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1. Introduction. Every finite abelian group is isomorphic to a direct
sum of cyclic groups Z/eiZ, where the ei are unique provided that ei+1
divides ei. Given such a group a natural task is to make this isomorphism
explicit, hence two fundamental computational problems arise. The first one
is to determine the order of the group and its structure (i.e. the ei), and the
second one is to compute discrete logarithms in it. When those two tasks
are feasible, most of the questions concerning the group can be transferred
to the simpler representation.

In this paper we assume that the group order is known and we concen-
trate on the discrete logarithm computation: Given an additively written
abelian group G, an element g1 ∈ G and another element g2 ∈ 〈g1〉, the
problem is to find an integer l such that g2 = lg1. Obviously, the difficulty
of the problem depends on the representation of the group. In (Z/NZ,+),
for instance, the problem reduces to taking an inverse modulo N and can be
solved in polynomial time by the Euclidean algorithm. In general the prob-
lem is hard and, following Diffie and Hellman’s and ElGamal’s constructions
[8, 11], it is possible to base a cryptosystem on it.

The first examples of such groups were the multiplicative groups of fi-
nite fields; it turned out that in this case the discrete logarithm problem
can be solved in expected subexponential time by so-called “index calculus
algorithms” (see [28] and the references therein), so that the key size in a
secure system based on such a group must be relatively large.

Other important examples are class groups of number fields [24, 6] and
Jacobians, i.e. divisor class groups, of elliptic [25, 19] and hyperelliptic [20]
curves over finite fields.
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Extending the “index calculus” method for finite fields, algorithms with
conjectured or rigorously proven subexponential running time for the dis-
crete logarithm problem in class groups of number fields [5, 9] and high-genus
hyperelliptic Jacobians [2, 12] and related structures [26] were devised. How-
ever, the constants of the running time bounds for these algorithms are
substantially weaker than for the finite field case. This is due to the fact
that the index calculus algorithms for class groups proceed by solving both
computational tasks mentioned in the first paragraph: In a first step, the
structure of the group under consideration is determined as a product of
cyclic groups, in a second step, the actual discrete logarithm is computed.
For the multiplicative groups of finite fields, which are cyclic and of known
order, the first phase can be omitted.

In the present article we close the gap between the running times of
discrete logarithm algorithms for finite fields and class groups. We provide
a general framework for solving the discrete logarithm problem in finite
abelian groups which possess an analogue to the unique prime decompo-
sition of integers. Our basic additional assumption is that the group be
cyclic and of known order, which closely follows the special case of finite
fields. If a certain smoothness assumption is satisfied, our algorithm has a
provable subexponential expected running time. Examining how the well-
studied discrete logarithm problem in finite fields fits into our framework,
we recover the same running time as for the fastest rigorously analysed al-
gorithms known so far. We obtain corresponding running time results for
class groups, which constitute a major improvement compared to the above
mentioned algorithms.

The main result of this paper is the following:

Theorem 1. There exists a probabilistic algorithm that solves a discrete
logarithm problem in the Jacobian of a hyperelliptic curve of genus g over
the finite field Fq when the group is cyclic of known order and g/log q tends
to infinity. It takes expected time

Lqg(
√

2 + o(1)).

Assuming the extended Riemann hypothesis, there exists a probabilistic al-
gorithm that solves the discrete logarithm problem in the class group of an
imaginary quadratic field of discriminant −D when the group is cyclic of
known order N . It takes expected time

LN (
√

2 + o(1)) = LD(1 + o(1)).

(Here Lx(c) stands for exp(c
√

log x
√

log log x).)

Note that we are interested in algorithms with a provable running time
only (possibly under the Riemann hypothesis in the number field case),
whence we do not take into account algorithms of the number field sieve type.
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Such algorithms are conjectured to be asymptotically faster than ours (and
there are both plausible theoretical considerations and numerical evidence
to support this conjecture). In any case, they are only available for finite
fields and not for class groups.

The assumption that the group is cyclic and of known order is no re-
striction from the cryptographic point of view, as knowledge of the group
order is required for digital signatures and to prove resistance against the
Pohlig–Hellman attack. However, the discrete logarithm problem often has
to be solved in a cyclic subgroup, whereas the smoothness assumption can
only be verified for the full group, which itself may not be cyclic. We show
that a variant of the algorithm applies to cryptographically suitable sub-
groups. Moreover, the modifications allow to detect the case that no discrete
logarithm exists, in which the original algorithm would run forever.

We proceed as follows. In Section 2 we introduce the general setting in
which the algorithm described in Section 3 can be used to compute dis-
crete logarithms. The subsequent sections are devoted to the analysis of
the algorithm. We extend some results on sparse linear algebra to evaluate
the probability that the algorithm succeeds and verify its subexponential
running time. Along the way, the general considerations are specialised to
classical examples. Finally, in Section 7 we explain how to adapt the algo-
rithm for the cases where the group is not cyclic.

2. Notations and prerequisites. Throughout the paper, we denote
by Z the set of integers, by N the set of positive integers, by log the natural
and by log2 the dual logarithm. Let G be an additively written cyclic group
of known order N , and let ZN denote Z/NZ. In general, one would expect
that the elements of G are represented by O(logN) bits and measure algo-
rithmic complexities as functions of N . It is, however, possible to construct
groups whose elements are naturally represented by bit strings of length in
O(logN ′) for some N ′ considerably larger than N . For instance, Jacobian
groups of curves of genus g over F2 are given by Θ(logN ′) bits for N ′ = 2g,
whereas the only known lower bound on N in this case is the Hasse–Weil
bound (

√
2− 1)g ≤ 1. While this situation results in a waste of bandwidth

for cryptographic applications and is thus unlikely to occur, for preserving
as much generality as possible we henceforth denote by logN ′ the input
size of the problem and measure all complexities by functions of logN ′. It
turns out that factors polynomial in logN ′ do not affect the subexponential
running time. Hence to simplify the analysis we follow [14] and for some
positive function f of N ′ denote by O∼(f) the class of functions which are
in O(f) up to a factor bounded by some power of logN ′.

To apply the index calculus idea, G must behave similarly to the natu-
ral integers or the polynomials over a finite field in that each element of G
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admits a unique decomposition into a “sum of primes”. To model this be-
haviour, assume that there is a free abelian monoidM over a countable set P,
whose elements are called primes, together with an equivalence relation ∼
on M which is compatible with its composition law, such that G ' M/∼.
Thus, each element of M has a unique decomposition into a sum of primes.
Let each element of G be represented by a unique element of M of bit size
in O∼(1); then G inherits the unique decomposition property. We assume
that the arithmetic in G (addition, negation and test for equality) is per-
formed by manipulating these unique representatives in time polynomial in
logN ′. Furthermore, we assume that there is a homomorphism of monoids
deg:M → R+, which to each element of M (and thus of G) associates its
“size”. As M is free over P, any such homomorphism is given by assigning a
non-negative size to each prime and extending additively. Usually the “size”
degm and the bit size of m are closely related in the sense that the latter
is in Θ(degm).

The setting above was introduced by Knopfmacher [18], who calls M an
additive arithmetical semigroup and G an arithmetical formation. In addi-
tion we require that deg p ≥ 1 for p ∈ P and deg g ∈ O∼(1) for any g ∈ G.
This ensures that the number of primes in the decomposition of a group
element, counting multiplicities, is bounded above by O∼(1).

For a smoothness bound S ∈ N denote by PS the set of primes of size at
most S, by nS the cardinality of PS and by n′S the number of elements of
M of size at most S. From an algorithmic point of view, we demand that
n′S be finite, that the elements of size at most S can be enumerated in time
polynomial in S and linear in n′S and that an element m ∈M can be tested
for being prime in time polynomial in degm and linear in n′degm (by trial
division by all elements of size smaller than degm, for instance). Thus, PS
can be constructed in time polynomial in S and quadratic in n′S. In practice,
Eratosthenes’s sieve could be used to lower the complexity in n′S ; however,
the algorithms studied below are at least quadratic in n′S .

An element of G is called S-smooth if its decomposition involves only
primes of PS. As the size of the elements of G is in O∼(1), a distinction into
smooth and non-smooth elements arises only for S ∈ O∼(1). For technical
reasons we assume furthermore that lognS ∈ O∼(1). We require that ele-
ments of G can be tested for S-smoothness and, if possible, be decomposed
into a sum of primes from PS in O∼(nS), which usually amounts to trial di-
vision by the elements of PS . In all cases considered below, the smoothness
test and the decomposition are even in O∼(

√
n′S) or O∼(1), which results

in better running times.
The most efficient smoothness test available for integers to date, which is

subexponential in log n′S, is non-deterministic and not completely reliable in
that it may not recognise a smooth element. Thus, we extend our model as



Subexponential discrete logarithm algorithms 87

follows: The smoothness test rejects all non-smooth elements; it recognises
a smooth element up to a certain error probability, which may depend on
the element tested, but does not exceed 1/2.

It should be noted that we could work with a more general definition of
smoothness, which does not involve the notion of the size of an element. Also,
unique decomposability could be defined in an abstract way, not involving
the notion of a free abelian monoid. However, the more intuitive definitions
apply to all groups considered in the literature so far.

Examples

1. Finite prime fields G = F×p . Then G can be represented as (N, ·)/∼,
where m1 ∼ m2 if and only if p |m1 − m2, and P is the set of natural
prime numbers. The size of an element is given by its logarithm to base 2,
degm = log2m, and N ′ = N = p− 1.

2. Finite fields of characteristic 2, G = F×2k . Then G can be represented
as (F2[X]\{0}, ·)/∼, where f1 ∼ f2 if and only if f | f1 − f2 for some fixed
irreducible polynomial f of degree k in F2[X], and P is the set of irreducible
polynomials over F2. The size of an element is given by its usual degree, and
N ′ = N = 2k − 1.

3. Finite fields of the form G = F×
pk
, p prime. Then G can be represented

by the polynomials of degree less than k over Fp. Denote by Fp[X]′ the set of
monic polynomials over Fp. Noticing that any polynomial is the unique prod-
uct of its leading coefficient and a monic polynomial, G can be represented
as (N, ·)× (Fp[X]′, ·)/∼, where (m1, f1) ∼ (m2, f2) if and only if p |m1−m2
and f | f1 − f2 for some fixed irreducible polynomial f of degree k over Fp.
The set of primes P is given by the union of the set of natural primes and
the set of monic irreducible polynomials over Fp, each embedded into the
cartesian product. The size of an element is deg(m1, f1) = log2m1 + deg f1,
and N ′ = N = pk − 1. Notice that these definitions are compatible with
Examples 1 and 2.

4. Class groups of number fields. Let K be a number field and O its ring
of integers. Then the class group G of K is defined as M/∼, where M is the
set of ideals of O (a free abelian monoid over the set P of prime ideals), and
∼ is induced by the submonoid of principal ideals. The size of an ideal is
given by the logarithm of its norm. If K has unit rank 0, then each ideal
class contains a unique so-called reduced ideal, which can be computed in
polynomial time from any representative of the class as long as (K : Q) is
fixed. This reduced ideal then constitutes the canonical representative for
the class.

In particular, the case of imaginary quadratic fields Q(
√
D) of discrim-

inant D < 0 is covered. Let ω = (D +
√
D)/2 with minimal polynomial
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X2 −DX + (D2 −D)/4 be an element generating an integral power basis.
Then PS can be constructed by enumerating all rational primes p ≤ 2S and
solving the equation y2

p−Dyp+(D2 −D)/4 ≡ 0 (modp), which can be done
in expected polynomial time by a probabilistic algorithm. If this equation
does not have a solution, then p is inert and pO is a principal prime ideal,
whence it may be omitted from the factor base. If the equation has the
double solution yp = 0, then p is ramified and (p, ω) is the only prime ideal
above p in O. Finally, if the equation has two solutions yp and yp, then p is
splitting and p = (p, ω − yp) and p = (p, ω − yp) are the two prime ideals
above p in O.

A reduced ideal a = (a, ω−b) with a | b2−Db+(D2 −D)/4 is S-smooth if
and only if all prime divisors of a are bounded above by 2S. Let p be a prime
divisor of a and ν the exponent of p in a. Then, as the ideal is reduced, it can
be shown that p is not inert, so there is an ideal of the form p = (p, ω − yp)
above p in O. If yp ≡ b (mod p), then the ideal occurs with multiplicity ν in
the decomposition of a, otherwise, p occurs with multiplicity ν. Thus, the
smoothness test and the decomposition of class group elements into primes is
completely reduced to the same problems over the rational integers. Again,
we let N ′ = N .

5. Jacobians of curves over finite fields. Let C ∈ Fq[X,Y ] be a plane
irreducible projective curve, and G its Jacobian. Fix a divisor O of degree 1,
and let P denote the set of all P − (degP )O with a prime divisor P . The size
of such an element of P is given by degP . Then G ' M/∼, where M is the
free monoid over P and ∼ is induced by the submonoid of principal divisors.
If the prime at infinity of Fq[X] is totally ramified in the function field of the
curve, we may choose O as the prime divisor at infinity, and the Jacobian is
isomorphic to the ideal class group of the integral closure of Fq[X,Y ] in the
function field. Of particular interest is the case of hyperelliptic curves, which
constitute the function field analogue of quadratic number fields. A hyper-
elliptic curve of genus g over Fq is the smooth projective model of a plane
curve of the form

H = Y 2 + hY − f
with h ∈ Fq[X] of degree at most g and f ∈ Fq[X] monic of degree 2g + 1
or 2g + 2.

If deg f = 2g+1, the prime at infinity is ramified and the representation
of the hyperelliptic curve by H is called imaginary. The use of such curves in
cryptography has been suggested by Koblitz [20]. Each divisor class of a hy-
perelliptic Jacobian in imaginary representation contains a unique reduced
divisor div(a, b) which corresponds to the ideal (a, Y − b) of Fq[X,Y ]/(H)
and satisfies a, b ∈ Fq[X], deg b < deg a ≤ g and a | b2 + bh − f . Its size is
deg a. So the input size of the problem is O(logN ′) for N ′ = qg. The as-
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sumption that N ∈ O∼(N ′) holds since N ≤ (2g + 1)qg. For q a prime, this
bound is due to Artin ([3], §24, Formula (8)), whose arguments are easily
extended to the general case replacing the Artin character by the general
quadratic character. Given a divisor div(a′, b′), the canonical reduced repre-
sentative in its class can be computed in time polynomial in N ′. The set PS
can be constructed by enumerating all irreducible polynomials p ∈ Fq[X]
of degree at most S and solving the equation y2

p + hyp − f ≡ 0 (mod p)
in expected polynomial time by a probabilistic algorithm. All further steps
are completely analogous to the case of imaginary quadratic number fields.
The only difference is that testing for smoothness and decomposing a group
element into primes is reduced to the corresponding problems over the uni-
variate polynomials instead of the rational integers.

For deg f = 2g + 2, the prime at infinity is splitting and H is called
a real representation of the curve. Its Jacobian is no longer isomorphic to
the ideal class group of Fq[X,Y ]/(H). Instead of working in the Jacobian,
it has been suggested to base cryptosystems on discrete logarithms in the
so called infrastructure of the curve [33, 27]. It has been observed in [29]
that at least in odd characteristic a constant field extension of degree at
most 2g+ 2 allows one to transform a real representation into an equivalent
imaginary representation. Thus we restrict our presentation to imaginary
curves.

3. Algorithm. We describe the algorithm for a cyclic group whose order
is known and not necessarily prime. Unlike in the Pohlig–Hellman method
we do not split the discrete logarithm problem into a series of problems
in subgroups of prime order. In fact, we need to work in the full group to
guarantee a provable proportion of smooth elements, and the generalisation
of the algorithm to subgroups poses challenges which are discussed in Sec-
tion 7. However, we factor the group order to facilitate the linear algebra
step.

The algorithm takes as input a generator g1 of a cyclic group G of order
N and another element g2 ∈ G. It outputs logg1

g2, i.e. an integer l ∈
{0, . . . , N − 1} such that g2 = lg1.

1. Choose a smoothness bound S and construct the factor base PS =
{p1, . . . , pn} with n = nS. Set k = dlog2 n+ log2 log2Ne+ 1.

2. Construct a matrix A = (aij) ∈ Zn×(2kn)
N as follows: For j = 1, . . . , kn,

select randomly and uniformly αj , βj ∈ ZN until αjg1 + βjg2 is S-
smooth, and write

(1) αjg1 + βjg2 =
n∑

i=1

aijpi.
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For j = kn + 1, . . . , 2kn, write j = (k + l)n + m with 0 ≤ l ≤ k − 1,
1 ≤ m ≤ n, and select randomly and uniformly αj , βj ∈ ZN until
αjg1 + βjg2 − pm is S-smooth; then write

(2) αjg1 + βjg2 = pm +
n∑

i=1

bijpi =
n∑

i=1

aijpi.

(In practice, one would only create a few more than n columns of the
first type, see [15]. The second type of columns and the constant k are
merely needed to make a rigorous proof of the running time possible.)

3. By the randomised procedure described in Section 4, try to find a
non-zero vector γ = (γ1, . . . , γ2kn) ∈ KerA. (During this step N is
factored.) If the procedure fails, return to Step 2.

4. If
∑2kn

j=1 βjγj is invertible in ZN , then output

−
( 2kn∑

j=1

βjγj

)−1( 2kn∑

j=1

αjγj

)
;

otherwise return to Step 2.
If the algorithm halts in Step 4, then it outputs the correct discrete

logarithm of g2 to the base g1. The fact that γ ∈ KerA means that

0 =
2kn∑

j=1

aijγj ∀i = 1, . . . , n;

multiplying these equations by pi and summing them up yields

0 =
2kn∑

j=1

( n∑

i=1

aijpi

)
γj =

( 2kn∑

j=1

αjγj

)
g1 +

( 2kn∑

j=1

βjγj

)
g2.

As g1 and g2 are both of N -torsion, multiplying by the inverse of
∑2kn

j=1 βjγj
in ZN , if it exists, shows the correctness of the result.

4. Linear algebra. As rankA ≤ n, it is possible to find a non-zero
vector γ ∈ KerA. How this is done, however, needs further explanation. On
one hand, it is desirable to exploit the sparse structure of the matrix, which
has only O∼(1) entries per column, and the corresponding algorithms are
prone to failure with a certain probability. On the other hand, a complication
is introduced by the fact that N need not be prime, so that ZN may not be
a field.

To exploit the matrix sparseness, one may use a randomised Lanczos
algorithm; we rely on the following trivial corollary of Theorem 6.2 in [10].
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Theorem 2. Let Fq be the finite field with q elements and let A ∈ Fn×dq

be a matrix of rank r with ω non-zero entries and b ∈ Fnq . There is a proba-
bilistic algorithm which either returns a vector x ∈ Fdq such that Ax = b or
reports failure. The algorithm requires O(r(ω+d)) operations in Fq and has
a failure probability of at most (11d2 − d)/(2(q − 1)).

Moreover, the solution vector returned by the algorithm can be made
to vary uniformly over all possible solutions by randomising the right hand
side in the following way (in fact, this randomisation is already part of the
algorithm in [10]): Choose y ∈ Fdq according to a uniform distribution, solve
Ax = b + Ay and let x = x − y. If y varied over a fixed class of Fdq/KerA,
then x would not depend on y, and x would be distributed uniformly over
the solution space x+KerA of the equation. Hence, the same assertion holds
when y does not belong to a fixed class.

When q is small compared to d, it is not possible to apply the theorem
directly. Instead, one may switch to a field extension. While this idea does
not seem to be new—it was used, for instance, in the implementation of
[21], see also [17]—we did not find it detailed in the literature and thus
expand on the topic. In particular, it is possible to maintain the uniform
distribution over the solution vectors. In the situation of Theorem 2, let
p be the characteristic of Fq, ν = min{l : ql > 11d2, p - l} and q′ = qν .
Then qν−2 ≤ 11d2, so that q′ ∈ O(d2q2). We would like to solve a matrix
equation over Fq′ and project the solution onto a solution x ∈ Fdq of Ax = b.
For projection, one may use the trace function Tr : Fq′ → Fq, which is a
homomorphism of Fq-vector spaces and acts on Fq as multiplication by ν.
Let b′ = ν ′b ∈ Fdq with νν ′ ≡ 1 (mod p), so that νb′ = b. The value ν ′ exists
because gcd(ν, p) = 1 and can be computed by the extended Euclidean
algorithm in time O(log ν log p), which as well as the multiplication of b by
ν ′ is negligible compared to the following linear algebra step. Solve Ax′ = b′

by the algorithm in [10]. The success probability for this step is at least

1− 11d2 − d
2(q′ − 1)

≥ 1
2
.

Let x = Tr(x′). Then from the linearity of the trace we deduce that Ax =
Tr(Ax′) = Tr(b′) = νb′ = b. Moreover, any solution x ∈ Fdq of Ax = b can be
obtained in this way, and all of them have the same probability of occurring.
Namely, for a given solution x, the set of solutions to Ax′ = b′ over Fdq′ which
map to x under the trace function is given by ν ′x+ (KerA∩Ker Tr), whose
cardinality (q′)dim(KerA∩Ker Tr) is independent of x. Thus, we have shown the
following result:

Theorem 3. Let A ∈ Fn×dq be a matrix of rank r with ω non-zero en-
tries and b ∈ Fnq . There is a probabilistic algorithm which either returns a
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vector x ∈ Fdq such that Ax = b or reports failure. The running time of the
algorithm is in O(r(ω + d) log2(dq)), and its failure probability is at most
1/2. Moreover , the resulting vector is uniformly distributed over all possible
solutions.

This solves the linear algebra step if N is prime. Otherwise, one factors
N , computes γ modulo pν for all pν ‖N and combines the results by the
Chinese Remainder Theorem. The computations modulo pν may be broken
up into ν iterations modulo p via a lifting procedure: Suppose that a non-zero
solution γ1 ∈ {0, . . . , pe − 1}2kn is known to the equation Ax ≡ 0 (modpe),
for instance Aγ1 = peδ with δ ∈ Z2kn. Assume that there is a solution γ2 of
Ax ≡ δ (mod p). Then peγ2−γ1 is a non-zero solution of Ax ≡ 0 (mod pe+1).
If all computations modulo a prime return a random vector according to a
uniform distribution over all possible solutions, then the combined result
varies uniformly over the kernel of A.

Considering the elementary divisor form of the matrix A, however, it is
easily seen that the lifting procedure may fail if (and only if) rankQA 6=
rankZp A because then the matrix equation Ax ≡ δ (mod p) need not have a
solution. This is the reason why, following [31], we create the matrix A in a
special way, generating many more than the n+1 columns one would expect
to need in practice and introducing the canonical basis elements pm into the
matrix. Indeed, it is proved in Lemma 4.1 and the subsequent remark of [31]
that with high probability the matrix has full rank over Zp. We recall this
lemma with our notations.

Lemma 4. Let V be a vector space over a field F with dimV = n <∞.
Let S be a finite set of vectors in V and b1, . . . , bn a basis for V . Let
k ∈ N. We make 2kn independent choices of elements from S with an arbi-
trary probability distribution over S, labelling the chosen vectors v1, . . . , vkn,
w1, . . . , wkn, and we denote by V ′ the subspace of V spanned by v1, . . . , vkn,
and the vectors bj + w(j−1)k+i for j = 1, . . . , n and i = 1, . . . , k. Then with
probability at least 1− n/2k−1 we have V = V ′.

In our case, the vector space V is the space of column vectors of size n
with coefficients in Zp, the basis is the canonical basis, and the set S is the
set of all column vectors representing a smooth element of G. We see that
the vectors generating V ′ correspond precisely to the vectors forming the
matrix A. Hence the probability that the lifting is possible on Zp is at least
1 − n/2k−1. There are at most (log2N)/2 distinct primes p whose squares
divide N , thus the probability that the lifting is possible for all of them is
at least 1 − (n log2N)/2k ≥ 1/2 for our choice of k. In this case, repeating
log2(2 log2N) times the algorithm of Theorem 3, we obtain a solution of one
problem modulo a prime with probability at least
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1− 1
2log2(2 log2N)

= 1− 1
2 log2N

.

As at most log2N single problems have to be solved, we get a solution mod-
ulo N with probability at least 1/2. Altogether, Step 3 is thus successful with
a probability of at least 1/4, in which case the output vector is uniformly
distributed over the kernel.

5. Success probability and running time. To estimate the success
probability of the algorithm during one run of Steps 2 to 4, we assume
that Step 2 has been accomplished successfully, the study of this step being
postponed to the running time analysis below.

As shown above, Step 3 succeeds with probability at least 1/4. The
algorithm may also fail if

∑2kn
j=1 βjγj is not invertible in ZN in Step 4. How-

ever, this happens with a sufficiently low probability. For given j ≤ kn and
any βj , as g1 is a generator of G and αj is uniformly distributed, the el-
ement αjg1 + βjg2 is uniformly distributed over all group elements. The
same holds for j > kn and αjg1 + βjg2 − pm. Consequently, the matrix A
and the vector β are independent random variables, so that γ and β are
also independent. Let p be a prime divisor of N . As γ is uniformly dis-
tributed over all vectors of the kernel, the probability that γ 6≡ 0 (modp) is
at least 1− 1/p. Then the orthogonal space of γ mod p in Z2kn has dimen-
sion 2kn−1, and the conditional probability that β mod p is not orthogonal
to γ mod p is at least 1 − 1/p. Hence

∑2kn
j=1 βjγj is invertible in ZN with

probability at least
∏
p|N (1 − 1/p)2 = (ϕ(N)/N)2. From (3.41) in [32] we

have ϕ(N)/N ∈ Ω(1/log logN).
Thus, the total success probability for one run of Steps 2 to 4 is in

Ω

(
1

(log logN)2

)
.

In accordance with Section 2, denote by n′ = n′S the number of elements
of the monoid M whose sizes are bounded above by S.

With the assumptions set forth in Section 2, PS can be constructed in
O∼(n′2) time.

Denote by NS the number of S-smooth elements of G, and let ts and
td be upper bounds on the expected time needed for a smoothness test
and the decomposition of a smooth group element into a sum of primes,
respectively. The time needed for computing one linear combination of g1
and g2 and testing for smoothness is in O∼(ts); this has to be repeated
an expected N/NS times until a smooth element is obtained. This smooth
element is recognised with a probability of at least 1/2, so that no more
than two repetitions of the previous procedure are needed on average until
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a column of the matrix can be filled. So the total time used in Step 2 is in

O∼
(
n

(
N

NS
ts + td

))
⊆ O∼

(
n
N

NS
ts + n2

)

as 2kn, td ∈ O∼(n).
Let tf be a time bound for factoring N . As explained in Section 4, Step 3

requires log2(2 log2N) log2N ∈ O∼(1) executions of the algorithm behind
Theorem 3. The number of entries in each column of A is in O∼(1), so that
Step 3 needs O∼(tf + n2) time.

Finally, Step 4 can be performed in O∼(n) time.
As only O((log logN)2) ⊆ O∼(1) repetitions of Steps 2 to 4 are needed

on average and n ≤ n′, the total running time of the algorithm is in

O∼
(
tf + n′2 + n′

N

NS
ts

)
.(3)

(In all cases under consideration, n and n′ differ only by polynomial factors in
logN ′, i.e. O∼(n) = O∼(n′), so that we do not lose anything when replacing
n by n′.)

Examples

1. G = F×p , p prime. With deterministic algorithms due to Pollard and
Strassen [30, 37] we have ts ∈ O∼(

√
n′). A more efficient probabilistic

method has been proved using hyperelliptic curves. The test of [22] recog-
nises (and decomposes) a smooth number with probability at least 1/2 in
time ts ∈ O∼(Ln′(2/3, c)), where L is the subexponential function as defined
in Section 6 and c some positive constant. Thus, the total running time is in

O∼
(
tf + n′2 + n′Ln′(2/3, c)

N

NS

)
.

2. G = F×2k . Now ts ∈ O∼(1), as a smoothness test can be performed in
deterministic polynomial time by computing the distinct degree factorisation
of the polynomial representing the group element. Precisely, let f ∈ F2[X]′

be the element to be tested, and g = f/gcd(f, f ′) its square-free part. Then
f is S-smooth if and only if g is. As X2i−X is the product of all irreducible
polynomials of degree dividing i in F2[X]′, the latter is the case if and only if

g = lcm({gcd(g,X2i −X) : i = 1, . . . , S}).
Computing X2i −X mod g by successive squaring and reduction modulo g,
this can be tested in time polynomial in S and deg f ∈ O(logN). Thus, the
total running time of the algorithm is in

O∼
(
tf + n′2 + n′

N

NS

)
.
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3. G = Fpk , p prime. An element (m, f) ∈ N × Fp[X]′ is S-smooth if
and only if m and f are S-smooth. The smoothness of m can be tested in
O∼(Lp(2/3, c)) time as mentioned in Example 1. The smoothness of f can
again be checked by distinct degree factorisation in O∼(1) time. Thus, the
total running time of the algorithm is in

O∼
(
tf + n′2 + n′Lp(2/3, c)

N

NS

)
.

4. Class groups of imaginary quadratic number fields. As the smoothness
test and the decomposition into primes are reduced to the case of natural
integers, the analysis of Example 1 shows that the running time is in

O∼
(
tf + n′2 + n′Ln′(2/3, c)

N

NS

)
.

5. Jacobians of hyperelliptic curves. Now the smoothness test and the
decomposition are reduced to the case of monic polynomials, and the anal-
ysis of Example 2 carries over and shows that the running time is in

O∼
(
tf + n′2 + n′

N

NS

)
.

6. Subexponentiality. Recall the definition of the subexponential
function with respect to the input size logN ′ and parameters α ∈ (0, 1)
and c > 0:

LN ′(α, c) = ec(logN ′)α(log logN ′)1−α
.

The smaller α, the closer this function is to the polynomial LN ′(0, dce) =
(logN ′)dce in logN ′. All rigorously proven subexponential algorithms for
discrete logarithms, and also the algorithm of this article, have α = 1/2.
Thus we simplify the notation by omitting the first parameter when it is
1/2. We state the simple relations

LN ′(c1) · LN ′(c2) = LN ′(c1 + c2)

and
LN ′(c1) + LN ′(c2) ∈ Θ(LN ′(max(c1, c2))).

Furthermore, functions in O∼(1) or O(LN ′(α, c)) for α < 1/2 are contained
in LN ′(o(1)), where o(1) stands for the set of real-valued functions tending
to zero as N ′ →∞.

Assume that we have a smoothness result of the following form: The
bound S can be chosen such that

n′ ∈ O(LN ′(%+ o(1))) and N/NS ∈ O(LN ′(σ + o(1)))

for some constants %, σ > 0.
The assumption N ∈ O∼(N ′) implies that LN (c) ∈ O(LN ′(c) + o(1)).

Taking into account that N can be factored in expected O(LN(1 + o(1))) ⊆
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O(LN ′(1 + o(1))) time by the algorithm presented in [23] and introducing
an exponent τ such that ts ∈ O∼(n′τ ), we can specialise (3) to obtain

O(LN ′(max(1, 2%, (1 + τ)%+ σ) + o(1))).

In fact, the constants for all examples presented below are worse than 1
anyway, so that the need for factoring N has no influence on our running
time bounds.

Examples

1. G = F×p , p prime; N ′ = N = p − 1. With the usual notation ψ(x, y)
for the number of integers between 1 and x all prime factors of which are
not larger than y, we have

N

NS
=

N

ψ(N, 2S)
.

Let S = dlog(LN (%))e, so that n′ = 2S ∈ [LN (%), 2LN(%)]. Then Lemma 3.1
in [31] shows that N/NS ∈ O(LN (σ + o(1))) with σ = 1/(2%). Moreover
from n′ ∈ O(LN (%)) we deduce Ln′(2/3, c) ∈ LN (o(1)). The running time of
the algorithm is thus in

O

(
LN

(
max

(
2%, %+

1
2%
, 1
)

+ o(1)
))

for any % > 0; the optimal choice % = 1/
√

2 yields a running time in

O(LN(
√

2 + o(1))).

This is precisely the complexity of the fastest known algorithm described
in [31].

2. G = F×2k ; N ′ = N = 2k− 1. Denote by Nq(d,m) the number of monic
polynomials of degree d over Fq all prime factors of which have degree at
most m. Then

N

NS
≤ 2k

N2(k − 1, S)
.

Let S = dlog(LN (%))e, so that n′ ∈ Θ(LN (%)). Theorem 2.1 of [4] shows
that

N2(k − 1, S) ∈ 2k−1

u(1+o(1))u
for u =

k − 1
S
≤ 1
%

√
logN

log logN
≤ 1
%

√
logN.

Thus, a few computations reveal that
N

NS
∈ O(LN (σ + o(1))) for σ =

1
2%
,

and the running time of the algorithm is in

O

(
LN

(
max

(
2%, %+

1
2%
, 1
)

+ o(1)
))
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for any % > 0. The optimal choice % = 1/
√

2 again yields a running time in

O(LN(
√

2 + o(1))),

which corresponds to the fastest known algorithms described in [31] and [4].

3.G = Fpk , p prime;N ′ = N = pk−1. Notice first that in the polynomial
representation we have chosen, it is impossible to obtain a subexponential
running time for fixed k ≥ 2 and p → ∞. If we let S = 0, then only the
constants have a chance of being smooth, and

N

NS
≥ pk − 1

p− 1
≥ pk−1

is exponential in N . If S ≥ 1, then all p monic linear polynomials are con-
tained in the factor base, which is thus of exponential size. Hence, we must
restrict our attention to instances in which p is sufficiently small compared
to k.

Letting S = dlogp(LN (%))e, we obtain the estimate

N

NS
≤ p

ψ(p− 1, 2S)
· pk−1

Np(k − 1, S)
∈ O

(
pLN

(
1
2%

+ o(1)
))

as in Example 2, which introduces an unwanted factor of p. Moreover, since
we have to round up S, it need not be true any more that n′ ∈ O(LN (%)).
In fact,

n′ =
S∑

i=0

|{f ∈ F′p[X] : deg f = i}|

·|{m ∈ {1, . . . , p− 1} : log2m ≤ S − i}|

=
S∑

i=0

pi min{p− 1, 2S−i}

≤
S−1∑

i=0

pi+1 + pS ∈ O(pS) ⊆ O(pLN (%)).

For a first special result we consider the case p ∈ O(logN) or more gen-
erally p ∈ O∼(1), which implies n′ ∈ O∼(LN (%)) and Lp(2/3, c) ∈ LN (o(1)).
So the running time analysis of Example 2 carries over without modification.

More generally, we must ensure that p is subexponential in logN =
k log p. Following the ideas in [12], we consider the case k ≥ ϑ log p for some
positive constant ϑ, in which p ≤ LN (1/

√
ϑ). Then

n′ ∈ O
(
LN

(
%+

1√
ϑ

))
and

N

NS
∈ O

(
LN

(
1
2%

+
1√
ϑ

+ o(1)
))
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for the same value of S as above, Lp(2/3, c) ∈ LN (o(1)) and the total running
time is in

O

(
LN

(
max

{
2%+

2√
ϑ
, %+

1
2%

+
2√
ϑ
, 1
}

+ o(1)
))

.

The optimal choice for % is
√

2/2, which yields a running time of

O

(
LN

(√
2 +

2√
ϑ

+ o(1)
))

.

Asymptotically for ϑ → ∞ (e.g., for p fixed), we recover the running time
of Example 2.

In [1], Adleman and DeMarrais describe an algorithm with conjectured
subexponential running time for p > k. They represent the field as the
ring of integers of a number field modulo a prime ideal. See also [34]. It
is an interesting open question whether there is a provably subexponential
algorithm for all finite fields using possibly such a representation.

4. Class groups of imaginary quadratic number fields. Let D denote the
discriminant of the number field. It is shown in [35], Proposition 4.4, that
assuming the generalised Riemann hypothesis,

N

NS
∈ O

(
L|D|

(
1
4c

+ o(1)
))

for S = dlogL|D|(c)e.

Due to a theorem of Siegel’s [36], log |D| ∈ (2 + o(1)) logN so that
L|D|(c+ o(1)) = LN (

√
2c+ o(1)). Letting S = dlogLN (%)e, we deduce

n ∈ O(LN (%)) and
N

NS
∈ O

(
LN

(
1
2%

+ o(1)
))

.

Repeating the analysis of Example 1 shows that our algorithm has a running
time in

O(LN(
√

2 + o(1))) = O(L|D|(1 + o(1)))

under the generalised Riemann hypothesis. This improves the running time
of O(L|D|(

√
2 + o(1))) of the algorithm described in [16] for determining the

class group structure without any previous information.

5. Jacobians of hyperelliptic curves. Recall that N ′ = qg. Letting S =
dlogq Lqg(%)e, we have n ≤ 2qLqg(%). Again, we follow [12] and consider
only instances with g ≥ ϑ log q for some positive constant ϑ, so that q ≤
Lqg(1/

√
ϑ). It is shown in [13] that then NS ≥ qgLqg(−1/(2%)), so that

N

NS
∈ O∼

(
N ′

NS

)
⊆ O

(
Lqg

(
1
2%

+ o(1)
))

,

and the running time of the algorithm is in

O

(
Lqg

(
max

{
2%+

2√
ϑ
, %+

1
2%

+
1√
ϑ
, 1
}

+ o(1)
))

.



Subexponential discrete logarithm algorithms 99

A similar analysis to that of Example 3 shows that the optimal choice of
% is

min
{√

2
2
,

√
1
2

+
1

4ϑ
− 1

2
√
ϑ

}
=

√
1
2

+
1

4ϑ
−
√

1
4ϑ
,

which yields an overall running time of

O

(
Lqg

(√
2
(√

1 +
1

2ϑ
+

√
1

2ϑ

)
+ o(1)

))
.

This improves considerably on the running time of

O

(
Lqg

(
5√
6

(√
1 +

3
2ϑ

+

√
3

2ϑ

)
+ o(1)

))

in [12], and asymptotically for ϑ→∞ (e.g., for q constant), the constant of
the subexponential function is again the same as in Example 2.

Hence, our algorithm shows that cryptosystems based on high-genus hy-
perelliptic Jacobians are significantly weaker than expected so far, in par-
ticular they offer no security gain when compared to cryptosystems in finite
fields of comparable size.

7. Cyclic subgroups. Unlike finite fields, many groups of crypto-
graphic interest do not have a cyclic structure. For instance the number
of cyclic factors of hyperelliptic Jacobians can be up to twice as large as
the genus. Hence it is an important task to compute discrete logarithms in
a cyclic subgroup H = 〈g1〉 of a given abelian group G. From a heuristic
point of view, this does not pose any problems: The algorithm in its for-
mulation of Section 3 remains applicable. With the usual assumption that
smoothness and membership in a subgroup are independent concepts, i.e.
the proportion of smooth elements is the same in H as in G, the running
time analysis carries over from the group to its subgroup. However, we are
concerned with provable running times in this article, and the smoothness
results presented so far apply exclusively to the full groups under considera-
tion. In this section, we discuss a few approaches to deal with this situation.

Perturbing with elements of the complement. The simplest situation
arises when gcd(|H|, |G|/|H|) = 1; then H admits a complement H ′ in
G, i.e., G = H × H ′. Assume that it is possible to select independently
elements hj of H ′ according to a uniform distribution in time polynomial
in logN ′. This is for instance the case if we can select random elements
in G, because multiplying a uniformly distributed element of G by |G|/|H|
yields a uniformly distributed element of H ′. Another favourable situation
is the case where we know a basis of H ′. (In this context, we understand
by a basis of H ′ a set {b1, . . . , br} such that H ′ is equal to the direct sum
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〈b1〉 × . . .× 〈br〉. The cardinality r of a basis is not an invariant of H ′, but
it is bounded above by log2 |H ′|.)

Then αjg1 + βjg2 + hj is uniformly distributed over G, independently
of β, so that the algorithm may be carried out with these group elements
instead of αjg1 + βjg2. If it is successful, then

( 2kn∑

j=1

αjγj

)
g1 +

( 2kn∑

j=1

βjγj

)
g2 = −

2kn∑

j=1

γjhj ∈ H ∩H ′ = {0},

so that

logg1
g2 =

( 2kn∑

j=1

βjγj

)−1( 2kn∑

j=1

αjγj

)

as before. Also, the running time analysis remains unchanged.
While this situation seems to be very special, it is typical for crypto-

graphic applications in which H is supposed to have large prime order and
the cofactor |G|/|H| is small, so that |H| and |G|/|H| are automatically
coprime. Moreover, for |G|/|H| polynomial in logN ′, the structure and, in
particular, a basis of H ′ ' G/H can be determined in polynomial time (see,
for instance, [7]), and the assumptions of this subsection are satisfied.

Using a basis for G. Assume that a basis {b1, . . . , br} of G along with
the orders e1, . . . , er of its elements are known. Then the discrete logarithm
problem can be solved in two steps. Instead of directly writing g2 as a
multiple of g1 we first express g1 as a linear combination of the basis elements
and then proceed in the same way for g2. The discrete logarithm can be
computed by a few operations modulo the ei.

In order to write g1 in terms of the bi, a slight variation of the algorithm
allows one to use the smoothness properties. For given j ≤ kn, pick random
elements αij and βj until

∑
αijbi+βjg1 is S-smooth and write this element

as
∑
aijpi. Similarly, for j > kn pick random elements until

∑
αijbi +

βjg1 − pm is S-smooth. Here again, the elements of G which are tested for
smoothness are distributed uniformly and independently of β, so that the
same analysis as in Section 5 can be carried out. Hence with high probability
a non-zero vector of the kernel is obtained and g1 is expressed as a linear
combination g1 =

∑
γibi. The same process yields g2 =

∑
δibi. Now try to

solve the system of modular equations δi ≡ lγi (mod ei). If this is possible,
then l is the correct discrete logarithm of g2 with respect to g1. Otherwise, g2
does not lie in the cyclic subgroup generated by g1. In this case, which does
not occur in the cryptographic setting, the original algorithm of Section 3
would run forever without giving proof of the non-existence of the discrete
logarithm. Thus, the ability to detect this case is an additional advantage
of the modified algorithm.
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8. Conclusions. We have presented a generic probabilistic algorithm
for computing discrete logarithm in cyclic groups of known order in which
a notion of smoothness is available. Many groups suggested for cryptosys-
tems fit into this context. The running time of the algorithm can be analysed
rigorously without any heuristic assumptions. The analysis leads to a subex-
ponential complexity as soon as a certain smoothness assumption is satisfied.
In particular, we recover the running time bounds of the fastest algorithms
with proven complexity for finite fields and obtain substantial improvements
over the previously known algorithms for class groups. This theoretical re-
sult is backed by a recent implementation of the algorithm for hyperelliptic
Jacobians, which shows that even curves of a rather small genus are insecure
in a cryptographic context [15].

When examining subexponential algorithms, it is common to distinguish
between inefficient methods with a provable running time and practical
methods with a conjectured running time. Our algorithm breaks with this
tradition. It is the fastest known algorithm for the discrete logarithm prob-
lem in hyperelliptic Jacobians both in theory and in practice. In fact, the
implementation of [15] was the starting point of our study, and while the
modifications described in this article are necessary to prove the running
time, they do not alter the nature of the algorithm fundamentally.

In general, the groups we are concerned with are not cyclic, but we
have shown that suitable modifications allow one to apply the algorithm
to a wide class of non-cyclic groups, preserving the subexponential running
time. Among these are all groups of cryptographic interest. In particular,
the analysis of the algorithm remains valid when a basis of G is known. It is
thus an interesting question whether a basis can be built if only the group
order and its factorisation are known. In the case that the order is square-
free, an obvious probabilistic method constructs a basis. If the primes which
occur with multiplicity are of polynomial size, they can be dealt with by
an exhaustive construction. Considering the remaining case of a power of a
large prime, it seems plausible that the notion of smoothness available in the
group should allow constructing a probabilistic algorithm for determining
the basis.
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