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Abstract In this work we implement the Minimal Geomet-
ric Deformation decoupling method to obtain general static
interior solutions for a BTZ vacuum from the most general
isotropic solution in 2 + 1 dimensions including the cos-
mological constant Λ. We obtain that the general solution
can be generated only by the energy density of the original
isotropic sector, so that this quantity plays the role of a gener-
ating function. Although as a particular example we study the
static star with constant density, the method here developed
can be easily applied to more complex situations described
by other energy density profiles.

1 Introduction

Obtaining new exact and interesting solutions of Einstein’s
field equations is a difficult task. In most of the cases, the
modification of certain assumptions of well known solutions,
such as spherical or circularly symmetry, staticity or isotropy,
in order to deal with more realistic situations , leads to techni-
cal difficulties to solve the equations and the use of numerical
methods is usually mandatory. However, the minimal geo-
metric deformation (MGD) method [1–32,36] has become in
an economic and powerful tool to extend well known solu-
tions of the Einstein field equations [16,20,22–26,29,32–
35,37]. For example, the method has allowed to induce local
anisotropies in spherically symmetric systems leading to both
more realistic interior solutions of compact objects [24,25]
and hairy black holes [23]. In all of these anisotropic exten-
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sions, the matching conditions play an important role. To be
more precise, depending on the nature of the exterior geome-
try surrounding the compact object, the matching conditions
lead to particular constraints on the density or the pressure
for the induced anisotropic solution.

Up to now, several contributions have been made in
the context of anisotropic relativistic stars, for instance,
the pioneering work of Bowers and Liang [39] who anal-
ysed the hydrostatic equilibrium for the case of local
anisotropy obtaining a generalized equation. Since their
work, anisotropic models have been extensively investigated
studying the effect that local anisotropies have on the bulk
properties of spherically symmetric (and static) general rel-
ativistic compact stars. Particular attention should be dedi-
cated to the seminal works of Herrera et. al. about anisotropy
in relativistic astrophysics. These works opened a new win-
dow in the study of anisotropic relativistic stars (see [40]
and [41] and references therein). A more realistic descrip-
tion of the underlying physics requires to take into account
a lot of non-trivial ingredients. One of the main uncertain-
ties in the description of inner solutions relies on the choice
of certain equation of state, but still in case we know the
adequate form for it, given that the Einstein field equations
are highly non-linear, obtaining the corresponding physical
solution could demand a lot of effort. A simple way to bypass
some technical issues is to solve the problem at lower dimen-
sions reason why, in this work, we are interested in the study
of the anisotropization of any perfect fluid solution in 2 + 1
dimensions with negative cosmological constant embedded
in a BTZ vacuum.
This work is organized as follows. In the next section we
briefly review the MGD-decoupling method in 2 + 1 dimen-
sions with cosmological term. In Sect. 3 we study suitable
matching conditions considering BTZ as the vacuum exte-
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rior solution. Section 4 is devoted to obtain the anisotropic
extension of a static perfect fluid with constant density which
is finally matched to the BTZ vacuum. Some final comments
and conclusions are left to the last section.

2 Einstein Equations in 2 + 1 space–time dimension
with cosmological constant

In a recent work [37] we have considered the MGD-method
in 2 + 1 dimensions with cosmological constant. In this sec-
tion we briefly review the main results obtained in [37] but
considering a negative cosmological constant Λ = −�−2.
Finally, we shall study the matching conditions of these solu-
tions embedded in a BTZ vacuum.

Let us start by considering the Einstein field equations

Rμν − 1

2
Rgμν + gμν

�2 = κ2T tot
μν , (1)

assuming that the total energy-momentum tensor can be writ-
ten as

T (tot)
μν = T (m)

μν + θμν. (2)

In the above expression, Tμ(m)
ν = diag(−ρ, p, p) stands

for the energy–momentum tensor of a perfect fluid and θ
μ
ν =

diag(−ρθ , pθ
r , p

θ⊥) contain the information of the decoupler
matter.

In this work we are interested in spherically symmetric
space–times so that the line element is parametrized as

ds2 = −eνdt2 + eλdr2 + r2dφ2, (3)

where ν and λ are functions of the radial coordinate r only.
Replacing Eq. (3) in (1), we obtain

κ2ρ̃ = 1

�2 + e−λλ′

2r
(4)

κ2 p̃r = − 1

�2 + e−λν′

2r
(5)

κ2 p̃⊥ = − 1

�2 + 1

4
e−λ

(
−λ′ν′ + 2ν′′ + ν′2) (6)

where the prime denotes derivation with respect to the radial
coordinate and we have defined

ρ̃ = ρ + αρθ (7)

p̃r = p + αpθ
r (8)

p̃⊥ = p + αpθ⊥. (9)

Following the MGD protocol, we introduce the minimal
deformation

e−λ = μ + α f, (10)

in Eqs. (4), (5) and (6) to obtain two sets of differential equa-
tions: one set describing an isotropic system sourced by the

conserved energy–momentum tensor of a perfect fluid Tμ(m)
ν

κ2ρ = 1

�2 − μ′

2r
(11)

κ2 p = − 1

�2 + μν′

2r
(12)

κ2 p = − 1

�2 + μ′ν′ + μ
(
2ν′′ + ν′2)

4
, (13)

and the other set corresponding to Einstein field equations
sourced by θμν given by1

κ2ρθ = − f ′

2r
(14)

κ2 pθ
r = f ν′

2r
(15)

κ2 pθ⊥ = f ′ν′ + f
(
2ν′′ + ν′2)

4
, (16)

In this work, our main goal is to extend a well known
isotropic interior solution satisfying Eqs. (11), (12) and (13)
to anisotropic domains using expressions (14), (15) and (16)
and the minimal deformation given by Eq. (10). In order to
do so, applying appropriate matching conditions is manda-
tory. The next section is devoted to the study of matching
conditions assuming that the perfect fluid is embedded in a
BTZ vacuum.

3 Matching condition

In the context of compact objects, the junction conditions
play a crucial role because they reveal information about
the underlying physics of the object. In particular, in 2 + 1
dimensional space–times, the boundary is a circumference
and such an interface, i. e. r = R, limits both the inner and
outer solutions. Thus, the complete solution is divided in two
parts: i) the inner solution, which is obtained using the MGD
approach, and ii) the outer solution, which is obtained from
the Einstein field equations taking as the source the geomet-
rical deformation, θν

μ. The inner solution is parametrized by
the metric:

ds2 = −eν−
dt2 + eλ−

dr2 + r2dφ2 (17)

where the deformation is introduced as follows:

eλ− =
(
−m̃(r) +

(r
�

)2 )−1
(18)

producing an effective mass according to

m̃(r) = m(r) − α f (r). (19)

1 In what follows we shall assume κ2 = 8π .
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It is notable that m(r) is the usual inner mass and f (r) is
found via the MGD approach. Therefore, we note that the
inner mass suffers a deformation after introducing the MGD
formalism. The outer solution is written as

ds2 = −eν+
dt2 + eλ+

dr2 + r2dφ2 (20)

and the corresponding outer functions are obtained solving
the effective Einstein field equations when Gμν ≡ θμν . In
addition, the anisotropies θμν are written in terms of the clas-
sical metric functions, ν(r) and λ(r), these functions corre-
sponding to that of the BTZ black hole solution. Now, in
order to connect both solutions, we use the continuity of the
so–called first and second fundamental forms. On one hand,
the first one, evaluated on the surface, is written as

[
ds2

]
Σ

= 0 (21)

which produces two junction conditions:

eν− − eν+ ∣∣∣
Σ

= 0, (22)

e−λ− − e−λ+ ∣∣∣
Σ

= 0. (23)

Taking advantage of (23) we can define the black hole mass
via the relation

−M +
(
R

�

)2

+ α f (R) = eλ+(R) (24)

with m̃(R) ≡ M and f (R) the deformation at the star surface.
On the other hand, the second fundamental form is:

[
Gμνr

ν
]
Σ

= 0 (25)

where rμ is a radial vector. The aforementioned restriction
gives

p̃−
r − p̃+

r

∣∣∣
Σ

= 0. (26)

Finally, by using the definition of θ1
1 , we obtain

pR = α

⎡
⎣− fR

8π

ν′
R

2R
+ gR

8π

1

�2

(
−m̃ +

(
R

�

)2
)−1

⎤
⎦ (27)

where we have used the definitions

pR ≡ p(R)−, ν′
R ≡ ν′(R)−. (28)

In addition, it should be noticed that g(r) is the geomet-
ric deformation for the outer BTZ solution given by the

anisotropic contribution θμν , where the metric has the same
structure of Eq. (18) under the replacement

eλ =
(

−m̃ +
(r
�

)2 + αg(r)

)−1

. (29)

Equations (22), (23) and (27) are the necessary and sufficient
conditions for the matching of the interior MGD metric with
the outer vacuum described by the deformed BTZ metric. It
is important to point out that the 2+1 dimensional case has
a common feature with the four dimensional counterpart: if
the outer region is given by a not deformed BTZ solution
(which implies g(r) = 0) we obtain the simplest case

p̃R ≡ pR + α

(
fR
8π

ν′
R

2R

)
= 0. (30)

Note that by Eq. (15),

fR
8π

ν′
R

2R
= pθ

r (R)−. (31)

In this sense, a sufficient condition to fulfill (30) is to consider
the so called mimetic constrain of the pressure, namely

p = pθ
r . (32)

In what follows we shall implement the mimetic constraint
to extend the isotropic static star with constant density in a
BTZ vacuum.

4 Static perfect fluid solutions with Λ

The line element of a static circularly symmetric 2+1 dimen-
sional space–time parametrized as

ds2 = −N 2dt2 + 1

G2 dr
2 + r2dφ2 (33)

corresponds to a perfect fluid solution of the Einstein field
equations whenever [38]

G2 = C − Λr2 − 16π

r∫
rρ(r)dr (34)

N = n0 + n1

∫ r r

G(r)
dr (35)

where C , n0 and n1 are integration constants and ρ stands
for the energy density. From the Einstein’s equations, the
pressure can be written as

p = 1

8πN
(n1G + ΛN ). (36)

Note that Eqs. (33), (34), (35) and (36) correspond to the more
general isotropic, static and circularly symmetric solution in
2+1 dimensions. It is worth mentioning that, after imposing
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suitable matching conditions, the above solution could serve
as an interior solution for a BTZ vacuum.

Our goal is to extend the above isotropic solution to
anisotropic domains by implementing the MGD decoupling.
In order to do so, we identify

ν = 2 log N = 2 log

(
n1

∫
r

G
dr + n0

)
(37)

μ = G2 (38)

where the pressure in Eq. (36) can be written as

p = − 1

8π�2 + n1

8π(n1
∫ r

G dr + n0)
. (39)

In the previous expressions, the constants C , n0 and n1 must
be constrained in such a manner that the pressure vanishes at
the surface of the star, namely, p(R) = 0. From now on, we
shall focus our attention in the implementation of the MGD
method. From Eq. (15), the mimetic constraint, pθ

r = p leads
to

f = G

�2n1

(
�2n1G − n1

∫
r

G
dr − n0

)
(40)

The decoupler condition, e−λ = μ + α f , leads to

eλ = �2n1

G
(
(α + 1)�2n1G − α

(
n1

∫ r
G(r) dr + n0

)) . (41)

Now, replacing Eq. (51) in Eqs. (4), (5) and (6) we obtain

ρ̃ = αG ′ (n1
∫ r

G dr + n0
) − 2(α + 1)�2n1G ′G

16π�2n1r

+ (α + 2)r

16π�2r
(42)

p̃r = (α + 1)

8π

(
− 1

�2 + n1G

n1
∫ r

G dr + n0

)
(43)

p̃⊥ = − (α + 1)
(−L2n1G + n1

∫ r
G dr + n0

)

8πL2
(
n1

∫ r
G dr + n0

)

+ αrG ′

16πL2G
− αn1r2

16πL2G
(
n1

∫ r
G dr + n0

) (44)

It is worth noticing that, on one hand, the system described
by Eqs. (37), (41) and the matter content given by Eqs. (42),
(43) and (44) corresponds to a general anisotropic solution in
2+1 dimensions with cosmological term. On the other hand,
given the dependence ofG with the density (see Eq. (34)), the
solution has only one generating function ρ in the sense that,
given any suitable anisotropic solution, the corresponding
anisotropic system can be generated by Eqs. (34), (37), (41),
(42), (43) and (44).

As a particular example we shall consider a static star with
constant density ρ0 [38] which corresponds to

eν =

⎛
⎜⎜⎝n0 −

n1

√
c1 + r2

(
1
�2 − 8πρ0

)

8πρ0 − 1
�2

⎞
⎟⎟⎠

2

(45)

μ = c1 + r2
(

1

�2 − 8πρ0

)
, (46)

with the pressure given by

p =
8π�4n1ρ0

√
c1 + r2

(
1
�2 −8πρ0

)
+n0

(
1−8π�2ρ0

)

8π�2n0
(
8π�2ρ0−1

) −8π�4n1

√
c1+r2

(
1
�2 −8πρ0

) .

(47)

As previously stated, the constants c1, n0 and n1 must be
constrained such that p(R) = 0. Thus, re–writing n0 in terms
of the other parameters we finally have:

n0 = − 8πρ0

Λ(Λ + 8πρ0)
n1

√
c1 − (Λ + 8πρ0)R2 (48)

or, equivalently,

n0 = 8πρ0�
4

8πρ0�2 − 1
n1

√
c1 +

(
1

�2 − 8πρ0

)
R2. (49)

From Eq. (40), the decoupling function reads

f = −8πρ0r
2 + c1

(
1

8π�2ρ0 − 1
+ 1

)

−
n0

√
c1 + r2

(
1
�2 − 8πρ0

)

�2n1
(50)

Now, using (41) we obtain

λ = log

(
�2n1

(
1 − 8π�2ρ0

)

Dλ

)
(51)

where

Dλ = −n1c1�
2+αn0

(
8π�2ρ0−1

) √
c1+r2

(
1

�2 −8πρ0

)

+ n1

(
8π(α+1)�2ρ0−1

) (
r2

(
8π�2ρ0 − 1

))
(52)
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Finally, replacing Eq. (51) in Eqs. (42), (43) and (44) we
obtain

ρ̃ = (α + 1)ρ0 + n0
(
α − 8πα�2ρ0

)

16π�4n1

√
c1 + r2

(
1
�2 − 8πρ0

) (53)

p̃r =
8π(α + 1)�4n1ρ0

√
c1 + r2

(
1
�2 − 8πρ0

)

Dpr

+ (α + 1)n0
(
1 − 8π�2ρ0

)

Dpr
(54)

p̃⊥ = −
(α + 1)�2n1ρ0

√
c1 + r2

(
1
�2 − 8πρ0

)

�2n1

√
c1 + r2

(
1
�2 − 8πρ0

)
+ n0

(
1 − 8π�2ρ0

)

+ (α + 2)n0r2
(
8π�2ρ0 − 1

) (
8π�2ρ0 − 1

)

Dp⊥

− 2(α + 1)c1�
2n0

(
8π�2ρ0 − 1

)

Dp⊥
(55)

where

Dpr = −8π�4n1

√
c1 + r2

(
1

�2 − 8πρ0

)

+ 8π�2n0

(
8π�2ρ0 − 1

)
(56)

Dp⊥ = 16π�2
(

�2n1

√
c1 + r2

(
1

�2 − 8πρ0

)

+ n0

(
1 − 8π�2ρ0

) )(
r2

(
8π�2ρ0 − 1

)
− c1�

2
)

(57)

At this point we would like to emphasize that the protocol
here employed is suitable not only for the constant density
case, but for any other energy density profile. In this sense,
the computations here employed pave the way for the study
of more complicated (and surely interesting) situations.

5 Conclusions

In this work we obtained a general anisotropic solution in
2 + 1 dimensions which models a star embedded in a BTZ
vacuum. The starting point was to consider the most gen-
eral solution in 2 + 1 dimensions with cosmological con-
stant, particularly those solutions with negativeΛ. Then, after
applying the Minimal Geometric Deformation method and
suitable matching conditions, we showed that a consistent
anisotropic interior solution can be achieved by implement-
ing the so called mimetic constraint of the pressure, namely,

the radial pressure of the anisotropic sector is taken as the
pressure of the isotropic solution. The final result is that the
general anisotropic solution depends on the energy density
of the perfect fluid only, so that this function plays the role of
a generating function. It is worth mentioning that the method
here employed can be considered as a well–behaved pro-
tocol that can be used to construct anisotropic solutions in
2 + 1 dimensions. Specifically, given a suitable energy den-
sity associated to an isotropic solution, the calculation of
the quantities describing the anisotropic solution turns to be
straightforward by employing the approach here presented.
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