
A General Framework for Representing and Reasoning with
Annotated Semantic Web Data

Umberto Straccia
ISTI - CNR
Pisa, Italy

Nuno Lopes, Gergely Lukácsy, and Axel Polleres
Digital Enterprise Research Institute

National University of Ireland, Galway

Abstract
We describe a generic framework for representing and rea-
soning with annotated Semantic Web data, formalise the an-
notated language, the corresponding deductive system, and
address the query answering problem. We extend previous
contributions on RDF annotations by providing a unified rea-
soning formalism and allowing the seamless combination of
different annotation domains. We demonstrate the feasibil-
ity of our method by instantiating it on (i) temporal RDF; (ii)
fuzzy RDF; (iii) and their combination. A prototype shows
that implementing and combining new domains is easy and
that RDF stores can easily be extended to our framework.

Introduction
RDF1 is a Semantic Web representation language in which
the basic ingredients are triples of the form (s, p, o), stat-
ing that a subject s has a property p with value o. The
need of allowing triples to be annotated with a term, such as
time (Gutierrez, Hurtado, Vaisman 2007; Pugliese, Udrea,
Subrahmanian 2008; Tappolet, Bernstein 2009), degree
of truth (Straccia 2009), trust (Hartig 2009), and prove-
nance (Dividino et al. 2009) is emerging. These exten-
sions demand a need to deal with quadruples rather than with
triples, where the additional term has some specific seman-
tics and operational behaviour. Along these lines, this paper
contributes as follows: (i) we describe a general framework
for annotated RDF and RDF Schema (RDFS), in which an-
notations can be taken from a family of algebraic structures.
We allow RDF triples τ to have annotation terms v, result-
ing in annotated triples of the form τ : v, where v belongs
to a set of elements L on which some specific operations
are defined. E.g., in the temporal case L may be a set of
time intervals, while in the fuzzy case L is [0, 1]; (ii) our
work extends previous contributions on RDF annotations by
providing both a unified reasoning formalism and the seam-
less combination of different annotation domains; (iii) we
show that RDF stores can easily be extended to our frame-
work without an increase in reasoning complexity (provided
that the operations on the domain are polynomial); (iv) we
demonstrate the feasibility of our method by giving a for-
mal description on how we can represent and reason within
RDFS with temporal and fuzzy annotations, and their com-
bination; and (v) we discuss the integration of annotated
triples with standard, non-annotated triples and SPARQL.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1
http://www.w3.org/RDF/.

Related work: Closest to our work is (Straccia 2009), that
describes fuzzy RDF in a general setting where triples are
annotated with a degree of truth in [0, 1]. For instance,
“Rome is a big city to degree 0.8” can be represented
with 〈Rome, type, BigCity〉 : 0.8; the annotation domain
is [0, 1]. We further generalise this work, by allowing more
general domains, while following a similar approach to the
formalisation of the semantics and description of inference
rules. Another related work (Udrea, Recupero, Subrahma-
nian 2006) allows to annotate triples with truth values taken
from a finite partial order. Here, triples are of the form (s, p :
v, o), where the property, rather than the triple is annotated.
We instead rely on a richer, not necessarily finite, structure
and provide additional inference capabilities to (Udrea, Re-
cupero, Subrahmanian 2006), such as a more involved prop-
agation of annotation terms through schema triples. For in-
stance, in the temporal domain, from 〈a, sc, b〉 : [2, 6] and
〈b, sc, c〉 : [3, 8], we will infer 〈a, sc, c〉 : [3, 6] (sc is the sub-
class property). Essentially, Udrea et al. do not provide
an operation to combine the annotation in such inferences,
while the algebraic structures we consider support such op-
erations instead. Also, it requires specific algorithms, while
we show that a simple extension to the classical RDF infer-
ence rules suffices.

Next, we (i) recap basic notions of classical RDF(S) we
rely on; (ii) formalise our annotated language, the deductive
system and address the query answering problem; (iii) show
the feasibility of our approach for two specific cases, the
fuzzy and the temporal case; (iv) provide a description on
how to combine multiple domains, on possible options to
handle non-annotated triples and SPARQL; and (v) conclude
with a summary and outlook for future research topics.

Preliminaries, classical RDFS

Syntax. Consider pairwise disjoint alphabets U, B, and L
denoting, respectively, URI references, Blank nodes and Lit-
erals.2 Elements in UBL (resp. B) are terms (resp. vari-
ables, denoted x, y, z). An RDF triple is τ = (s, p, o) ∈
UBL × U × UBL.3 We call s the subject, p the predi-
cate, and o the object. A graph G is a set of triples, the
universe of G, universe(G), is the set of elements in UBL
that occur in the triples of G, the vocabulary of G, voc(G),

2We assume U,B, and L fixed, and for ease we will denote
unions of these sets simply concatenating their names.

3As in (Muñoz, Pérez, Gutierrez 2007) we allow literals for s.

1437

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

is universe(G)∩UL. In this work, we rely on a slight vari-
ant of a minimal RDFS fragment, called ρdf (Muñoz, Pérez,
Gutierrez 2007), that covers essential features of RDFS 4.
ρdf is defined as the following subset of the RDFS vocab-
ulary used as predicates: ρdf = {sp, sc, type, dom, range}.
Informally, (i) (p, sp, q) means that property p is a subprop-
erty of property q; (ii) (c, sc, d) means that class c is a sub-
class of class d; (iii) (a, type, b) means that a is of type b;
(iv) (p, dom, c) means that the domain of property p is c;
and (v) (p, range, c) means that the range of property p is c.
Semantics. An interpretation I over vocabulary V is
a tuple I = 〈ΔR, ΔP , ΔC , ΔL, P [[·]], C[[·]], ·I〉, where
ΔR, ΔP , ΔC , ΔL are the interpretation domains (i.e., non-
empty sets) of I, P [[·]], C[[·]], ·I are the interpretation func-
tions of I, and:
1. ΔR are the resources (the domain or universe of I);

2. ΔP are property names (not necessarily disjoint from ΔR);

3. ΔC ⊆ ΔR are the classes;

4. ΔL ⊆ ΔR are the literal values and contains L ∩ V ;

5. P [[·]] is a function P [[·]] : ΔP → 2ΔR×ΔR ;

6. C[[·]] is a function C[[·]] : ΔC → 2ΔR ;

7. on UL, ·I is a function ·I : UL ∩ V → ΔR ∪ ΔP such that ·I
is the identity for plain literals and ·I : L → ΔR;

8. on B, ·I is a function ·I : B → ΔR.

Entailment is defined as usual. Intuitively, a triple (s, p, o)
in a graph G is true under the interpretation I if p is in-
terpreted as a property name, s and o are interpreted as re-
sources, and the interpretation of the pair (s, o) belongs to
the extension of the property assigned to p. Moreover, blank
nodes are treated as skolem constants, e.g. the triple (x, p, o)
with x ∈ B will be true under I if xI = sI , for some s
such that (s, p, o) is true under I (cf. also Remark 2 be-
low). So, an interpretation I is a model of a graph G, de-
noted I |= G, iff I is an interpretation over the vocabulary
ρdf∪universe(G), I satisfies the conditions in Table 1 and
makes all triples in G true. We define G entails a triple τ
under ρdf, denoted G |= τ , iff every model under ρdf of G
is also a model under ρdf of τ .
Remark 1 In (Muñoz, Pérez, Gutierrez 2007), P [[spI]]
(resp. C[[scI]]) may also be reflexive over ΔP (resp. ΔC).
For ease, we omit this requirement and, thus, do not support
an inference such as G |= (a, sc, a), which anyway are of
marginal interest (see (Muñoz, Pérez, Gutierrez 2007) for a
more in depth discussion on this issue).

Remark 2 We have a slightly different handling of vari-
ables, but which is harmless from a query answering point of
view. We are not supporting entailments such as (s, p, z) |=
(s, p, y) (z, y are variables). The reason is that (i) we have
a simpler inference rule schema; and (ii) we are going to
focus on query answering and not on graph entailment.

Remark 3 In a First-Order Logic (FOL) setting, we may
interpret classes as unary predicates, and predicates as bi-
nary predicates. Then (i) a subclass relation between class

4ρdf is considered as a good candidate to address RDFS exten-
sions, allowing focusing on the main problem. Extension to full
RDFS rulesets is easy.

c and d may be encoded as the formula ∀x.c(x) ⇒ d(x);
(ii) a subproperty relation between property p and q may be
encoded as ∀x∀y.p(x, y) ⇒ q(x, y); (iii) domain and range
properties may be represented as ∀x∀y.p(x, y) ⇒ c(x) and
∀x∀y.p(x, y) ⇒ c(y); (iv) the transitivity of a property can
be represented as ∀x∀y∃z.(p(x, z) ∧ p(z, y)) ⇒ p(x, y).

Although this remark is trivial, we will see that it will play
an important role in the formalisation of annotated RDFS.
Deductive system. For space reasons, we do not describe
here the deductive system as it corresponds exactly to the
set of rules 2-5 as in (Muñoz, Pérez, Gutierrez 2007) (which
has 7 rules). We rule out the rules handling reflexivity (rules
6-7) and the one dealing with variables (rule 1a), the latter
we do not need to answer queries. The notion of proof of τ
from G, denoted G � τ , is defined as usual and we have:
Proposition 1 ((Muñoz, Pérez, Gutierrez 2007))
Inference � based on rules 2-5 as of (Muñoz, Pérez,
Gutierrez 2007) and applied to our semantics defined above
is sound and complete for |=, that is, G � τ iff G |= τ .
Query Answering. Concerning query answering, we are
inspired by (Gutierrez, Hurtado, Mendelzon 2004) and the
Logic Programming setting. A query is of the rule-like form
q(x̄) ← ∃ȳ.ϕ(x̄, ȳ), where q(x̄) is the head and ∃ȳ.ϕ(x̄, ȳ)
is the body of the query, which is a boolean combination
(using ∧,∨) of triples τi (1 � i � n). x̄ is a vector
of variables occurring in the body, called the distinguished
variables, ȳ are so-called non-distinguished variables and
are distinct from the variables in x̄, each variable occur-
ring in τi is either a distinguished or a non-distinguished
variable. If clear from the context, we may omit the exis-
tential quantification ∃ȳ. For instance, the query q(x) ←
(y, created , x) ∧ (y, type, Italian) ∧ (x, exhibited ,Uffizi)
has intended meaning to retrieve all the artifacts x created
by Italian artists y, being exhibited at Uffizi Gallery.

Given a graph G, a query q(x̄) ← ∃ȳ.ϕ(x̄, ȳ), and a
vector t̄ of terms in universe(G), we say that q(t̄) is en-
tailed by G, denoted G |= q(t̄), iff in any model I of G,
there is a vector t̄′ of terms in universe(G) such that I
is a model of ϕ(t̄, t̄′). If G |= q(t̄) then t̄ is called an
answer to q. The answer set of q w.r.t. G is defined as
ans(G, q) = {t̄ | G |= q(t̄)}.

We next show how to compute the answer set. The closure
of a graph G is defined as cl(G) = {τ | G � τ}. Note that
the size of the closure of G is polynomial in the size of G
and that the closure is unique. Now, the following holds:
Proposition 2 Given a graph G, t̄ is an answer to q iff
∃ȳ.ϕ(t̄, ȳ) is true in the closure of G. 5

Therefore, we have a simple method to determine
ans(G, q). Compute the closure cl(G) and store it into a
database, e.g., using the method (Ianni et al. 2009). It is eas-
ily verified that any query can be mapped into an SQL query
over the underlying database schema. Hence, ans(G, q) is
determined by issuing such an SQL query to the database.

RDFS with Annotations
Syntax. Our approach is to extend triples with annota-
tions, where an annotation is taken from a specific domain.
Roughly, our approach is somewhat related to the annotated
logic programming framework (Kifer, Subrahmanian 1992).

5The evaluation of the truth of a formula is as usual.

1438

Simple: 1. for each (s, p, o) ∈ G, pI ∈ ΔP and (sI , oI) ∈ P [[pI]];

Subproperty: 1. P [[spI]] is transitive over ΔP ;
2. if (p, q) ∈ P [[spI]] then p, q ∈ ΔP and P [[p]] ⊆ P [[q]];

Subclass: 1. P [[scI]] is transitive over ΔC ;
2. if (c, d) ∈ P [[scI]] then c, d ∈ ΔC and C[[c]] ⊆ C[[d]];

Typing I: 1. x ∈ C[[c]] iff (x, c) ∈ P [[typeI]];
2. if (p, c) ∈ P [[domI]] and (x, y) ∈ P [[p]] then x ∈ C[[c]];
3. if (p, c) ∈ P [[rangeI]] and (x, y) ∈ P [[p]] then y ∈ C[[c]];

Typing II: 1. for each e ∈ ρdf, eI ∈ ΔP

2. if (p, c) ∈ P [[domI]] then p ∈ ΔP and c ∈ ΔC

3. if (p, c) ∈ P [[rangeI]] then p ∈ ΔP and c ∈ ΔC

4. if (x, c) ∈ P [[typeI]] then c ∈ ΔC

Table 1: The conditions for classical interpretations.

An annotated triple is an expression τ : v, where τ is
a triple and v is an annotation term (defined below). An
annotated graph is a finite set of annotated triples. The
intended semantics of annotated triples depends of course
on the meaning we associate to the annotation terms. For
instance, in a temporal setting (Gutierrez, Hurtado, Vais-
man 2007), (AlainProst, type, F1Driver) : [1980, 1991]
has intended meaning “Alain Prost was a Formula One
driver during 1980-1991”, while in the fuzzy setting (Strac-
cia 2009) (audiTT , type,SportsCar) : 0.8 has intended
meaning “AudiTT is a sports car to degree not less than 0.8”.
RDFS Annotation Domains. To start with, let us consider
a lattice 〈L,�〉. Elements in L are our annotation terms.
E.g., in a fuzzy setting, L = [0, 1], while in a typical tem-
poral setting, L may be time points or time intervals. The
order � is used to express redundant/entailed/subsumed in-
formation. For instance, for temporal intervals, an annotated
triple 〈s, p, o〉 : [2, 6] entails 〈s, p, o〉 : [3, 4], as [3, 4] ⊆ [2, 6]
(here, ⊆ plays the role of �).

In our annotation framework, an interpretation will map
statements to elements of the annotation domain. Hence, we
have to guarantee that the formulae in Remark 3, are prop-
erly interpreted. To this end, we will use an algebraic struc-
ture that is well-known for Many-Valued FOL (Hájek 1998).
In light of Remark 3, our choice may look less surprising as
it may be at first sight. We say that an annotation domain
for RDFS is an algebraic structure

D = 〈L,�,∧,∨,⊗,⇒,⊥,�〉
such that (i) 〈L,�,∧,∨,⊥,�〉 is a lattice, with bottom and
top elements ⊥ and �, meet and join operator ∧ and ∨, re-
spectively; (ii) ⊗ is a so-called t-norm (Hájek 1998), i.e. is
commutative, associative, monotonic, and � acts as identity
element (for any v ∈ L, v ⊗ � = v); and (iii) ⇒ is the so-
called residuum of ⊗, i.e. v1 ⇒ v2 = sup {v | v1⊗v � v2}.

Remark 4 We will use ∨ to combine information about the
same statement. E.g., in temporal logic, from τ : [2, 6] and
τ : [3, 8], we will infer τ : [2, 8], as [2, 8] = [2, 6] ∪ [3, 8];
here, ∪ plays the role of ∨. In the fuzzy context, from τ : 0.7
and τ : 0.6, we will infer τ : 0.7, as 0.7 = max(0.7, 0.6)
(here, max plays the role of ∨).

Remark 5 We will use the t-norm ⊗ to model the “conjunc-
tion” of information. In fact, a t-norm is a generalisation of
boolean conjunction to the many-valued case. For instance,
on interval-valued temporal logic, from 〈a, sc, b〉 : [2, 6] and
〈b, sc, c〉 : [3, 8], we will infer 〈a, sc, c〉 : [3, 6], as [3, 6] =
[2, 6] ∩ [3, 8]; here, ∩ plays the role of ⊗.6 In the fuzzy
context, one may chose any t-norm, e.g. product, and,
thus, from 〈a, sc, b〉 : 0.7 and 〈b, sc, c〉 : 0.6, we will infer
〈a, sc, c〉 : 0.42, as 0.42 = 0.7 · 0.6 (here, · plays the role

6As we will see, ∨ and ⊗ may be more involved.

of ⊗). Please note that in this latter case, ∧ and ⊗ do not
coincide as ∧ is min (i.e., the so-called Gödel t-norm).

Remark 6 One may be tempted to consider other combina-
tion functions than ∨ such as so-called s-norms (⊕) (Hájek
1998) that are used to model “disjunction”. E.g., in the
fuzzy context one may think of using the probabilistic sum
n ⊕ m = n + m − n · m. So, e.g., from τ : 0.7 and τ : 0.6,
we may infer τ : 0.88, as 0.88 = 0.7 + 0.6− 0.7 · 0.6. How-
ever, we are not using them as then the termination of our
calculus is not guaranteed if schema cycles are involved in a
graph, such as 〈a, sc, b〉 : 0.7, 〈b, sc, a〉 : 0.6. The interested
reader may verify that after an infinite number of inference
steps we will infer e.g. 〈a, sc, b〉 : 1.0. Using ∨ (which is
the so-called Gödel s-norm) will guarantee termination. In
principle, we may workout easily the case using ⊕ in place
of ∨ as well, provided we restricted graphs to be “schema
acyclic”, or assume that L is finite, to guarantee termination
of the inference.
Remark 7 The function ⇒, which is defined in terms of
⊗ only, will be used to model the “implication” that oc-
curs in Remark 3, and is called r-implication (which stands
for residuated implication). It is acknowledged that an r-
implication, which is a generalisation of boolean implica-
tion to the many-valued case, has many of the properties
that an implication functions should have, namely, is mono-
tone in the first argument, is antitone in the second argu-
ment, v ⇒ v′ evaluates to � iff v � v′ and � ⇒ ⊥ = ⊥.
A feature of r-implications is that it supports modus ponens
inference schemas, i.e.

a � v and a ⇒ b � v′ imply b � v ⊗ v′ (1)
a ⇒ b � v and b ⇒ c � v′ imply a ⇒ c � v ⊗ v′ (2)

(these are the main inference patterns we will rely on).

Remark 8 We will not use explicitly ∧. However, ∧ is im-
plicitly present on the structure as it can be defined in terms
of ⊗ and ⇒ as v ∧ v′ = v ⊗ (v ⇒ v′).

By the above remarks, we may represent an annotation
domain succinctly as an algebraic structure D = 〈L,�
,⊗,⊥,�〉 in which 〈L,�,�,⊥〉 is a bounded lattice and
⊗ is a t-norm. Note that for domain D01 = 〈{0, 1},�
, min, 0, 1〉, annotated RDFS will turn out to be the same
as classical RDFS. Finally, note also that in order to build
an annotation domain, one has to (i) determine the set of an-
notation terms L, the partial order �, identify the top and
bottom elements and guarantee that we obtain a bounded
lattice; and (ii) define a suitable t-norm ⊗ that acts as “con-
junction” function, to support the intended inference over
schema axioms, such as “from 〈a, sc, b〉 : v and 〈b, sc, c〉 : v′
infer 〈a, sc, c〉 : v ⊗ v′” (see inference pattern (2)).
Semantics. Fix a domain D = 〈L,�,⊗,⊥,�〉. Infor-
mally, an interpretation I will assign to a triple τ an ele-

1439

ment of the annotation domain v ∈ L, dictating that un-
der I, the annotation of τ is greater or equal than v. For-
mally, an annotated interpretation I over a vocabulary V
is a tuple I = 〈ΔR, ΔP , ΔC , ΔL, P [[·]], C[[·]], ·I〉, where
ΔR, ΔP , ΔC , ΔL and ·I are exactly as for the classical case
(items 1-4, 7-8), while P [[·]], C[[·]] are interpretation func-
tions for which items 5 and 6 are changed as follows:

5’. P [[·]] is a function P [[p]] : ΔR × ΔR → L assigning an anno-
tation term to each pair of resources;

6’. C[[·]] is a function C[[c]] : ΔR → L assigning an annotation
term to every resource;

It is immediate to see that the classical setting is as the case
in which the annotation domain is D01, i.e. L = {0, 1}.

Now, consider a set Δ ⊆ ΔR∪ΔP , we say that a function
p : Δ × Δ → L is sup−⊗ transitive (or simply transitive)
over Δ iff for all x, y ∈ Δ, supz∈Δ{p(x, z) ⊗ p(z, y)} �
p(x, y). Please note the relationship to case 4 in Remark 3
(⊗ plays the role of conjunction, sup plays the role of the
existential over Δ and the implication evaluates to � iff the
antecedent is � than the succedent, see Remark 7).

Entailment is defined accordingly. Intuitively, a triple
(s, p, o) : v is satisfied by I if (s, o) belongs to the exten-
sion of p to a “wider” extent than v. Formally, an annotated
interpretation I over the vocabulary ρdf∪universe(G) is a
model of an annotated graph G under ρdf, denoted I |= G,
iff I satisfies the conditions in Table 2. Please note how
now the conditions follow immediately from the classical
RDFS setting (Table 1) by relying on Remark 3 (the uni-
versal quantifier is interpreted as inf), e.g. the condition
P [[scI]](c, d) = infx∈ΔR

C[[c]](x) ⇒ C[[d]](x) follows im-
mediately from ∀x.c(x) ⇒ d(x). Finally, we define G en-
tails τ : v under ρdf, denoted G |= τ : v, iff every annotated
model under ρdf of G is also a model under ρdf of τ : v. As
for the crisp case, it can be shown that

Proposition 3 Any annotated RDFS graph has a model.

Therefore, we do not have to care about consistency.
Deductive system. An important feature of our framework
is that we are able to provide a deductive system in the style
of the one for classical RDFS. Moreover, the schemata of
the rules are the same for any annotation domain (only sup-
port for the domain dependent ⊗ and ∨ operations has to be
provided) and, thus, are amenable to an easy implementa-
tion on top of existing systems. The rules (see Table 3) are
arranged in groups that capture the semantic conditions of
models, A, B,C, X and Y are meta-variables representing
elements in UBL. The notion of proof is as usual.

Proposition 4 (Soundness and completeness) For an an-
notated graph G, (1) if G � τ : v then G |= τ : v and
(2) if G |= τ : v then there is v′ � v with G � τ : v′.

Finally, like for the classical case, the closure is defined as
cl(G) = {τ : v | G � τ : v}, the size of the closure of G
is polynomial in |G| and can be computed in polynomial
time, provided that the computational complexity of opera-
tions ⊗ and ∨ are polynomially bounded (from a computa-
tional complexity point of view, it is as for the classical case,
plus the cost of the operations ⊗ and ∨ in L).
Query Answering. Informally, queries are as for the clas-
sical case where triples are replaced with annotated triples

in which annotation variables (taken from an appropriate
alphabet and denoted V) may occur.
Example 1 The following temporal information where la-
bels mark intervals in years (the exact meaning will be ad-
dressed later on) can be extracted from Wikipedia:7

(AlainProst, type, RenaultF1Driver) : [1981, 1983]
(AlainProst, type, McLarenF1Driver) : {[1980], [1984, 1989]}
(AlainProst, type, FerrariF1Driver) : [1990, 1991]
(AlainProst, type, WilliamsF1Driver) : [1993]
(McLarenF1Driver, sc, F1Driver) : [1966, 2010]
(RenaultF1Driver, sc, F1Driver) : {[1977, 1985], [2001, 2009]}
(FerrariF1Driver, sc, F1Driver) : [1950, 2010]
(WilliamsF1Driver, sc, F1Driver) : [1976, 2010]
(F1Driver, sc, SportsCarDriver) : �

The query asking for sports car drivers between 1975 and
1985 and the temporal term at which this was true q(x, V) ←
(x, type, SportsCarDriver) : V ∧ (V,�, [1975, 1985]) will
get the answer 〈AlainProst, [1980, 1985]〉.
Formally, an annotated query is of the form q(x̄, V̄) ←
∃ȳ∃V′.ϕ(x̄, V̄, ȳ, V̄′) in which ϕ(x̄, V̄, ȳ, V̄′) is a boolean
combination of annotated triples, x̄ and V̄ are the dis-
tinguished variables, ȳ and V̄′ are the vectors of non-
distinguished variables (existential quantified variables),
and x̄, V̄, ȳ and V̄′ are pairwise disjoint. The query head
contains at least one variable.

Given an annotated graph G, a query q(x̄, V̄) ←
∃ȳ∃V′.ϕ(x̄, V̄, ȳ, V̄′), a vector t̄ of terms in universe(G)
and a vector v̄ of annotated terms in L, we say that q(t̄, v̄)
is entailed by G, denoted G |= q(t̄, v̄), iff in any model I
of G, there is a vector t̄′ of terms in universe(G) and a
vector v̄′ of annotation terms in L such that I is a model
of ϕ(t̄, v̄, t̄′, v̄′). If G |= q(t̄, v̄) then 〈t̄, v̄〉 is called an
answer to q. The answer set of q w.r.t. G is (� extends to
vectors point-wise)

ans(G, q) = {〈t̄, v̄〉 | G |= q(t̄, v̄) and for any v̄′ �= v̄

such that G |= q(t̄, v̄′), v̄′ � v̄ holds} .

That is, for any tuple t̄, the vector of annotation terms v̄ is as
large as possible. This is to avoid that redundant/subsumed
answers occur in the answer set. The following holds:
Proposition 5 Given a graph G, 〈t̄, v̄〉 is an answer to q iff
∃ȳ∃V′.ϕ(t̄, v̄, ȳ, V̄′) is true in the closure of G.
Therefore, we may devise a similar query answering method
as for the crisp case by computing the closure, store it into a
database and then using SQL queries.

Two Applications: Fuzzy and Temporal RDFS

To demonstrate the power of our approach, we illustrate its
application to two domains: fuzzy RDFS (Straccia 2009)
and temporal RDFS (Gutierrez, Hurtado, Vaisman 2007).
The fuzzy Domain. To model fuzzy RDFS is easy: the
annotation domain is D[0,1] = 〈[0, 1],�,⊗, 0, 1〉 where ⊗ is
any t-norm on [0, 1] and ∨ is max.
Example 2 Under the product t-norm ⊗, given
(audiTT , type, SportsCar) : 0.8, (BMWM3 , type, SportsCar) : 0.9,
and (SportsCar , sc, ExpensiveCar) : 0.9, the answers to the query
q(x, V) ← (x, type,ExpensiveCar) : V (“retrieve expensive
cars”), are 〈audiTT , 0.72〉 and 〈BMWM3 , 0.81〉.

7cf. e.g. http://en.wikipedia.org/wiki/Alain_Prost

1440

Simple: 1. (s, p, o) : v ∈ G implies pI ∈ ΔP and P [[pI]](sI , oI) � v

Subproperty: 1. P [[spI]] is transitive over ΔP

2. P [[spI]](p, q) = inf(x,y)∈ΔR×ΔR
P [[p]](x, y) ⇒ P [[q]](x, y)

Subclass: 1. P [[scI]] is transitive over ΔC

2. P [[scI]](c, d) = infx∈ΔR
C[[c]](x) ⇒ C[[d]](x)

Typing I: 1. C[[c]](x) = P [[typeI]](x, c)

2. P [[domI]](p, c) = inf(x,y)∈ΔR×ΔR
P [[p]](x, y) ⇒ C[[c]](x)

3. P [[rangeI]](p, c) = inf(x,y)∈ΔR×ΔR
P [[p]](x, y) ⇒ C[[c]](y)

Typing II: 1. For each e ∈ ρdf, eI ∈ ΔP

2. P [[domI]](p, c) is defined only for p ∈ ΔP and c ∈ ΔC

3. P [[rangeI]](p, c) is defined only for p ∈ ΔP and c ∈ ΔC

4. P [[typeI]](s, c) is defined only for c ∈ ΔC

Table 2: The conditions for annotated interpretations.

1. Subproperty:

(a)
(A, sp, B) : v1,(B, sp, C) : v2

(A, sp, C) : v1 ⊗ v2

(b)
(A, sp, B) : v1,(X, A, Y) : v2

(X, B, Y) : v1 ⊗ v2

2. Subclass:

(a)
(A, sc, B) : v1,(B, sc, C) : v2

(A, sc, C) : v1 ⊗ v2

(b)
(A, sc, B) : v1,(X, type, A) : v2

(X, type, B) : v1 ⊗ v2

3. Typing:

(a)
(A, dom, B) : v1,(X, A, Y) : v2

(X, type, B) : v1 ⊗ v2

(b)
(A, range, B) : v1,(X, A, Y) : v2

(Y, type, B) : v1 ⊗ v2

4. Implicit Typing:

(a)
(A, dom, B) : v1,(C, sp, A) : v2,(X, C, Y) : v3

(X, type, B) : v1 ⊗ v2 ⊗ v3

(b)
(A, range, B) : v1,(C, sp, A) : v2,(X, C, Y) : v3

(Y, type, B) : v1 ⊗ v2 ⊗ v3

5. Generalisation:
(X, A, Y) : v1,(X, A, Y) : v2

(X, A, Y) : v1 ∨ v2

Table 3: Inference rules for annotated RDFS.

Note that in the same manner we may build a trust annota-
tion domain modelling the reliability of a triple.
The Temporal Domain. Modelling the temporal domain
turns out to be more involved than the fuzzy case. To start
with, time points are elements of P = Z ∪ {−∞, +∞},
where Z are the integers. A temporal interval is a non-
empty interval [α1, α2], where αi are time points. An empty
interval is denoted as ∅. We define a partial order on inter-
vals as I1 � I2 iff I1 ⊆ I2. The intuition here is that if a
triple is true at time points in I2 and I1 � I2 then, in partic-
ular, it is true at any time point in I1. Now, apparently the
set of intervals would be a candidate for L, which however
is not the case. The reason is that, e.g., in order to represent
the upper bound interval of τ : [1, 5] and τ : [8, 9] we rather
need the disjoint union of intervals, denoted {[1, 5], [8, 9]},
meaning that a triple is true both in the former as well as in
the latter interval. Formally, we say that a finite set of inter-
vals t is maximal iff the intervals in t are pairwise disjoint
and there are no two adjacent intervals in it, where [α1, α2]
and [α3, α4] are adjacent iff α3 = α2 + 1. Now, we define
L as (where ⊥ = {∅},� = {[−∞, +∞]})
L = {t | t is a finite and maximal set of temporal intervals } ∪ {⊥,�} .

Therefore, a temporal term is an element t ∈ L, i.e. a set
of pairwise disjoint time intervals. We allow to write [α] as
a shorthand for [α, α], τ : α as a shorthand of τ : {[α]} and
τ : [α, α′] as a shorthand of τ : {[α, α′]}. Furthermore, on L
we define the following partial order:

t1 � t2 iff ∀I1 ∈ t1∃I2 ∈ t2, such that I1 � I2 .

Please note that � is the Hoare order on power sets (Abram-
sky, Jung 1994), which is a pre-order. For the anti-symmetry
property, assume that t1 � t2 and t2 � t1: so for I1 ∈ t1,
there is I2 ∈ t2 for which there is I3 ∈ t1 such that
I1 ⊆ I2 ⊆ I3. But, t1 is maximal and, thus, I1 = I3 = I2.
So, t1 = t2 and, thus, � is a partial order. Similarly as for
time intervals, the intuition for � is that if a triple is true at
time points in intervals in t2 and t1 � t2, then, in particu-
lar, it is true at any time point in intervals in t1. Essentially,
if t1 � t2 then a temporal triple τ2 : t2 is true to a larger
“temporal extent” than the temporal triple τ1 : t1. It can also
be verified that 〈L,�,⊥,�〉 is a bounded lattice. Indeed, to
what concerns us, the partial order � induces the following
join (∨) operation on L. Intuitively, if a triple is true at t1
and also true at t2 then it will be true also for time points

specified by t1 ∨ t2 (a kind of union of time points). E.g.,
if τ : {[2, 5], [8, 12]} and τ : {[4, 6], [9, 15]} are true then we
expect that this is the same as saying that τ : {[2, 6], [8, 15]}
is true. The join operator will be defined in such way that
{[2, 5], [8, 12]} ∨ {[4, 6], [9, 15]} = {[2, 6], [8, 15]}. Opera-
tionally, this means that t1 ∨ t2 will be obtained as follows:
(i) take the union of the sets of intervals t = t1 ∪ t2; and
(ii) join overlapping intervals in t until no more overlapping
intervals can be obtained. Formally,

t1 ∨ t2 = inf{t | t � ti, i = 1, 2} .

It remains to define the t-norm ⊗ over sets of intervals. In-
tuitively, we would like to support inferences such as “from
〈a, sc, b〉 : {[2, 5], [8, 12]} and 〈b, sc, c〉 : {[4, 6], [9, 15]} in-
fer 〈a, sc, b〉 : {[4, 5], [9, 12]}”, where {[2, 5], [8, 12]} ⊗
{[4, 6], [9, 15]} = {[4, 5], [9, 12]}. We get it by means of

t1 ⊗ t2 = sup{t | t � ti, i = 1, 2} .

Note that here the t-norm used for modelling “conjunction”
coincides with the lattice meet operator ∧ (Gödel’s t-norm)
and, thus, the temporal domain DT = 〈L,�,⊗,⊥,�〉 coin-
cides with the bounded lattice DT = 〈L,�,⊥,�〉.
Example 3 From Example 1 we can infer by multi-
ple application of the rules 2.(b) and 5. from Table 3 that
(AlainProst, type, SportsCarDriver) : {[1980, 1991], [1993]},
where, e.g. to infer F1Driver membership during Alain’s
Renault period we calculate {[1977, 1985], [2001, 2009]} ⊗
{[1981, 1983]} = {[1981, 1983]}, for SportsCarDriver
membership in that period we calculate {[1981, 1983]} ⊗
� = {[1981, 1983]}, and finally {[1981, 1983]} ∨
{[1980], [1984, 1989]} ∨ {[1990, 1991] ∨ {[1993]} =
{[1980, 1991], [1993]}.
(Gutierrez, Hurtado, Vaisman 2007) describe some further
features such as a “Now” time point (which is just a defined
time point in DT) and anonymous time points, allowing to
state that a triple is true at some point. Adding anonymous
time points would require us to extend the lattice by appro-
priate operators, e.g. [4, T] ∨ [T, 8] = [4, 8] (where T is an
anonymous time point), etc. We do not address this in detail.

Further Considerations
Extensions to multiple domains. Another nice feature of
our approach is that it becomes apparent that we may eas-
ily combine multiple domains, such as annotating triples

1441

with a temporal term, truth degree, degree of trust, etc.
In general, assuming having domains D1, . . . , Dn, where
Di = 〈Li,�i,⊗i,⊥i,�i〉, we may build the domain D =
D1×. . .×Dn = 〈L,�,⊗,⊥,�〉, where L = L1×. . .×Ln,
⊥ = 〈⊥1, . . . ,⊥n〉, � = 〈�1, . . . ,�n〉 and the partial or-
der, meet, join and t-norm operations �,∧,∨ and ⊗ are ex-
tended pointwise to L, e.g. 〈v1, . . . , vn〉 ⊗ 〈v′1, . . . , vn〉′ =
〈v1 ⊗ v′1, . . . , vn ⊗ v′n〉. For instance,
(SocialPoliticalScenario, type, Dangerous) : 〈[1975, 1983], 0.8, 0.6〉
may indicate that the social-political scenario during 1975-

1983 in some country has been considered dangerous to de-
gree 0.8 and the degree of trust we have for this statement
is 0.6 (here we combine a temporal domain, a fuzzy domain
and a domain to represent trust — the latter may be defined
similarly as the fuzzy one). The interesting point of our ap-
proach is that the rules of the deductive systems need not
to be changed as well as the query answering mechanism
(except to provide the support to compute ⊗ and ∨).
Meaning of Classical Triples. While merging anno-
tated and non-annotated triples, a meaning to non-annotated
triples has to be given, which depends on the annotation
domain. For instance, in the fuzzy case, a triple τ is con-
sidered to have degree of truth one and, thus, corresponds
to the annotated triple τ : 1. While for the fuzzy case the
choice is evident, less obvious is the case for the temporal
domain. We might, likewise, consider classical triples be an-
notated with the top of the lattice, i.e. τ : � = τ : [−∞,∞],
others (Gutierrez, Hurtado, Vaisman 2007) propose that a
classical triple τ may be interpreted as the annotated triple
τ : [−∞, Now]. One may also think of associating a time
span [n, m] to a whole classical RDFS graph G and, thus,
any triple τ ∈ G is interpreted as τ : [n, m]. In the com-
bination of annotated triples from different domains, one
might find our suggestion to go uniformly with �i in the
absence of an annotation for domain i appealing since it
fits nicely with the idea of combining arbitrarily annotated
triples from various domains as sketched above. In any case,
such considerations are orthogonal to our framework and do-
main/application dependent.
Dealing with SPARQL. The boolean expressions allowed
in our query language introduced so far allows merely for
unions of conjunctive queries. Especially readers familiar
with languages such as SQL and SPARQL may appreciate
the ability to pose more complex queries including built-in
predicates to filter solutions, advanced features such as nega-
tion, or aggregates to name a few.

A full elaboration of such extensions of our query lan-
guage is out of the scope of this paper, but we remark that
the striking resemblance of our query language with Datalog
is a likely stepping stone for future extensions in this direc-
tion: in previous work (Ianni et al. 2009), query answering
over RDFS has already been extended to full SPARQL by
translations to Datalog. The two missing features in our cur-
rent query language to enable an analogous translation for
annotated SPARQL queries are stratified negation as failure
and built-in predicates, the extension for both of which is
straightforward in our framework. We leave a concrete elab-
oration of the syntax (which could be based on former sug-
gestions for temporal/annotated SPARQL such as (Tappolet,
Bernstein 2009)) to future work. We are optimistic that fea-
tures such as aggregate functions currently under elaboration

in W3C’s SPARQL 1.1working group can also be integrated
by relying on, e.g., (Polleres, Scharffe, Schindlauer 2007).

Summary and Conclusion

We have generalised different annotation frameworks for
RDF towards RDFS reasoning and query answering. Our
framework nicely extends the classical case of RDFS with
the features of different annotation domains, such as tempo-
rality, fuzzyness, trust, etc. and particularly making these ar-
bitrarily combinable under a common, extensible reasoning
framework. A Prolog implementation based on constraint
logic programming techniques is ready to play with for the
interested reader 8 along with the examples given in this pa-
per. We plan to put more efforts in implementing this ap-
proach in a scalable manner and field-test it with temporally
annotated data extracted from the Web; here, Linked data
sources such as wikipedia/DBpedia may serve as a starting
point, which already contain a lot of structured, temporal in-
formation amenable to RDF extractors, combined with – for
instance – trust values computed by adequate ranking algo-
rithms, such as e.g. (Harth, Kinsella, Decker 2009).
Acknowledgements. We thank Antoine Zimmermann for
comments. This work was supported by Science Founda-
tion Ireland Grant No. SFI/08/CE/I1380 (Lı́on-2) and the EU
COST Action IC0801 “Agreement Technologies”.

References
Abramsky, S., Jung, A. 1994. Domain theory. Handbook of Logic in Computer
Science Volume 3, 1–168. Oxford University Press.

Dividino, R. Q.; Sizov, S.; Staab, S.; Schueler, B. 2009. Querying for provenance,
trust, uncertainty and other meta knowledge in RDF. JWS 7(3):204–219, Elsevier.

Gutierrez, C.; Hurtado, C.; Mendelzon, A. O. 2004. Foundations of semantic web
databases. PODS ’04, 95–106. ACM.

Gutierrez, C.; Hurtado, C. A.; Vaisman, A. A. 2007. Introducing Time into RDF.
IEEE Trans. Knowl. Data Eng. 19(2):207–218. IEEE Press.

Hájek, P. 1998. Metamathematics of Fuzzy Logic. Kluwer.

Harth, A.; Kinsella, S.; Decker, S. 2009. Using naming authority to rank data and
ontologies for web search. ISWC ’09, nr. 5823 of LNCS, 277–292. Springer.

Hartig, O. 2009. Querying trust in RDF data with tSPARQL. ESWC ’09, nr. 5554 of
LNCS, 5–20. Springer.

Ianni, G.; Krennwallner, T.; Martello, A.; Polleres, A. 2009. Dynamic querying of
mass-storage RDF data with rule-based entailment regimes. ISWC ’09, nr. 5823 of
LNCS, 310–327. Springer.

Kifer, M., Subrahmanian, V. 1992. Theory of generalized annotated logic program-
ming and its applications. J. of Logic Programming 12:335–367.

Muñoz, S.; Pérez, J.; Gutierrez, C. 2007. Minimal deductive systems for RDF. ESWC
’07, 53–67. Springer.

Polleres, A.; Scharffe, F.; Schindlauer, R. 2007. SPARQL++ for mapping between
RDF vocabularies. ODBASE ’07), nr. 4803 of LNCS, 878–896. Springer.

Pugliese, A.; Udrea, O.; Subrahmanian, V. S. 2008. Scaling RDF with time. WWW
’08, 605–614. ACM.

Straccia, U. 2009. A minimal deductive system for general fuzzy RDF. RR ’09, nr.
5837 of LNCS, 166–181. Springer.

Tappolet, J., Bernstein, A. 2009. Applied Temporal RDF: Efficient Temporal Query-
ing of RDF Data with SPARQL. ESWC, nr. 5554 of LNCS, 308–322. Springer.

Udrea, O.; Recupero, D. R.; Subrahmanian, V. S. 2006. Annotated RDF. ESWC ’06,
nr. 4011 of LNCS, 487–501. Springer.

8
http://sites.google.com/site/annotatedrdf/

1442

