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Abstract—Simulation has become an indispensable tool in the design and evaluation of mobile systems. By using mobility models that

describe constituent movement, one can explore large systems, producing repeatable results for comparison between alternatives. In

this paper, we show that a large class of mobility models—including all those in which nodal speed and distance or destination are

chosen independently—have a transient period in which the average node speed decreases until converging to some long-term

average. This speed decay provides an unsound basis for simulation studies that collect results averaged over time, complicating the

experimental process. In this paper, we derive a general framework for describing this decay and apply it to a number of cases.

Furthermore, this framework allows us to transform a given mobility model into a stationary one by initializing the simulation using the

steady-state speed distribution and using the original speed distribution subsequently. This transformation completely eliminates the

transient period and the decay in average node speed and, thus, provides sound models for the simulation of mobile systems.

Index Terms—Computing methodologies, simulation and modeling, mobility model, stationary distribution.
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1 INTRODUCTION

SIMULATION has become an indispensable tool in the
design and evaluation of mobile systems. It allows study

of larger scale systems than can be built practically.
Furthermore, it enables the evaluation of systems not
amenable to analysis. By carefully controlling the move-
ment of nodes and wireless conditions between them,
simulations provide excellent reproducibility across experi-
mental trials.

Typically, simulations of mobile systems rely upon

random mobility models. Such models are characterized by a

collection of nodes, placed within a confined space U , that

move according to certain underlying random processes.

The behavior of most mobile systems depends heavily on

the movement of constituent nodes [1]. Therefore, it is

highly desirable to have a mobility model that generates

stable nodal movement so that the mobile system maintains

a steady level of mobility over time, e.g., a fixed average

nodal speed and a fixed speed variance. This is especially

critical for simulation studies that present performance

metrics as time averages.
Our recent work [2] shows that one of the most widely

used, the random waypoint model, has a transient period in

which the average nodal speed decreases to a steady-state

level (below the initial average) as the simulation goes on.

Such speed decay can have dramatic influence on measured

performance and overhead. Consequently, one cannot

present time-averaged metrics during this period of decay
as the underlying process is not stationary.

There are a number of ways to mitigate the negative
effect of this transient speed decay. For example, narrowing
the range from which to select speeds can reduce the degree
of decay and the time required to reach a steady state.
However, it limits the speed variation and does not remove
decay in principle. Another approach [2], [3] is to warm up

every simulation by running it until steady state is reached
and then discarding the initial data. While this is valid, it
can be cumbersome, especially because the duration of this
settling period is case-dependent in general, rendering the
simulation process error prone.

The objective of this study is to develop stationary

mobility models, i.e., those that do not have such transient
speed decay, so that reliable simulation results may be
obtained via time-averages without having to discard initial
data. In this paper, we give a general derivation of the
steady-state average speed distribution for several classes of
randommobility models and show that speed decay is not a

property exclusive to the random waypoint model, but,
rather, a much more common phenomenon. Indeed, any
random mobility model that chooses speed and destination
independently exhibits a similar transient period in which
the speed decays. The intuition is that nodes travel for

longer times at lower speeds if the destination is chosen
independently of the nodal speed. This result is true
independent of the specific distribution from which speeds
are chosen and the mechanism with which destinations are
determined. Furthermore, if pause time between successive
trips is set to zero, the distribution governing the steady-

state average speed is independent of the mechanisms used
to determine destination; it depends only on the distribu-
tion from which speeds are chosen.
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Following this result, we show how this transient period
and speed decay can be completely eliminated in a
fundamental way by constructing a composite random
mobility model from any random mobility model that
exhibits speed decay. The key is to initialize the simulation
in the steady state by selecting the speed of the first trip
from the steady-state speed distribution and selecting
speeds of subsequent trips from the original speed dis-
tribution. It is worth pointing out that this method is
orthogonal to any modification to a random mobility model
to obtain desired spatial distributions of nodes, e.g., uniform
distribution within the movement area. Thus, it is equally
applicable. Finally, warmup may still be needed if the
simulated mobile system starts from a “cold state.”
However, by having such stationary mobility models,
warmup is no longer needed for nodal movement, freeing
the experimenter to consider other matters.

The rest of the paper is organized as follows: Section 2
gives an overview of problems and issues. Section 3
presents a taxonomy of random mobility models and
derives their steady-state average speed distribution.
Section 4 presents the methodology of constructing a
stationary mobility model without speed decay from a
random mobility model, while Section 5 demonstrates its
effectiveness for a variety of mobility models via simula-
tion. Section 6 presents related work. Section 7 discusses the
application of the results obtained in this study and
concludes the paper.

2 SPEED DECAY IN MOBILITY MODELS

As mentioned earlier, the performance of a mobile ad hoc
network is highly dependent on the underlying mobility
model employed for the study, including experiment,
simulation and analysis [3], [4]. As performance measures
from experimental or simulation studies are often collected
in the form of averages over time, it is highly desirable to
have mobility models that provide a steady level of mobility
over time. The random waypoint model is one of the most
widely used models for mobile ad hoc network simulation.
A majority of work in the area is based on simulation results
with this model. However, the random waypoint model has
a transient period at the beginning of the simulation in
which the average node speed decreases before reaching the
steady-state level [2]. This poses a serious problem because,
with the decrease in average node speed, various perfor-
mance measures also change over time, leading to unreli-
able time averages. It was also shown that the speed decay
could last for a considerable length of time if the minimum
speed is set close to zero in the simulation; it becomes
infinitely long when the minimum speed is set to zero,
which is the default setting in ns-2 [5].

Fig. 1 shows the simulation results illustrating the speed
decay phenomenon and how it affects performance of
mobile ad hoc routing protocols in simulation. Using DSR
for example, it shows that even when the minimum speed is
set to be positive and the steady-state is eventually reached,
the time it takes for this to happen may still outlast the
system warmup period. As a result, performance evaluation
is complicated not only by the system itself, but also by the
mobility model.

A natural question to ask is whether this problem is
exclusive to the random waypoint model. As will be shown
in the next section, this indeed is a problem common to a
large class of mobility models.

3 MOBILITY MODELS AND STEADY-STATE SPEED

DISTRIBUTION

3.1 Classification of Mobility Models

Mobility models may be classified in many ways. In this

section, we will follow the terms used in [3] and categorize

them into entity mobility models and group mobility

models. In the former, nodes move independently of each

other, while, in the latter, nodes move in groups or in a

correlated way. Here, we will limit our attention to models

under which a node’s movement is specified by a sequence

of trips, where a trip is a miniature movement on a smaller

scale in both time and distance compared to the duration of

the simulation and the movement area.1 The node’s entire

movement trajectory is formed by a sequence of such trips

and a node may pause between successive trips. A trip is

typically specified by two or more of the following random

elements: node speed, travel time, travel distance, destina-

tion, and travel direction/angle. Since this study primarily

concerns the speed property of a mobility model rather than

the spatial property, we will be considering only three

elements: speed, time, and distance. This is because a

destination or direction can both be translated into travel

distance, given a starting point and choices of either speed
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Fig. 1. Speed decay and its effect on overhead packets of mobile ad hoc

routing protocols. Fifty nodes, 10 simulation runs, 30 sources, 64 bytes/

packet, 4 packets/sec, speed = [0.3, 19.7] m/s.

1. Often, the movement during a trip is on a straight line with a fixed
speed. A notable exception is a model suggested by Bettstetter [6], where
accelerations and decelerations are added to select a modal speed.



or time. Since there are only two degrees of freedom, it

suffices to specify any two of these three elements for a trip.

Furthermore, as speed is almost always directly specified in

a mobility model, we will only consider models that are

based on the selection (speed, time) and (speed,

distance). Examples of such models include the random

waypoint model [7], [8], [9] and the random direction model

[10]. More can be found in the survey [3].

3.2 Entity Mobility Models without Pause

In this section, we consider entity mobility models with no

pause in between trips. We will study the steady-state

speed distribution of this class of mobility models given

different assumptions on the dependence of the underlying

random elements.

3.2.1 General Case, Dependence Unknown

We first consider the general case where the dependence of

the random elements are not known. The random variables,

speed, time, and distance, are denoted by V , S, and R,

respectively, and are assumed to be within finite minimum

and maximum values, denoted by Vmin, Vmax, Smin, Smax,

Rmin, and Rmax, respectively. This also implies that the

minimum speed, Vmin, is strictly positive since, otherwise,

the maximum travel time Smax can be unbounded.2

The cumulative distribution function (cdf) of the steady-
state speed, Vss, can be obtained as follows when (speed,

time) are chosen:

P ðVss � vÞ ¼ fraction of time speed falls below v

¼

R R

v0�v sfS;V ðs; v
0Þ dsdv0

R R

S;V sfS;V ðs; v0Þ dsdv0
;

ð1Þ

where fS;V ðs; vÞ is the joint probability density function
(pdf) of time and speed.

Similarly, when speed, distance are chosen, the
steady-state cdf of Vss is

P ðVss � vÞ ¼

R R

v0�v
r
v0 fR;V ðr; v

0Þ drdv0
R R

R;V
r
v0 fR;V ðr; v0Þ drdv0

; ð2Þ

where fR;V ðr; vÞ is the joint pdf of distance and speed.
From (1) and (2) we can obtain the pdf and expectation of

the steady-state speed. Alternatively, the expectation can be
obtained through time averages. Since each node moves
independently, it suffices to consider a single node.
Denoting the long-term time average of node speed by �VV ,
we have

�VV ¼ lim
t�!1

1

t

Z t

0

vð�Þd� ¼ lim
t�!1

PNðtÞ
n¼1 vnsn

t

¼ lim
t�!1

PNðtÞ
n¼1 rn

PNðtÞ
n¼1 sn

¼ lim
t�!1

1
NðtÞ

PNðT Þ
n¼1 rn

1
NðtÞ

PNðtÞ
n¼1 sn

¼
E½R�

E½S�
;

ð3Þ

where NðtÞ is the total number of trips taken up to time t,
including the last one which may be incomplete. rn, sn, and
vn are the travel distance, time, and speed of the nth trip,
respectively. Note that frng and fsng are iid random
sequences; thus, their averages converge to the ensemble
averages as t ! 1 by the strong law of large numbers.

On the other hand, at time 0 when the first trip is
determined, the distribution of node speed is simply
fVinit ¼ fV ðvÞ, the distribution from which random speeds
are chosen, and the expected speed is

E½Vinit� ¼ E½V � ¼

Z

V

vfV ðvÞdv:

These quantities will be used to compare with the steady-
state values in subsequent sections.

3.2.2 Speed and Time, Independent

We have fS;V ðs; vÞ ¼ fSðsÞfV ðvÞ. Thus, (1) reduces to the
following:

P ðVss � vÞ ¼

R R

v0�v sfS;V ðs; v
0Þ dsdv0

R R

S;V sfS;V ðs; v0Þ dsdv0

¼

R v
Vmin

fV ðv
0Þ dv0

R Smax

Smin
sfSðsÞ ds

R Vmax

Vmin
fV ðv0Þ dv0

R Smax

Smin
sfSðsÞ ds

¼

Z v

Vmin

fV ðv
0Þ dv0:

ð4Þ

Therefore, the pdf of the steady-state speed Vss is simply

fVss
ðvÞ ¼ fV ðvÞ; ð5Þ

which is identical to the initial speed distribution. It
immediately follows that

E½Vss� ¼ E½V � ¼ E½Vinit�; ð6Þ

which means that the average speed does not change over
time. The intuition and significance of this result will be
more clearly described in the next section.

3.2.3 Speed and Distance, Independent

Since speed and distance are independent, speed and time
are necessarily dependent. Thus, (3) gives

E½Vss� ¼ �VV ¼
E½R�

E½S�
¼

E½V S�

E½S�
6¼ E½V � ¼ E½Vinit�: ð7Þ

This indicates that the steady-state average node speed is
different from the initial average node speed. To derive this
expectation precisely, we proceed using (2). Since speed
and distance are independent, fR;V ðr; vÞ ¼ fRðrÞfV ðvÞ. Plug-
ging this in (2) gives

P ðVss � vÞ ¼

R R

v0�v
r
v0 fR;V ðr; v

0Þ drdv0
R R

R;V
r
v0 fR;V ðr; v

0Þ drdv0

¼

R v
Vmin

1
v0 fV ðv

0Þ dv0
RRmax

Rmin
rfRðrÞ dr

R Vmax

Vmin

1
v0 fV ðv

0Þ dv0
RRmax

Rmin
rfRðrÞ dr

¼

R v
Vmin

1
v0 fV ðv

0Þ dv0

R Vmax

Vmin

1
v0 fV ðv

0Þ dv0:

ð8Þ
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2. Positive minimum speed also prevents the average node speed from
asymptotically approaching zero as time goes on [2].



Thus, we obtain the pdf of the steady-state speed

fVss
ðvÞ ¼

1
v fV ðvÞ

R Vmax

Vmin

1
v0 fV ðv

0Þ dv0
ð9Þ

and the expectation of steady-state speed

E½Vss� ¼

Z Vmax

Vmin

v � fVssðvÞ dv

¼
1

R Vmax

Vmin

1
v0 fV ðv

0Þ dv0
¼

1

E½1V �
:

ð10Þ

E½Vss� is always less than or equal to the initial average
E½V � by Jensen’s inequality [11], which states that if a
function gðXÞ is convex, then E½gðXÞ� � gðE½X�Þ. Now, let
gðV Þ ¼ 1

V (Vmin � V � Vmax), which is convex. It follows that

E

�

1

V

�

�
1

E½V �
) E½V � �

1

E½1V �
: ð11Þ

Therefore,

E½Vinit� ¼ E½V � � E½Vss�; ð12Þ

where the equality holds only when Vmin ¼ Vmax. Thus, the
average speed decays with time unless the node speed is
constant.

The above results are summarized as follows:

1. The steady-state speed distribution is different from
the initial speed distribution.

2. The steady-state speed distribution and expectation
of node speed are completely characterized by the
initial speed distribution fV ðvÞ, which is usually
given.

3. The steady-state speed distribution is determined
only by the node speed distribution and not by how
distances/destinations are chosen.

4. The steady-state average node speed is lower than
the initial average speed. This means that if
distance/destination is chosen independently of
speed, there will always be speed decay.

Items 3 and 4 further indicate that models that only differ
in distance/destination selection are essentially indistin-
guishable in terms of their speed properties.

An intuitive explanation for 4 is that when speed and
distance are chosen independently, a lower speed results in
a longer trip. Note that the steady-state speed is weighted
by travel time and, thus, is always lower than the initial
average speed. To see this more clearly, consider the
following intermediate result from (3):

E½Vss� ¼ �VV ¼ lim
t�!1

PNðtÞ
n¼1 vnsn

t
:

Note that low speed vns are more likely to be weighted by
large sns, which leads to a lower long-term average node
speed. In contrast, when speed and time are selected
independently (as in Section 3.2.2), vn is not correlated with
sn. Thus, the steady state speed distribution remains the
same as the initial speed distribution. Alternatively, 4 can be
explained using the properties of harmonic mean of renewal
speed, where the steady-state average speed can be viewed
as the average rate in the system performance measure [12].

This phenomenon can also be explained via Palm calculus,
see, for example, [13].

Equation (9) is a very general result. It holds regardless
of the speed distributions used. It shows that the average
node speed of an arbitrary mobility model starts from an
initial value, decays over time, and then settles to a certain
steady-state value, as long as speed and distance are chosen
independently.

3.2.4 (Speed and Time) or (Speed and Distance),

Correlated

If speed and distance are chosen dependently, e.g., a model
that gives higher probability to higher speeds when the
distance chosen is larger, one may be able to reduce speed
decay by properly correlating the two. In [14], we showed
an example where travel time is correlated with travel
speed. In this particular example, speed decay exists.
However, it is possible to construct a joint distribution of
speed/time or speed/distance so that the resulting average
speed process is stationary, although, in this case, the
derivation of the steady state speed distribution is much
more complicated.

3.3 Entity Mobility Models with Pause

3.3.1 General Case, Dependence Unknown

If pause is added between successive trips, a mobility
model can be viewed as an alternating renewal process that
has two independent renewal processes: a move process
and a pause process [15]. Since, during pause, the node has
a speed of zero, the pause process essentially has a speed
pdf of fVP

ðvÞ ¼ �ðvÞ, where VP denotes the “pause speed”
(which is zero).

When (speed, time) are chosen, the cdf of Vss can be
obtained from (1) as follows: Denoting the pause time by P
and using the fact that pause time and pause speed are
independent, we have

FVss
ðvÞ ¼ P ðVss � vÞ

¼

RR

v0�v sfS;V ðs; v
0Þdsdv0þ

RR

v00�v pfP;Vp
ðp; v00Þdpdv00

RR

S;V sfS;V ðs; v0Þdsdv0þ
RR

P;Vp
pfP;Vpðp; v

00Þdpdv00

¼

RR

v0�v sfS;V ðs; v
0Þdsdv0 þ E½P �

R

v00�v �ðv
00Þdv00

RR

S;V sfS;V ðs; v0Þdsdv0 þE½P �
;

ð13Þ

where fS;V ðs; v
0Þ, Vmin � v0 � Vmax, and fP;Vp

ðp; v00Þ, v00 ¼ 0,
are corresponding joint pdfs. E½P � is the expectation of
pause time.

Similarly, when (speed, distance) are chosen, the
steady state cdf of Vss is generalized from (2) as

FVssðvÞ ¼ P ðVss � vÞ

¼

RR

v0�v
r
v0 fR;V ðr; v

0Þdrdv0þ
RR

v00�v pfP;Vp
ðp; v00Þdpdv00

RR

R;V
r
v0 fR;V ðr; v

0Þdrdv0þ
RR

P;Vp
pfP;Vpðp; v

00Þdpdv00

¼

RR

v0�v
r
v0 fR;V ðr; v

0Þdrdv0þE½P �
R

v00�v �ðv
00Þdv00

RR

R;V
r
v0 fR;V ðr; v

0Þdrdv0 þ E½P �
;

ð14Þ

where fR;V ðr; v
0Þ for Vmin � v0 � Vmax is the joint pdf of

travel distance and speed.
With a slight modification to (3), the long-term time

average of node speed with nonzero pause time becomes

�VV ¼
E½R�

E½S� þ E½P �
: ð15Þ
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As in Section 3.2.1, we would like to determine the initial
average speed for comparison purposes. We will consider
the case where a node starts in either the move or pause
state with a certain probability. From the point of view of
using a mobility model for simulation, it is reasonable to
assume that these are exactly the probabilities that a node is
found to be in either state when the mobility model reaches
equilibrium, denoted by Pmove and Ppause, respectively.
Then, the initial average speed is simply

E½Vinit� ¼ E½V �Pmove þ 0 � Ppause ¼ E½V �Pmove: ð16Þ

3.3.2 Speed and Time, Independent

As in Section 3.2, this independence allows (13) to reduce to

FVss
ðvÞ ¼ P ðVss � vÞ

¼
E½S�

R v
Vmin

fV ðv
0Þ dv0 þE½P �

R

v00�v �ðv
00Þdv00

E½S� þ E½P �
: ð17Þ

Then, the probability that a node is in a pause state is

Ppause ¼ FVss
ðv ¼ 0Þ ¼

E½P �

E½S� þE½P �
ð18Þ

and the probability that a node is in a move state is

Pmove ¼ 1� Ppause ¼
E½S�

E½S� þ E½P �
: ð19Þ

Therefore,

fVssðvÞ ¼

E½S�fV ðvÞ
E½S�þE½P �

¼ fV ðvÞ Pmove; Vmin � v � Vmax

E½P ��ðvÞ
E½S�þE½P �

¼ �ðvÞ Ppause; v ¼ 0:

8

>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
:

ð20Þ

This pdf indicates that a node either moves at a certain
speed selected from the pdf fV ðvÞ with probability Pmove or
pauses with probability Ppause. From (20), the expectation of
steady-state node speed is

E½Vss� ¼
E½S�E½V �

E½S� þ E½P �
; ð21Þ

which indicates that there is no speed decay, because E½Vss�
is the same as the initial average speed E½Vinit� ¼ E½V �Pmove

in (16).

3.3.3 Speed and Distance, Independent

As in the previous section, we can proceed from (14) and
obtain

FVss
ðvÞ ¼ P ðVss � vÞ

¼
E½R�

R v
Vmin

1
v0 fV ðv

0Þ dv0 þ E½P �
R

v00�v �ðv
00Þdv00

E½R�E½1V � þ E½P �
:

ð22Þ

In the same manner as in Section 3.3.2, the probability that a
node is in a pause state is

Ppause ¼ FVSS
ðv ¼ 0Þ ¼

E½P �

E½R�E½1V � þ E½P �
ð23Þ

and

Pmove ¼ 1� Pmove ¼
E½R�E½1V �

E½R�E½1V � þ E½P �
ð24Þ

and the pdf of the steady-state speed Vss is

fVss
ðvÞ ¼

E½R�1vfV ðvÞ

E½R�E½1V �þE½P �

¼
1
vfV ðvÞ

E½1V �
Pmove; Vmin � v � Vmax

E½P ��ðvÞ

E½R�E½1V �þE½P �

¼ �ðvÞ Ppause; v ¼ 0:

8

>
>
>
>
>
>
>
>
<

>
>
>
>
>
>
>
>
:

ð25Þ

The steady-state pdf in (25) is interpreted in exactly the
same way as in (20): A node moves at a certain speed

according to the pdf
1
vfV ðvÞ

E½1V �
with probability Pmove or pauses

with probability Ppause.
From the pdf in (25), the expectation of steady-state

speed is

E½Vss� ¼
E½R�

E½R�E½1V � þ E½P �
: ð26Þ

In the case of nonzero pause times, it can also be shown
that the steady-state average E½Vss� is less than or equal to
the initial average E½Vinit�. Recall that, from (16),

E½Vinit� ¼ E½V �Pmove ¼ E½V �
E½R�E½1V �

E½R�E½1V � þE½P �
: ð27Þ

Then, using (26) and 1 � E½V �E½1V � from (12), we have

E½Vss� �
E½V �E½1V �E½R�

E½R�E½1V � þE½P � ¼ E½Vinit�
: ð28Þ

This means that the average node speed decays with time
no matter what pause time is unless the node speed is
constant.

3.4 Group Mobility Models

Unlike in entity mobility models where nodes move
independently, in a group mobility model, nodes within
the same group move in a coordinated way. However, if the
movement of an entire group is specified (e.g., via a leader
node) in ways similar to those used in entity models, then
groups as a whole may again exhibit speed decay when the
speed and distance of the group movement are chosen
independently. In the remainder of this section, we will
examine the speed property of two commonly used group
mobility models: the pursue model and the reference point
group mobility (RPGM) model. In the following analysis, we
will not consider pause times since analysis with pause time
can be easily obtained using similar methods.

3.4.1 Pursue Mode

The main feature of the pursue model is that there is a
target (or leader) node followed/tracked by other nodes [3],
[16], [17]. The framework was presented in [16], which
allows different implementations. We consider the follow-
ing implementation of the pursue model: Mobile nodes are
divided into several groups and each group consists of a
single target node and a number of follower nodes. The

YOON ET AL.: A GENERAL FRAMEWORK TO CONSTRUCT STATIONARY MOBILITY MODELS... 5



target node moves around in a rectangular space, according

to the random waypoint model, without pause and with

speed range ½Vmin; Vmax� in m/s. Every T seconds, the

follower nodes choose their speed uniformly from

½Vmin; Vmax�, pick the current location of the target node as

their destination, and move to the destination. If a follower

node arrives at the destination before the next updating

instance (i.e., within T seconds), it stays there until the next

update. Thus, every T seconds, the follower nodes update

their speeds and destinations while continuously tracking a

target node. This repeats until the simulation ends. Since

each group moves independently of the others, it suffices to

look at a single group without loss of generality.
Suppose there are M nodes in a group with a single

target node andM � 1 follower nodes. Since the target node

follows the random waypoint model where its speed and

distance are chosen independently, its average speed will

decrease over time before reaching the equilibrium. Its

steady-state distribution fVss
ðvÞ is given by (9). A follower

node also chooses its speed and destination independently,

but its speed is updated every fixed T seconds. Thus, a

follower’s speed is not time-weighted as opposed to the

case of the target node. However, there could be a “short-

term” speed decay during an interval, since a node would

remain at the location when it arrives there before the next

update. So, there are two types of speed decay phenomena:

a long-term decay of a target node and a short-term decay

of follower nodes, as shown in Fig. 2a. The long-term decay

is exactly the same as observed in the entity mobility

models due to the independent selection of speed and

distance, whereas the short-term decay is a result of the

nature of this particular model. Fig. 2b shows the desired

result with the decay eliminated.

Since the speeds of the follower nodes are chosen from
distribution fV ðvÞ, there is no speed decay caused by
follower nodes at update points. Therefore, at every update
point in the steady state, there exists a single target node
with fVssðvÞ and M � 1 follower nodes with fV ðvÞ. Since the
target node and the follower nodes select speeds indepen-
dently, the steady-state average speed is simply

E½Vss�update ¼
1

M
E½Vss� þ

M � 1

M
E½V �: ð29Þ

This shows that the long-term decay diminishes as the total
number of nodes in a group, M, increases. The steady-state
distribution is rather complicated to compute in this case.
Denoting by Z the average speed of all nodes, we have

Z ¼ 1
M X þ 1

M

PM�1
i¼1 Yi, where X and Yi, i ¼ 1; � � � ;M � 1 are

the speeds of the target node and the follower nodes,
respectively. Then, the pdf of Z can be obtained using
convolution integrals [18].

3.4.2 Reference Point Group Mobility (RPGM) Model

Instead of specifying a target node, the RPGM model [3],
[4], [19], [20] has an implicit and insubstantial tracking point
or reference point. Based on the current position and speed
of the reference point, each mobile node selects its own
speed, time, or destination. RPGM is also a framework
which allows different implementations. Here, we will
examine an implementation based on [19].

Suppose that a reference point is following some

predefined group motion. Without loss of generality,

suppose an update interval T is one second, as is

commonly assumed. Then, we can define a vector of group

motion GMð�Þ
����!

at time � by subtracting the current position

of reference point at � from the expected next position at

� þ 1, as shown in Fig. 3. Next, we define a vector of

random motion RMð� þ 1Þ
�������!

from the position of reference

point at � þ 1, by randomly selecting a distance between 0

and a predefined maximum value, RMmax, and an angle

between 0 and 360 degrees. Thus, the next position of

mobile node is determined by GMð�Þ
����!

and RMð� þ 1Þ
�������!

as

shown in Fig. 3. Since the movement distance of the mobile

node, Distð�Þ, is easily computed from the location of a

mobile node at each time instance and travel time is

assumed to be T ¼ 1 second, the speed of the mobile node

automatically becomes Distð�Þ
T .

One may think that, since this model selects distance and
time independently and updates parameters every fixed
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Fig. 2. Two types of speed decays in pursue model: a long-term decay

and a short-term decay. (a) Illustration of pursue model simulation result.

The dotted line shows a long-term decay. (b) The desired result with the

long-term decay eliminated.

Fig. 3. Reference point group mobility model.



interval, it may not have speed decay. However, if the

reference point moves according to the random waypoint

model, for example, then the average speed of the reference

point decays. This in turn will cause the average length of

GMð�Þ
����!

in Fig. 3 to gradually decrease. Since Distð�Þ is

correlated with GMð�Þ
����!

, Distð�Þ also decreases while the

speed decay occurs. The simulation result in Section 5 also

illustrates this.

4 ELIMINATING DECAY

Speed decay during the transient period is undesirable
because simulation results collected during this period
(before the steady state is reached) will not be reliable.
Methods of reducing such a negative effect have been
suggested and used in the literature [21]. One way is to
reduce the range of allowed speed by setting the
maximum speed and minimum speed to be within a
certain percentage of a set value, e.g., � 10 percent of
15 miles per hour [3]. This significantly reduces both the
magnitude and the duration of speed decay, but also
heavily limits the variation of nodal speed within the
same experiment. Another method is to warm up the
simulation by discarding a certain portion of the initial
data or simply to run the simulation long enough and
collect results averaged over time so that the effect of the
initial decay is diluted. The problem with this method is
that it is not always clear how much one should discard
or how long is indeed long enough. If we do not warm
up enough, then the effect of speed decay still exists; on
the other hand, discarding too much results in waste. In
order to do this appropriately, we may need to prerun
the mobility model, which adds inconvenience and
wastes resources required for simulation studies. In short,
none of these methods eliminate the speed decay inherent
to such mobility models in a fundamental way.

In Section 3, we presented a method of deriving the
steady-state speed distribution. In [14], we have shown
examples of calculating these distributions for a variety of
mobility models. This naturally leads us to question
whether we can start the mobility model directly from the
steady state and construct a stationary process that is free of
the transient speed decay period.

It is important to note that this does not mean we can use
the distribution derived in (9) or (25) for the selection of
node speed throughout simulation. We restate the same
equation here, assuming a zero pause time for now:

fVss
ðvÞ ¼

fV ðvÞ

constant

1

v

� �

: ð30Þ

The above result essentially indicates that the steady-state
speed distribution fVss

ðvÞ is different from any nontrivial
distribution fV ðvÞ from which node speeds are chosen. The
former is the distribution observed at arbitrary points in
time, whereas the latter is the distribution observed at the
waypoints or the points between successive trips. This is
illustrated in Fig. 4, where speed distribution observed at
points A and C is fV ðvÞ, and fVss

ðvÞ is observed at some
arbitrary point B. Therefore, to start the simulation in

steady state means to start the simulation from points like B
after the system has reached steady state rather than
waypoints A and C. This is also equivalent to resuming a
simulation which is suspended at an arbitrary point in the
steady state. This discussion naturally leads us to the
following method of constructing a stationary mobility
model: Start the simulation by using fVss

ðvÞ to select the
speed of the first trip of a moving node as if we are
resuming a simulation suspended at an arbitrary point in
steady state. After the first trip ends, we use fV ðvÞ to select
node speed for all subsequent trips. We call this a composite
random mobility model as it consists of two different speed
distributions.

The same argument applies to the initial pause time
selection. That is, if a node starts from a pause state, the first
pause time should be selected from the steady-state
distribution of pause time, which is known to be (the
limiting distribution of forward recurrence time using
renewal theory) [15]:

fPss
ðpÞ ¼

1� FP ðpÞ

E½P �
; ð31Þ

where FP ðpÞ is the cdf of pause time. This enables us to start
a simulation directly from the steady state, which is again
equivalent to resuming a simulation suspended at an
arbitrary point during some pause period in steady state.

To summarize, we construct a composite stationary
random mobility model as follows:3

1. Determine whether a node starts from a move state
or a pause state, with probability Pmove and Ppause,
respectively. These are calculated using methods
shown in Section 3.

2. If a node starts from a move state, use fVss
ðVmin �

v � VmaxÞ to select the travel speed.
3. If a node starts from a pause state, use fPss

ðpÞ to
choose the pause time.

4. After the first trip (either move or pause) of a node,
use fV ðvÞ and fP ðpÞ to select all subsequent travel
speeds and pause times, respectively.

Technically, there are other ways to construct a sta-
tionary process by modifying the initial part of the mobility
model. For example, if pause is not inserted between
successive trips, we could find and use the stationary
starting time of nodes’ first trips, which may seem more
intuitive. This method involves the derivation of the
distribution of the initial starting time. This may or may
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3. This modification has been implemented and included in the
latest ns-2 version 2.27.

Fig. 4. Different points where distributions are observed in the steady

state.



not be desirable, depending on the mobile system being
simulated in that a significant portion of the network may
not be moving for some period of time.

On the other hand, modification through the steady-state

speed distribution provides a very effective way of

eliminating speed decay and producing a stationary

process. We emphasize that the above composition meth-

odology can be applied to any random mobility models that

choose speed and distance/destination independently and

that employ a single speed distribution, in order to obtain a

decay-free random mobility model. For example, as

described in Section 3.4, we can identify speed-decaying

nodes in a group mobility model and replace their first trip

distribution by the steady-state distribution. In doing so, we

can also build a stationary composite group mobility model

as well as a composite entity mobility model. The

effectiveness of this methodology is demonstrated in the

next section.

5 SIMULATION RESULTS

In this section, we show via simulation the evolution of

instantaneous average node speed over time for a few entity

mobility models and a couple of group mobility models

examined in Section 3. As a metric, we use the instanta-

neous average speed �vvðtÞ, which is defined as

�vvðtÞ ¼

PN
i¼1 viðtÞ

N
; ð32Þ

where N is the total number of nodes in the simulation
scenario and viðtÞ is the speed of node i at time t.

5.1 Entity Mobility Models

Here, we adopt three examples of entity mobility models

for simulation: 1) a model using a uniform speed and a

uniform destination (i.e., the random waypoint model), 2) a

model using a uniform speed and uniform distance

distribution, and 3) a model choosing speed correlated

with travel time (see [14] for details). Fig. 5 depicts the

behavior of each of the original mobility models both with

and without pause, while Fig. 6 shows the behavior of the

composite models. As described in Section 4, each node in

these composite models chooses either its speed or pause

time only for the first trip from the computed steady-state

distributions of speed and pause time, respectively,

depending on the probabilities Pmove and Ppause. Thereafter,

each node alternately chooses its speed and pause time

from the original distributions. Each graph also plots the

steady-state average node speed predicted by analysis.

In this set of simulation results, each curve is the average

over 10 different scenarios. Each scenario contains 50 mobile

nodes moving independently in a movement space of

1,500 m� 500 m, according to the specified mobility model.

The speed range for all scenarios is from 1 m/s to 19 m/s,

which results in the initial average node speed of 10m/s

with zero pause time. When nonzero pause is applied,

pause time is randomly selected from the uniform distribu-

tion from 0 to 60 seconds.

As shown in Fig. 5, speed decay exists in all cases. We see

from Fig. 6 that the constructed composite models success-

fully eliminated such decay in all cases, including that with

speed correlated with time. Thus, this construction meth-

odology is effective, regardless of the dependency between

travel speed and distance or time, as long as the steady-state

speed distribution can be characterized. Furthermore,

analysis in our previous version of this paper [14] showed

that average node speed settles to 6.1 m/s in all cases above

with the corresponding parameters. As expected, the

unmodified models converge to the predicted values, while

the composite models start and remain there. Such

composite models greatly simplify the evaluation process

in a simulation study.

8 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 5, NO. 7, JULY 2006

Fig. 5. Average speed decays in a few examples of models

examined in Section 3 with and without pause. Speed = [1,19] m/s.

Pause = [0,60] sec. (a) Speed = uniform, destination = uniform (i.e.,

random waypoint model). (b) Speed = uniform, distance = uniform.

(c) Speed = uniform, time = bounded exponential.



5.2 Group Mobility Models

Figs. 7 and 8 show the pursue model and RPGM model,
respectively. As in the entity model simulations above, all
results are the average over 10 scenarios. In the RPGM
model, there are one reference point moving by the random
waypoint model and 10 mobile nodes moving around in a
space. For the pursue model described in Section 3.4.1, we
implemented it with 20 groups consisting of a single target
and two follower nodes each, a total of 60 nodes. The target
node moves around according to the random waypoint
model during the entire simulation time. In addition,
parameters are updated every five seconds. So, here, M is
3 and T is 5. The original speed distribution for both models
is the same as that in the entity models above: fV ðvÞ is a
uniform distribution from 1 to 19 m/s. However, we did
not consider pause times for simplicity. Even if pause time

is added, the main principle does not change and, thus, we
can apply the same framework to the nonzero pause cases.

Fig. 7a is the average speed over all nodes for 900 seconds
and Fig. 7b is a magnified version of Fig. 7a for the first
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Fig. 6. No speed decays by using a steady-state pdf for the first trip.

Speed = [1,19] ms. Pause = [0,60] sec. (a) Speed = uniform, destination

= uniform (i.e., random waypoint model). (b) Speed = uniform, distance

= uniform. (c) Speed = uniform, time = bounded exponential.

Fig. 7. Pursue model with and without improvement. (a) Pursue model.
(b) First 100-second result of (a) magnified. (c) Pursue model with
steady-state distribution. (d) First 100-second result of (c) magnified.



100 seconds. As described in Section 3.4.1, there exist both
long-term and short-term decay and the dotted curve
represents a long-term decay of average node speed at
every update point. Since M ¼ 3 and T ¼ 5, according to
(29) in Section 3.4.1, the average speed at every update
point starts from E½Vinit� ¼ 10 m/s, decays over time, and
settles to

E½Vss�update ¼
1

M
E½Vss� þ

M � 1

M
E½V � ¼

1

3
ð6:1Þ þ

2

3
ð10Þ

¼ 8:7 m=s;

as shown in Fig. 7a. Since target nodes suffer from speed
decay, we can replace the first distribution of target nodes
by the steady-state speed distribution and, thus, can
construct a stationary model, as shown in Fig. 7c and its
magnified version Fig. 7d. Note that the fluctuation of short-
term decay increases in the beginning because it should
indispensably take all follower nodes some time to come
close to a target node from the initial uniformly random
location, and to start tracking it.

Fig. 8 shows the RPGM model examined in Section 3.4.2
with update interval T ¼ 1 sec and maximum random
motion value RMmax ¼ 10 m. As explained, the RPGM
model also exhibits speed decay because the speed of
mobile nodes is affected by the speed decay of the reference
point. Fig. 8a presents this result. That is, both speeds of
reference point and mobile nodes decay over time. But,
since the decay of reference point is the only source of speed
decay for all nodes, if it is fixed, other mobile nodes
consequently must not have the speed decay problem.
Thus, we can again apply the steady-state distribution to

the reference point to remove the decay, and Fig. 8b clearly
verifies this.

5.3 Relative Speed of Mobile Nodes

In addition to the average node speed, relative speed is also
widely used as a criterion for comparison in simulations (e.g.,
[4]). Relative speed between a pair of nodes is defined as

Vrelði; j; tÞ ¼ jviðtÞ
��!

� vjðtÞ
��!

j; ð33Þ

where viðtÞ
��!

and vjðtÞ
��!

are speed vectors of nodes i and j at
time t, respectively. Thus, the average relative speed can be
defined as

VrelðtÞ ¼

PN
i¼1

PN
j¼iþ1 Vrelði; j; tÞ

N
2

� � ; ð34Þ

where N is the total number of nodes and N
2

� �

¼ NðN�1Þ
2 is

the total number of distinct node pairs. Since relative speed
is directly related to the individual node speed, if the
individual node speed decreases over time, so does relative
speed, as shown in Fig. 9. Here, we measured relative speed
of the random waypoint model with speed range from 1 to
19 m/s. As expected, speed decay in relative speed is
observed if speed decay in average speed occurs. Thus, if
we eliminate speed decay in average speed, speed decay in
relative speed also disappears, as shown in Fig. 9b.

6 RELATED WORK

Mobility models are essential to the study of mobile systems
and, consequently, they have been extensively studied. One
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Fig. 8. RPGM model with and without improvement. (a) RPGM model.

(b) RPGM model with the speed decay eliminated.

Fig. 9. Relative speed. Speed = [1,19] m/s. (a) Relative speed in the

random waypoint model. (b) Relative speed in the composite model.



can find a thorough and insightful survey by Camp et al.
in [3]. It includes not only a variety of entity random
mobility models used in ad hoc network simulations, but
also group mobility models such as RPGM [19], [22].

Among commonly used mobility models, the random
waypoint model is perhaps the most extensively used [1], [7],
[17], [23], [24]. It is implemented and widely distributed
with the ns-2 [5] simulator. Most of the studies on this
model have focused on its spatial properties such as node
distribution within the simulated area U . Bettstetter [6], [25]
showed by simulation that the random waypoint model
does not have a uniform spatial distribution of nodes. Chu
and Nikolaidis [26] mathematically proved it and also
showed that there is a relationship between node distribu-
tion and node speed. Due to the boundary effect, nodes are
more likely to be near the center of U and, thus, the node
distribution becomes bell-shaped. Royer et al. [10] pointed
out that the boundary effect not only causes a nonuniform
node distribution but also causes the node density to
fluctuate with time. To eliminate both problems, they
proposed a random direction model and showed satisfactory
results. Bettstetter et al. further obtained the steady-state
node spatial distribution of the random waypoint model by
analysis and verified by simulation in [9]. In addition, some
stochastic properties of the random waypoint model also
have been analyzed in [8]: epoch length (i.e., travel
distance), direction distribution, and cell change rate of
mobile nodes.

In [2], we studied the temporal properties of nodal
movement/speed under the random waypoint model. We
showed that the average node speed decreases with time
before reaching a steady state. The settling time it takes to
reach the steady state increases as the minimum speed
decreases. In particular, if the minimum speed is zero, this
transient period becomes infinitely long. Simulation results
showed how such speed decay affects ad hoc routing
protocols such as DSR [7] and AODV [27]. A simple
solution suggested was to use a positive minimum speed,
combined with simulation warmup or initial data deletion
to remove the negative effect of speed decay. This never-
theless does not remove the speed decay in an essential
manner. In a follow-up study [14], we developed a general
framework to determine whether speed decay occurs in a
specific mobility model and to construct a stationary
composite model by using the steady-state distribution of
node speed. Navidi and Camp independently and concur-
rently developed a method for constructing a stationary
process for the random waypoint model [28]. Our work
presented here is more general as it applies to multiple
classes of mobility models including the random waypoint
model. Lin et al. in [29] and Le Boudec in [13] recently
proposed similar methods to build a stationary version of
the random waypoint model by using renewal theory and
palm calculus, respectively.

The study presented in this paper does not concern
whether a mobility model is realistic; rather, it concerns
how to construct mobility models so that they are more
suitable for simulation studies. Significant effort has been
made in the literature toward developing more realistic
mobility models. Hong et al. [19] proposed a group mobility

model to reflect a realistic scenario of group movement and
Bettstetter [6], [25] developed an enhanced model by
avoiding the impossible changes of speed or direction in
reality. A recent paper by Jardosh et al. [30] considered
obstacles to constructing a more realistic mobility model
and showed the effect of them on the performance of ad hoc
routing protocols.

There are also studies on characterizing the effect
mobility models have on the performance of the mobile
system. Examples include Bai et al. [4], which analyzed
mobility models by factors and showed the impact of each
factor on performance of ad hoc routing protocols, and
Kwak et al. [20], which proposed a general metric to
characterize mobility models based on link change rate of
mobile nodes.

It has to be noted that the random mobility models
considered in this paper are more commonly used for the
study of mobile ad hoc networks rather than infrastructured
networks that may involve (static or mobile) base stations.
This is especially the case with entity mobility models
where each node moves independently. Certain group
mobility models may describe the movement of a network
with mobile base stations, but the two examples considered
in this paper are again designed for ad hoc networks.

7 DISCUSSION AND CONCLUSION

This paper examined a number of random mobility
models that are based on the selection of node speed,
travel distance or destination, travel time, or pause time
from probability distributions. A large class of these
models—including all those that select node speed and
distance independently—exhibit a transient period in
which the average node speed decreases before before
reaching steady-state. Such decay poses potential pro-
blems for simulation studies that collect results averaged
over time, complicating the experimental process. This
decay is easily explained with a general analytical
framework, which allows one to transform a given
random mobility model into a stationary one by selecting
initial speeds from the steady-state distribution and
subsequent speeds from the original speed distribution.

It has to be mentioned that the focus of this study is on
constructing mobility models that are suited for simulation
studies of mobile networks. The construction presented in
this paper does not make a mobility model more or less
realistic. Developing realistic mobility models is a challen-
ging research area on its own and is out of the scope of this
paper. Rather, the study here aims at fixing certain hidden
problems in a model. Similar problems should also be
avoided in a more realistic mobility model, however
constructed. Thus, by such studies, we hope that a similar
analysis may be applied to the development or evaluation
of more realistic models, which would ultimately lead to
better, more efficient models.
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