge, 
we developed a general mathematical framework to provide quantitative 
assessment of ecological stochasticity under both situations in which 
deterministic factors drive the communities more similar or dissimilar than 
null expectations. When tested with simulated communities, NST showed 
higher accuracy and precision than ST and NP, and Jaccard/Ružička metrics is
the most recommended among various metrics. Applying this framework to 
the succession of groundwater microbial communities in response to carbon 
injection indicated that null model algorithms and community similarity 
metrics had strong effects on quantitatively estimating ecological 
stochasticity. Since the rationale and mathematical derivation are universal, 
NST should be applicable to other biological systems (e.g., plants and 
animals) or at least other highly diverse communities than microbial ones.

NST is different from other indexes based on null model analysis. In null 
model-based indexes, the modified Raup–Crick metrics (RC, e.g., RCJaccard and 
RCBray) (19, 26) and standardized effect size (SES, e.g., βNTI based on 
phylogenetic dissimilarity) (7, 20, 25) have been widely applied to infer 
ecological stochasticity (4). RC is calculated from the percentage of null 
dissimilarity values lower than or equal to the observed value, and SES is the
difference between observed value and null expectation divided by SD of null
results. RC and SES reflect the significance of the difference between 
observed and null dissimilarity and usually serve as qualitative identification 
of deterministic patterns (i.e., |RC| > 0.95, |SES| > 2). ST is calculated from 
relative difference between observed and null similarity (or dissimilarity), 
and NST derived from ST is to measure the relative position of observed 
value between the extremes under pure deterministic and pure stochastic 
assembly. Thus, NST reflects the contribution of stochastic assembly relative 
to deterministic assembly, based on magnitude rather than significance of 
the difference between observed and null expectation, and therefore can 
serve as a better quantitative measure of stochasticity (SI Appendix, Fig. S6).

There are several limitations for null model-based stochasticity estimation. 
First, special attention is needed for selection of null model algorithms and 
similarity metrics for randomization, which could lead to quite different 
results of stochasticity estimation. Based on the results presented here, the 
null models of fixed taxa richness and proportional taxa occurrence 
frequency (PF) in coupling with Jaccard/Ružička similarity metrics appear to 
be more preferred. Nevertheless, it is anticipated that the performances of 
different null models and similarity metrics are also community dependent. 
Therefore, depending on ecological questions, multiple null models and 
metrics (both incidence- and abundance-based) should be explored in 
quantifying community assembly mechanisms.



Second, deterministic forces are generally compounded by multiple intricate 
abiotic and biotic processes (4, 28, 33, 42). It is generally believed that 
competitive exclusion drives communities to be more dissimilar by excluding
closely related ecologically similar species, but the impacts of competition on
community structure appear to be much more complicated. Recent studies 
indicate that competitive exclusion could also drive a community to be more 
similar by eliminating competitively inferior, more distantly related taxa (30).
Trophic interactions could also promote community divergence (33). 
However, it is difficult to differentiate such types of biotic interactions using 
the null model-based statistical approach from those of environmental 
filtering, which leads community diversity to be more similar (30, 32). More 
interestingly, about 3 decades ago, it was argued that competition may not 
be of primary importance in shaping community structure because it is less 
likely that niche differentiation of competitors has come about by 
coevolution (43), due to low probability of consistent coexistence of a 
particular pair of competing species, especially under the situations of high 
community diversity and high spatial and temporal heterogeneity. If this is 
true, we expected that the type A situation is much more common than type 
B. This is supported by this study with >90% type A even though competition
appears to be very intensive based on network analysis (44). However, it 
seems that this argument is not supported by some recent studies on 
animals (e.g., refs. 45 and 46) and plants (e.g., ref. 47), in which competition
was regarded as predominant force in structuring community composition. 
Nevertheless, given the extremely high diversity of microbial communities, 
we hypothesize that compared to plant and animal communities, 
competition could be less important in structuring microbial community as 
commonly assumed (48). Alternatively, each type of deterministic force (e.g.,
competition, facilitation, or environmental filtering) can predominate under 
certain conditions of stress and resources as found in plants and animals 
(49–51). If neither is true and different deterministic forces are equivalent to 
one another, deterministic assembly can lead to random patterns, and 
hence, null model analysis could overestimate stochasticity (SI Appendix, 
Fig. S2G).

Third, community diversity patterns and the underlying assembly 
mechanisms could vary across differential scales of space, time, 
environmental gradients, and/or taxonomic and ecological organizations (38,
52, 53). For examples, it was observed that strong competition at local 
scales resulted in weak competition at broader scales (54), and bird 
competition is important from plot to country scale but becomes unimportant
at continental scale (53). However, the challenge is how to define 
appropriate scales that are relevant to the organisms or processes being 
examined (38) because the characteristics and behaviors of natural 
ecosystems are quite different across different spatial, temporal, and/or 
organizational scales. According to our simulation, NST can maintain good 
performance and robustness when the spatial scale is where dispersal rates 



within the metacommunity (i.e., randomization range in null model) are the 
same or comparable (e.g., simulated plot and site level; Fig. 2 and SI 
Appendix, Fig. S2).

Fourth, since different assembly mechanisms could generate similar diversity
patterns, using the null model-based statistical approach to infer assembly 
mechanisms from empirical diversity patterns is only an introductory point 
(4, 38). Although NST was evaluated with taxonomic β-diversity metrics in 
this study, it is applicable to phylogenetic β-diversity metrics (SI Appendix, 
Table S3) as we did for ST recently (55), and integration of multiple 
dimensions of diversity (taxonomic, phylogenetic, functional, etc.) will 
facilitate further disentanglement of complicated assembly processes (4, 26).
As a next step, process-based modeling approaches by considering various 
ecological processes such as dispersal limitation, life history traits (e.g., 
growth, reproduction, and dormancy), conspecific density dependence, 
and/or ecological drift (e.g., ref. 56) should allow us to further assess the 
relative importance of various assembly mechanisms, design possible 
experiments for validation, differentiate the possible consequences of 
individual biotic and abiotic factors which are not easily separated via 
experimentation, and evaluate the scale the observed phenomena from local
to regional and global (38, 56).

In addition, the operational distinction of stochasticity and determinism can 
appear somewhat arbitrary (28, 57), and it is difficult to distinguish 
ecological stochasticity from the noise caused by deterministic 
environmental factors, as shown in our simulation (SI Appendix, Fig. S2C). 
More importantly, because of the measurement noise associated with high-
throughput technologies in terms of reproducibility, sensitivity and/or 
quantification, and uncertainties in data processing and analyses (58–60), it 
is very challenging to obtain measurements close to the true values of 
stochasticity and determinism for particular communities. Thus, the 
ecological stochasticity and determinism estimated using the framework 
described above should be viewed as statistical proximate rather than 
ultimate forces in shaping community diversity and structure (4). Thus, as 
statistical proximate, the estimation requires sufficient biological replicates 
(e.g., >6) to ensure enough statistical power as our simulation showed (SI 
Appendix, Fig. S2A). Finally, because of the inherent uncertainty in selecting 
appropriate null model algorithms, similarity metrics, spatial scales for 
comparisons, and regional species pool for a particular study, the estimated 
degree of stochasticity should be best used for relative comparison across 
different conditions or treatments, rather than used as absolute values.

Materials and Methods

Details for all methods are provided in SI Appendix, Supplementary Text. 
Briefly, 21 datasets were simulated by a spatially implicit model, and 11 
datasets under each of 5 scenarios were simulated by a spatially explicit 
model, with the defined stochasticity ranging from 0 to 100% (SI Appendix, 



Table S1). Each local community is a combination of deterministic and 
stochastic species with a ratio fitting the defined stochasticity. The stochastic
species are assembled according to neutral theory models (2, 34, 61) in a 
spatially implicit model, while spatially explicit stochastic assembly is neutral
theory-based assembly across 4-level metacommunities from 1 global 
metacommunity down to 16,384 local communities. Deterministic species 
can only live in their preferred environment due to strong abiotic filtering in 
the scenarios of abiotic filtering without noise in spatially implicit and explicit
models (scenarios A and B in SI Appendix, Table S1). If environmental noise 
is considered (scenarios C through E in SI Appendix, Table S1), the 
abundances of deterministic species are determined by temperature in each 
local community, which has a normal-distributed random deviation from plot 
mean temperature. If competition is considered (scenario F in SI Appendix, 
Table S1), deterministic species consist of 256 competitors randomly 
occupying local communities, where the first-arrived competitor excludes 
other competitor(s) and stops them passing through. To investigate complex 
deterministic forces, simulated species controlled by abiotic filtering are 
combined with those controlled by competition to generate deterministic 
part of each simulated community (scenario G in SI Appendix, Table S1). For 
each simulated dataset, stochasticity was estimated with NP (35), ST (5), and
NST, of which the quantitative performance was evaluated by accuracy (χa; 
SI Appendix, Eq. S21) and precision (ρ; SI Appendix, Eq. S22) coefficients 
derived from concordance correlation coefficient (36). The empirical data 
were obtained from the previous publication (5). Then, stochasticity was 
estimated by NST and ST based on different null model algorithms and 
different similarity metrics for comparison. NST analysis can be performed 
using a package NST written with the R language (62), which can be 
downloaded or installed from CRAN (https://cran.r-project.org/package=NST),
or a web-based pipeline (http://ieg3.rccc.ou.edu:8080) built on Galaxy 
platform (63).
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