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 R. E. D. BISHOP, W. G. PRICE AND Y. WU

 The dynamics of an elastic beam floating on the surface of disturbed water has formed
 the basis of a fairly comprehensive linear theory of hydroelastic behaviour of ships
 in waves. The existing theory cannot easily be extended to floating vehicles of more
 complicated shape (such as semi-submersibles), or to fixed offshore structures. A
 general method is presented, by which finite elements permit any three-dimensional
 elastic structure to be admitted in a linear hydroelastic theory. Sinusoidal waves
 provide the excitation of the structure and the fluid flow is three-dimensional. Some
 examples are given which illustrate the use of the theory and expose behaviour that
 has not been encountered hitherto.

 1. INTRODUCTION

 When designing a ship or offshore structure, the naval architect has to meet requirements of
 initial cost, safety, reliability, performance, and so on. The testing of prototypes is usually
 precluded by cost, yet misjudgements could have horrendous consequences. For this reason,
 the naval architect tends to rely heavily on semi-empirical rules based on past experience; the
 result is that designs evolve only slowly from one type of vessel to another. Seldom is a radical
 departure made in the hull form of a ship, for instance.

 The hull of a ship is usually based on considerations of static or quasi-static analyses, whereas
 in reality the structure will operate in conditions determined by the wind and seaway. This
 approach may be contrasted with that adopted in aeronautics; from the outset, aeronautics
 have been closely associated with dynamics.

 Traditionally, the behaviour of a moving, floating structure in water has been divided,
 somewhat artificially, into distinct subjects, each with its own basic assumptions. These
 specialist branches of naval architecture may be described as follows.

 Manoeuvring theory. This relates to the behaviour of a rigid ship in calm water when it is subject

 to external actions caused by forced motion of the rudder or stabilizer fins, or by selective use
 of propellers or thrusters. In general, both the inputs and the resultant ship responses are
 deterministic.

 Seakeeping. This describes the responses of a rigid ship, moving or stationary, in regular
 sinusoidal waves or in a random seaway. The responses are either deterministic or random in
 form, and for the latter a probabilistic approach is required to determine the behaviour of the
 vessel.

 Structural theory. This is a large subject that is usually based on empirical rules which determine

 the loading imposed on the structure, and then the use of structural analysis of a static or
 quasi-static nature.

 Hydroelasticity is the study of the behaviour of a flexible body moving through a liquid. When

 applied to a flexible ship hull or offshore structure, it may be used to determine stresses, motions
 and distortions under the actions of external fluid loadings arising from the seaway, deflection

 of the rudder, rotation of a propeller, etc. The theory necessarily embodies a description of the
 structure concerned and of the fluid actions applied to it. In its most general form, this approach
 subsumes both manoeuvring and seakeeping theories in the sense that the dynamics of a rigid
 body is a special example of the more general problem associated with a flexible one.

 Even when the structural and hydrodynamic theories are available, the naval architect still
 has the task of reconciling them. Until comparatively recently, little effort was made at
 adequate reconciliation and it is probably true to say that there have emerged two apparently
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 distinct disciplines, one to do with structural theory and the other with naval hydrodynamics;
 this dichotomy is readily perceived in the literature. If, however, the predictions of fluid actions
 offered by naval hydrodynamics are matched to the representation of the ship hull as some
 form of elastic structure proposed by the structural analyst, the estimation of ship responses
 to waves becomes, in effect, a vibration problem.
 To assess the dynamical behaviour of a structure of any prescribed form placed in a seaway,

 it is necessary to determine the forces applied to it by the fluid. This has been the subject of
 much research, both theoretical and experimental, and there is now a vast literature on naval
 hydrodynamics (see, for example, Newman 1978).
 This paper discusses the dynamics of a flexible structure of arbitrary shape moving in a

 seaway. It does so, starting from fundamental studies in both hydrodynamics and structural
 mechanics. The interactions between the fluid and the moving flexible structure are allowed
 for in the linearized mathematical model. This is based on a three-dimensional description of
 the structure moving in vacuo and a three-dimensional hydrodynamic analysis of the fluid
 actions, which accounts for forward speed, free surface-wave effects and distortions of the
 flexible body. No attempt is made to distinguish between 'manoeuvring', 'seakeeping' and
 'structural theory' because this general approach unifies all three, while putting them on a
 sounder footing.
 To illustrate the theory, responses are calculated for two different idealized structures.

 (a) A uniform box beam representing a rudimentary ship. (An actual ship structure could
 readily be substituted at the expense of greater detail.) This analysis allows a check to be
 made on the previous hydroelasticity theory of Bishop & Price (I979) in which the
 assumption of a 'beam-like' structure is fundamental, for hitherto there has been no
 comparable theory for use with actual ships which can be used for comparison.

 (b) A semi-submersible in transit, or alternatively, a s.w.a.t.h. (i.e. small water-plane area
 twin hull).

 The last structure travels at an arbitrary heading angle in regular sinusoidal waves and, because
 it is far from 'beam-like', there is no existing approach by which a hydroelastic analysis may
 be made.

 2. EXISTING HYDROELASTICITY THEORY

 Hydroelasticity theory has been developed during the past decade by Bishop & Price (I 979).
 It has been based on a linear dynamic analysis of the responses of a flexible ship hull travelling
 in a seaway. The responses (i.e. motions, distortions, shearing forces, bending moments, twisting
 moments) have been determined by using techniques of modal analysis. Briefly, the ship's hull
 is assumed to be 'beam-like' and its dynamic vibration characteristics (in vacuo in the absence
 of damping and external forces) are determined in a 'dry-hull analysis'. By treating the hull
 as a non-uniform Timoshenko beam and adopting a suitable process for representing the
 continuous structure as one with finite freedom, a set of principal modes and natural frequencies
 may be determined.

 When the hull is afloat, all structural damping and hydrodynamic forces are treated as
 external actions applied to the dry hull whose characteristics are now known. The fluid actions
 may be determined by means of established techniques of naval hydrodynamics, such as one

 25-2
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 of the well known strip theories. In this way, the responses of the hull in the seaway may be
 determined.

 This approach was first used to determine symmetric responses, namely the 'rigid body'
 motions of heave and pitch, distortions in the vertical plane and bending moments and shearing
 forces at any section of the 'beam-like' hull. The theory is described by Bishop & Price (I974)
 and Bishop et al. (1977).

 The theory was subsequently extended by Bishop & Price (1976 a, b) and Bishop et al.
 ( I 980 a), to account for antisymmetric responses. These include the rigid-body motions of sway,
 yaw, and roll, together with antisymmetric distortions of coupled twisting and lateral deflection.
 These distortions are associated with the additional responses of twisting moment, lateral
 bending moment and lateral shearing force at any section.

 This separation of symmetric from antisymmetric responses depends upon the existence of
 port and starboard symmetry of the hull. The theory has been extended so as to admit
 unsymmetrical structures such as the hull of an aircraft carrier (see Bishop et al. 1986), the
 relevant structural members of wave energy devices (see Bishop et al. 1980), or a ship having

 an angle of heel, as when cargo shifts (see Bishop et al. 1980; Conceicao et al. 1984). In these,
 no appeal can be made to arguments of symmetry for the purposes of simplification because
 all responses are coupled.

 As an alternative to representation of the beam-like hull as a Timoshenko beam (with possible
 modification to allow for twisting), representation as a Vlasov beam has been suggested by
 Bishop et al. (I983).

 The foregoing investigations for flexible ships have dealt with motion through sinusoidal
 waves and through irregular waves. Slamming may occur in these types of seaway. Then the
 wave conditions are sufficiently sevre for the forward part of the hull to leave the water; impact

 occurs at the ship's bottom on re-entry and this results in a severe transient vibration of the
 hull (Bishop et al. 1978; Belik et al. 1980). The concept of modal analysis has been successfully
 applied to describe the behaviour of the transient responses after slamming. Computer time
 simulations of the behaviour of ships travelling in irregular seaways have been made and these

 show good correlation with measured results from full-scale trials in which ship slamming
 occurred (Bishop et al. 1984; Clarke et al. 1984).

 In all these investigations the fluid actions have been determined by means of a suitable strip
 theory or two-dimensional hydrodynamic theory; see, for example, Gerritsma & Beukelman
 (1964); Vugts (197I); Salvesen et al. (I970). This imposes severe limitations on the use of
 existing hydroelasticity theory. Thus it is not possible to examine the behaviour of non-beam-like
 flexible structures such as multi-hulls, semi-submersibles, jack-up rigs, fixed structures, etc.,

 either travelling or stationary in a seaway.
 This paper discusses a general method which overcomes these objections. It relies on a more

 complex theoretical model to describe the dynamics of a flexible body of arbitrary shape
 travelling in a seaway. This new theory covers the rather more rudimentary approaches already
 mentioned but still relies on a linear structural model, and, for simplicity, a linear hydrodynamic

 theory. (This latter restriction may be relaxed, and a nonlinear theory adopted instead; but
 this possibility will not be followed up in this paper.)

 Briefly, a linear finite-element approach is used to describe the dynamical behaviour of the
 three-dimensional dry structure in vacuo. The fluid actions associated with the distorting
 three-dimensional wet structure are determined from a theoretical hydrodynamic model

 involving translating, pulsating sources and sinks. A modified modal theory is again used and

 378
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 it is shown that a description of the responses of a floating, flexible structure travelling in waves
 may be determined from this general hydroelasticity theory. In addition, the theory associated
 with a floating rigid body travelling in a seaway can also be obtained from the present theory.

 3. STRUCTURAL DYNAMICS

 When the floating structure is a slender hull, it has hitherto been treated either as a
 Timoshenko beam or a Vlasov beam. To remove this restriction on the hull shape we shall
 use a finite-element approach. As before, the vibration characteristics of the structure in vacuo

 will initially be investigated. It will be shown later, when discussing the hydrodynamic fluid
 actions on the flexible structure, that the theory requires information on the dynamic
 characteristics of the dry structure.

 In outlining the theory for the structure, we shall refer to a flexible body of arbitrary shape
 which is not fixed at any point. Being free to float without restraint, the structure will possess
 rigid-body modes as well as modes of distortion. If, instead, the structure is fixed in some way,
 there will be no rigid-body modes and there will be some modification of the boundary
 conditions.

 3.1. A simple finite-element approach

 Consider first a single structural element located by reference to 'global axes' Oxyz (which,
 as we shall see later, may be a frame of equilibrium axes). A local frame of axes may be erected

 at the element whence positions in it may be identified by means of local coordinates 6, y, 5.
 The nodes of the element suffer generalized displacements Ue = {U, U2, ..., UN}), where N
 denotes the number of nodes of the element concerned and the overbar signifies that the
 quantities are expressed in the local coordinate system, while the subscript e means that the
 quantity relates to an element. A static displacement u = {u, v, iw at any point in the continuous
 structure may be specified approximately in terms of a finite number of displacements at the
 nodes. That is,

 u(g, , ) - {u, v, w} = N(g, /, ,) Ue,

 where the matrix N contains suitable shape functions of geometric origin prescribed in terms
 of the local coordinates. (See Zienkiewicz (I977).)

 The relation between u and Ue is more complicated when these quantities are time-dependent,
 because inertial forces cause distortion of the element concerned. Nevertheless, if a large enough
 number of elements are used (so the elements are all sufficiently small) the above relation is
 adequate, even when relating u({, , ', t) to Ue(t), provided Ue(t) is found from the dynamics
 equations of the structure (Przemieniecki 1968). This standpoint will be adopted henceforth.

 (a) Energy considerations

 The strain-displacement relation is

 = bUe,

 where b is obtained by differentiation of the matrix N. Now the stresses may be found from
 a generalized form of Hooke's law,

 a = Xg,

 the matrix X being a suitable matrix of elastic constants. (We shall ignore thermal effects.)

 379
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 The strain energy of the element is given by

 14^- ne 2fJL T& dQe
 I 2JJJEe

 where Qe is the volume of the element and the superscripted T denotes transposition. That is,

 H1e b bU,dQ = KUe,

 where Ke = jj bTXbdQ.
 Qe

 The quantity Ke is the symmetric stiffness matrix of the element. Similarly, the kinetic energy
 of the element is

 Te 2 Pb p udQ = L Pb(NU) (NUe) dQ,
 e e

 where Pb is the density of the structural material. It follows that

 Te = 2 Ue Me Ue,

 the quantity Me = { NTPbNdQ

 being the symmetric mass matrix of the element, or 'consistent mass matrix' (Zienkiewicz &
 Cheung 1964).
 The contribution to the dissipation function from the element is

 D=- I- I | U Tp dQ,
 2JJJ.

 where fi is a specific damping matrix. That is,

 D =UeTfle Ue,

 where Be is the symmetric damping matrix given by

 Be f f{ NTflNdQ.

 (b) Equation of motion of an element

 Internal and external actions may be applied simultaneously to the structure. The former
 are produced by the interaction between adjacent elements, the actions arising at the common
 nodal points. These are represented by the matrix Ee. The external applied forces or moments
 may be associated with gravity, aerodynamic and hydrodynamic actions, moorings, etc. These
 loadings are either distributed through or over the structure or are concentrated at particular
 points.

 When a structure floats in a fluid, a distributed hydrodynamic pressure field p acts over the
 wetted surface. From the principle of virtual work, the corresponding generalized force is found
 to be

 Pe = pNT dS = {Pel, Pe2 ...}
 Se

 380
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 where n is the outward unit vector on the wetted surface S,e measured in the local element
 coordinate system.

 A mooring force, a propulsion force or the actions of a mechanical exciter are examples
 of a concentrated load acting on the structure. If, in the local coordinate system, the column
 matrix f(t) denotes the components of the concentrated load acting at an arbitrary point
 (i y, , ), then the generalized force matrix associated with all such concentrated loads, i, may
 be written as

 Fe = NT(i, , )fi(t).
 i

 The equations of motion of an element may be found once the energy functions and
 generalized forces have been determined. Thus by the use of Lagrange's equation (see Bishop
 et al. 1965) it is found that the matrix equation of motion for an element is

 Me U+Be Ue Ke Ue = Ee + Pe + F+ge

 Here the column matrix ge represents the generalized gravitational forces whose value will be
 discussed later.

 (c) General equation of motion

 It has been found by Bishop & Price (1979) that the hydroelasticity problem of a slender
 ship hull is much simplified by the use of an 'equilibrium' frame of coordinates Oxyz. Such
 axes are particularly helpful in the description of the externally applied fluid actions. To use
 this technique here, it is necessary to construct a matrix L which transforms a displacement
 Ue in the local coordinate system O06y to a displacement Ue in the equilibrium coordinate
 system. That is, a relation

 Ue = LUe

 must be found, where L is a band matrix with each diagonal submatrix of the form

 - cos (x, 6 cos (y, 6) cos (z, 6)-

 l= cos (x, 7) cos(y, /) cos(z,/) .

 cos (x, C) cos (y, C) cos (z, )_

 That is, the cQmponents of I are the direction cosines of the angles formed between the two

 sets of axes and so 1 is an orthogonal matrix. It can be shown further that the displacement
 u = {u, v, w} and the normal vector n at any point in the equilibrium axis system, and those
 of u, n in the local axis system, satisfy the relations

 u= lu and n = n

 respectively.

 If this transformation is applied to all the variables, for example, Pe = LPe, the change may
 be made apparent by removal of the various overbars. The elemental equation of motion is
 then stated in the equilibrium coordinate system as

 Me Ue+Be Ue+Ke Ue = Ee+Pe+Fe+ge.

 381
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 It is convenient to give the expression for ge at this point because it is best to take the
 equilibrium axes with the axis Oz vertical. We assume that it points upwards. The virtual work
 is given by

 UeTge= -I Pbgdwe dQ,

 whence ge= pbgLTNT dQ,
 Qe

 where 13 = {cos (z, ~), cos (z, y), cos (z, )}.

 To obtain a complete solution it is necessary for the conditions of compatibility and
 equilibrium to be satisfied throughout the structure. The compatibility condition is automatically

 satisfied if the nodal displacement for an element, Ue, is re-labelled suitably so that it is replaced
 by an identical nodal displacement

 U= {U1, U2, ..., },

 defined throughout the whole structure. For equilibrium to prevail throughout the structure
 at all common nodes between adjacent elements, it is necessary that

 EEe = O (j= 1,2,..., n)
 e

 where the summation extends over all the elements meeting at the common jth node. Thus
 the matrix equation of motion for an element may be replaced by a general equation of motion
 which, in matrix form, is expressible as

 MU+BU+KU= P+F+g.

 The matrices M, B and K contain n x n submatrices, each of which contains 6 x 6 elements,

 n being the number of nodes; they are referred to as the mass, damping, and stiffness matrices

 respectively. The matrices M and K are positive semi-definite or positive definite, depending
 on the boundary restraints imposed on the structure. The column matrices of generalized forces
 associated with the loading, i.e.

 P = {g1, g2, ..., Pn}

 F= {F1, F2, ..., Fn)
 are of order (n x 1).

 This equation is a generalization of equations of motion discussed by Bishop & Price (I 979).
 When they are derived in this way the matrices M, B and K are real and symmetric because
 they are associated with the dry structure. The fluid loading is simply represented by an external
 generalized force matrix P, but in practice its evaluation may be difficult. Although we shall
 discuss its form in some detail, it is worth noting some of the difficulties at this stage.

 (i) P depends on the motions and distortions of the structure.
 (ii) Even in a linear formulation of an expression for P, matrix symmetry may provide

 no assistance, particularly if the structure has forward speed.
 (iii) All the fluid terms depend on the encounter frequency with which waves meet the

 moving structure.

 382
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 (iv) The passage of waves along the surface of the structure complicates the form of the
 wave excitation.

 (v) Nonlinear fluid actions have to be included in the mathematical model of the fluid
 loading of some fixed structures.

 Although these difficulties are not insuperable, the only practical approach to their solution
 is that of numerical analysis. Once the fluid loading terms have been found, the equations for
 U can be solved (see, for example, Zienkiewicz & Bettess (1982)). It has been shown by Bishop
 & Price (I 979), however, that the principal coordinates of the dry structure bestow significant
 advantages in the subsequent analyses.

 3.2. Naturalfrequencies and principal modes

 If the damping and the forcing terms are ignored, the equation of motion reduces to

 MU+ KU= 0.

 The trial solution

 U = D ei?t

 shows that non-trivial amplitude matrices D exist provided the characteristic equation

 IK-wo2MI = 0

 is satisfied. The real and positive eigenvalues (or (r = 1, 2, ..., m) are the natural frequencies
 and each is associated with a characteristic 'eigenvector'

 DDr Dr, Dr2, ... Drm}

 giving the rth principal mode. Here m is the total number of degrees of freedom of the dry
 structure.

 The generalized displacement vector of the rth principal mode at thejth node is

 Dr = {Ur, Vr, Wr, Oxr' 6yr, OZr}j

 if the elements concerned are to maintain compatibility in displacement and slope. Any one
 element is associated with more than one node. A submatrix ofDr, denoted by dr, may be formed
 for the one element, so that

 Uer= dr eirt.

 The rth mode shape at any point in the element is then

 Ur {Ur, Vr Wr} = l-ler = ITNUer = ITNLdr eiwrt,

 I being an orthogonal matrix so that IT1 = I, the unit matrix.

 (a) Rigid-body modes

 The body motions of floating structures are frequently of interest. The body is unanchored
 and the stiffness matrix K is positive semi-definite so that I K\ = 0. The frequency equation
 then has six zero roots.

 In seakeeping theory the rigid-body modes are conveniently chosen to be the three
 components of displacement u., v_, w, of the centre of mass C, and the three components of
 26 Vol. 316. A
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 small rotations OXC, Oc), tZc, about the body axes whose origin is fixed at C. If the body axes
 are aligned with the equilibrium axes in the equilibrium position it is found (for example, by
 evaluating a non-zero column of the adjoint of the matrix K- 02M) that, in general,

 - 0 0 0 zj- Z, -(j- Yc) uc
 0 1 0 -(zj-Zc) 0 Xj-X rVc

 D 0 0 1 Yj--Y - (xj-xc) 0 rw
 ri 0 O 1 0 0 rx
 0 0 0 0 0 ry

 0 0 0 0 0 1 - -c

 (r = 1, 2, 3, ..., 6). The quantities rue, rV, rwc, r0xe) r0ye, rozc are arbitrary constants, and by
 suitably selecting their values the rigid-body modes may be specified in various ways.

 (b) Orthogonality conditions

 Let Dr and Ds be two of the principal modes. Evidently,

 KD, = (2 MD

 and KDr = (2 MDr

 Pre-multiply the first equation by DT and post-multiply the transpose of the second by Ds.
 By subtraction, the result

 (W2 -o 2)yDT MDs = 0
 is obtained. It follows that

 D MDs = 8rs ars,

 where grs is the Kronecker delta function, defined by

 O for r - s,
 rs |f1 for r = s.

 This relation between Dr and Ds is that of orthogonality.
 It will be seen that an alternative statement of the orthogonality principle is

 Dr KDs rs ( ars = grs Crs

 The quantities ass, c,s represent generalized mass and generalized stiffness associated with
 the sth principal mode. Their properties are discussed by various authors (see, for example,
 Bishop et al. I965). Their values depend upon the scaling of the sth principal mode. The
 orthogonality relations remain valid when one of the modes is a rigid-body mode, though special
 care must be taken when both modes are rigid-body modes (see ?3.2 (d)).

 It is convenient to assemble a matrix of principal modes

 D = [D1, D2, ..., Di],

 each column being a mode. The orthogonality relations may now be expressed as

 DTMD = a

 and DTKD = c,

 where a and c are generalized mass and stiffness matrices respectively, both symmetric such
 that css = ( ass.

 384
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 (c) Principal coordinates

 The total deflection and distortion of the structure may be expressed as the sum of
 displacements in the principal modes. It follows that the matrix of nodal displacements may
 be expressed as

 m

 U= Pr(t) Dr
 r=l

 The displacement at any point is then

 m

 U = {u, V, } = E Pr(t) Ur,
 r=1

 where pr(t) (r = 1, 2, ..., m) are a set of principal coordinates.
 It follows from this definition of the pr(t) that

 U= Dp,

 the matrix p being the vector {pl(t), p2(t), ..., Pm(t)}. If this expression for U is substituted in
 the general equation of motion and that equation is pre-multiplied by DT, it is found that

 ap+bp+cp = Z+G+A,

 where the significance of b, Z, G and A will be examined individually.
 The matrix

 b = DTBD

 represents the damping in terms of the principal coordinates. It is symmetric but not, in general,
 diagonal. Now damping is not well understood and, faute de mieux, it is common to make the
 assumption that B is expressible in the form

 B = aM+ lK,

 where a and , are constants. This makes b diagonal so that the matrix equation of motion
 reduces to a set of uncoupled scalar equations,

 arrr + brr + CrrPr = Zr+ Gr+r (r = 1, 2, ..., m),

 provided that a is diagonal (for instance when the structure has no rigid-body motion, a matter
 which is further discussed in ?3.2 (d)).

 The generalized fluid force corresponding to p is

 Z DTP= {Z1, Z2,..., Zm).

 It follows that the rth component, corresponding to Pr, is

 Zr = Dr P= dr Pe,
 e

 where the summation is over all elements on the wetted surface.

 The other generalized distributed force is that of gravity, namely

 G = DTg = {G1, G2, ..., G}.
 26-2
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 The term corresponding to Pr is

 Gr = Dg = g dr g,
 e

 where the summation is now over all elements.

 Finally, the matrix representing concentrated forces at the principal coordinates is

 A = DTF= {A , A, ..., Am}.

 The generalized concentrated force at Pr is

 Ar = DTF= dTFe,
 e

 the summation being over all elements that are subject to a concentrated load.

 (d) Separation of rigid and distortion modes

 The principal coordinates p fall naturally into two groups, PR and PD. That is,

 P = {PRPD),

 where PR = {P1 P2, .. P6}

 refers to the 'rigid-body' modes and

 PD = {P7, P8, ..}'

 refers to the 'flexible-body' or 'distortion' modes. It will be helpful to summarize the results
 that can be derived simply when this distinction is made.
 The matrix equation of motion may be partitioned to give

 Lo aR [0 ]p O [ 0[PR [O ][P 1 [ZR] [GD] [D ] ]
 LO D-fDJLO - DPD D-DLPD, LZD GD D

 0 being the null matrix. The matrices aD and cD are diagonal while bD is square and symmetric.
 If interest centres on rigid-body motions only, the equation

 aRPR = ZR+ GR + R

 has to be addressed. It will be understood that this equation does not exclude the effect of
 distortions which arise from the hydrodynamic terms on the right-hand side of the equation.

 Case A. Because an eigenvector for a rigid-body mode may be scaled arbitrarily and normalized
 as desired, we may express the relevant modes in the familiar terms of surge, sway, heave, roll,
 pitch, and yaw. Then, for thejth node,

 Dij = {1, 0, 0, 0, 0, },
 D2j = {0, 1, 0, 0, 0, 0},
 D3j = {0, 0, 1,, 0,, 0},
 D4j ={0, -(zj-Z,), (Yj-Yc), 1, 0, 0},
 Dj = {(zj-ze), 0, - (xj-xc), 0, , 0 },
 D6o = {-(Yj-Y0), (xi-xe), O, O, O, 1},

 386
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 where (xc, y,c z,) is the centre of mass relative to the chosen axes. The rotation of the structure
 is then specified by reference to the centre of mass.

 The displacements at any point (x, y, z) of the rigid body are

 u1 = {1, 0, 0},

 u2 = {0, 1, 0},
 U3 = {0, 0, 1}

 4 = {0, -(z-Zc), (Y-Yc)},
 U5 = {(z-zc), 0, -(X-X))},
 U6 = {--(Y-YC), (x- x), 0}.

 Corresponding to this specification of the rigid-body modes,

 m 0 0 0 '0 0

 0 m 0 0 0 0

 0 0 m 0 0 0
 aR -

 o0 0 0 44 -45 - 46
 o o o -I5 I,5 -I56
 0 0 0 -164 -I65 I66-

 Here, m is the total mass of the structure and the quantities I44, I45, ..., are the moments and
 products of inertia given by

 a46 = -I46 =-f pb(x-c) (z-zc) d =-64 = a64,

 a45 =-45 - Pb(X-Xc) (y-Yc) d = -I54 = a54,

 a56 = 56 = -S PY-b(YC) (z-zc) d= --65 = a65,

 where 12 is the volume of the structure.

 For a structure with port and starboard symmetry and an axis system chosen to have its origin
 and two axes Ox, Oz in this plane of symmetry.

 a4, = 0 = a56 but a46 = 0.

 This is in line with the approach that is commonly adopted in seakeeping theory.

 Case B. An alternative specification of the rigid-body modes has been used by Bishop & Price
 ( 1979) because it simplifies the analysis of distortions. The modes are so scaled that displacement
 at the stern of a ship is unity; let us take the reference point as {xi, YL, zl}. The rigid-body modes
 are then given by

 D = {1, 0, 0, 0, 0, 0},

 D3 = {0, 0, 1, 0, 0, 0},

 387

This content downloaded from 131.180.87.187 on Tue, 10 Oct 2017 09:11:07 UTC
All use subject to http://about.jstor.org/terms



 R. E. D. BISHOP, W. G. PRICE AND Y. WU

 D, =0 Z1 - Zc Y-Yc 1 o D4 I zl-zc ' zl-zc 'z-zc )

 5j oX-X xi- Xc x1 - Xo

 6j X- Xc Xi - Xc X1 - Xc
 D5 = {yj-YZC x0-, 0,o O 1 }

 The displacements at any point (x, y, z) of the rigid body corresponding to these modes are

 u1 = {1, 0, 0},

 2 = {0, 1, 0},

 U3 = {0, 0, 1},

 U4 = {O ZlZc Zc { -z- z---~]

 U5 = {X, 0} - X,
 X-(C X-X C

 ' _= y-yc x-xc
 U6 X Xl XX

 The generalized mass matrix now takes the same form as that in case A but with the quantities

 44, I45, ..., I66 replaced by I44, 15, ..., I6 where, for example,

 r - f X-X Z-Z c d /46 - J Pb x- x Z-Z d =(-, x) (zi -Z
 and so on. Again the rotations are defined with respect to the centre of mass and not the origin
 of the axes.

 Case C. In a more general formulation, the rigid-body modes may be expressed in the form

 Dl= {1, 0, 0, 0, 0, 0},

 D2j = {0, 1, 0, 0, 0, 0},

 D3j = {0, 0, 1, 0, 0, 0},

 D4 = {0, -z, yj 1, 0, 0},

 D5 = {zj 0, -x j, 0, 1, 0},

 D6j = {-yj, x, 0, 0, 0, 1},

 with no reference made to a prescribed point. The displacements at any point (x, y, z) of the

 rigid body corresponding to these modes are

 U = {1, 0, 0}, U4 = {0, -z, y,

 ,2 = {0, 1, 0}, U5 = {Z, , -X},

 u3 = {0, 0, 1}, U6 = {-, , ,0}.
 All rotations are now specified with respect to the origin of axes and not the centre of mass.
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 The inertia matrix is now

 aR =

 m

 0

 0

 0

 mz

 -mye

 0

 m

 0

 - mz

 0

 mx c

 0

 0

 m

 MYC

 - mxc
 0

 0

 - mz

 mye

 4

 - rf54

 64

 mz

 0

 - mx

 J11~

 65

 55

 6

 - myc

 mxc
 0

 46

 - 5

 r66

 The moments and products of inertia I4, I 15, ..., 7' are now given by

 6 jxff z PbXZdQ,

 and so forth.

 The introduction of these rigid-body modes implies that the matrix equation of motion quoted
 in ?3.2 (c) now has the elemental form

 m

 E [arkPk(t) +brkfi(t)] +rrPr(t) = Zr(t) +Gr + r
 k=l

 for r = 1, 2, ..., m. The damping matrix b is represented by the more general form, which is
 not necessarily diagonal.

 4. FLUID-STRUCTURE INTERACTION

 Figure I shows the three right-handed systems of axes which will be used to define the fluid

 actions. Axoyoz0 is a fixed frame of reference; Oxyz is an equilibrium set of axes (the 'global
 axes' referred to previously) moving with forward speed U and remaining parallel to Ax0 yo Z0;
 O'x'y'z' is an axis system fixed in the structure at O' such that it coincides with Oxyz in the

 zI

 zo

 x'

 Yo

 A  Xo

 FIGURE 1. Right-handed systems of axes used to define the fluid actions and structural dynamic characteristics.

 absence of any disturbance. The origins 0, 0' are located at a convenient position in the body,
 usually on the line formed by the intersection of a longitudinal plane of symmetry and the calm
 water surface.

 The structure travels in deep water and moves with a constant speed U at a heading angle
 X (1800, in head waves) with respect to regular sinusoidal waves of amplitude a, frequency )
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 and wave number k. This means that the wavelength is

 A = 2n/k = (2ng) /2

 and the encounter frequency is (see, for example, Bishop & Price 1979)

 Oe = W)- (Uw2/g) cos X.

 The fluid loading produced by such waves causes deflections in the flexible structure, these
 deflections being a combination of body motions and distortions. Only the rigid 'body motions'
 are admitted in theory of seakeeping, accounting for deflections in the first six principal modes

 of the dry structure. These modes thus form a subset of the infinite number of modes required
 to describe the dynamic characteristics of the dry structure. By suitably modifying the fluid
 actions of existing seakeeping theory, it is possible to allow for a flexible structure.

 If the fluid is ideal (i.e. inviscid and incompressible) and its flow is irrotational, there exists

 a potential function 0(x0, y0, z0, t) satisfying the Laplace equation V20 = 0 and such that the
 fluid velocity V(x0, Yo, Z0, t) is

 V= grad = VO.

 Newman ( 977, 1978) has shown that this potential satisfies the following boundary conditions.

 (i) On the free surface, z0 = ,

 stt + 2V - V5t + 1V5., V(V . V0) +gz0 = 0,

 where tt = t 2)/at2, etc., and y is the elevation of the wave surface. (Ideally this surface
 condition is used, but regrettably linearization is required.)

 (ii) On the sea bed, z0 =-d,
 z =0.

 (iii) A suitable far-field boundary condition.
 (iv) On the moving wetted surface area S of a floating structure at any instant,

 aO/an = On = VS' n,

 where VS denotes the local velocity on the wetted surface S and n is the outward unit normal
 vector into the fluid.

 (Although the symbol S is principally associated, as here, with an instantaneous configuration
 of the wetted surface, it will also be used to denote a time-dependent departure of configuration
 from the steady or mean configuration S associated with the distortions of a flexible body. For
 example, if the body is totally submerged the wetted surface area of the structure remains
 practically constant but because of the distortions there still exist states S and S.)

 By means of a simple transformation this total potential may be represented in the
 equilibrium frame of axes as

 4(xo, Yo, Zo, t) = UW(x, y, z) + (x, y, z, t),

 where W, 0 denote velocity potentials for the steady motion of the structure in calm water and
 the unsteady forced motion in waves respectively. In addition, when there is only a steady
 motion, the velocity of the steady flow relative to the moving equilibrium frame of reference is

 W = Ugrad (- x)
 and the body boundary condition (iv) takes the form W n = 0 on the mean wetted surface S.
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 4.1. Principal coordinates and displacements

 The structure in the fluid is excited into a parasitic motion by the waves (i.e. it executes a
 forced response). According to Rayleigh (1894), any distortion of the structure may be
 expressed as an aggregate of distortions in its principal modes. That is, the deflection of the
 floating structure, defined in the equilibrium axis system Oxyz, may be expressed as

 00

 u(x, y, z, t) = Pr(t) Ur(X, y, Z),
 r=l

 oo

 V(x, y, z, t) = E Pr(t) Vr(x, y, z),
 r=l

 oo

 w(x, y, z, t) = E Pr(t) Wr(X, y, z),
 r=l

 where Pr(t) is the rth principal coordinate and Ur, Vr, wr are the components of deflection in
 the directions Ox, Oy, Oz of the rth principal mode of the dry hull. These latter functions are
 defined with respect to the mean equilibrium position of the floating structure in which the
 axis systems Oxyz, O'x'y'z' initially coincide. Therefore, by adopting a suitable transformation,
 these mode shapes may be expressed as functions of(x', y', z'), and by representing the principal
 mode in the vector form

 Ur(X', y', z') = Urf+Vr+Wrk = {Ur, Vr, Wr},

 the deflection vector may be written as
 00

 u(x', y, z', t) = u(x', y', z', t) a+v(x', y', z', t)+w(x', y', z', t) k = E Pr(t) U.
 r=l

 The velocity of any point (x', y', z') on the surface of the flexible structure travelling with
 forward speed U can be found from this result. It is given by

 00

 VS(x', y', z', t) = Uf+u = U + E fr(t) ur
 r=l

 In a similar manner, the rotation vector at any point (x', y', z') is given by
 00

 O(x', y', z, t) = pr(t) Or,
 r=l

 where

 wr vr \ur Dwr j \Vr v Ur A~] Or(X, y, Z, t) = {fxr, 0r z} = curl Ur = 2 kY' ,f+ x V a, x~ r 2 ,2ay' az az ax,'ax, ay,
 The direction of the unit vector n changes because the structure suffers a time-dependent

 distortion. This direction is unaffected by a pure translation of the whole body and is wholly
 dependent on rotations of the structure. Thus if n I, n I denote unit vectors at some point on
 the wetted surface relating to the disturbed and steady-state conditions respectively,

 nl, = nl,+Oxnls

 to a first approximation. If the velocity of the steady flow is to be described by reference to
 the moving reference frame, O'x'y'z' the description must be modified because it depends on
 27 Vol. 316. A
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 which state, S or S, is being considered. Thus to a first approximation the variation of WI\
 about WIg owing to a parasitic deflection u may be expressed as

 Wls = [1+(u-V)] Wl

 = [i + (u V)] {UV(W-x)} I = UV(O-x) Is

 Now the dry-structure modes ul, u2, ..., u6 defined in ?3.2 (d) correspond to the principal
 coordinates p (t), p2(t), ..., P6(t). Let

 = {P(t), p(t), p3(t)), = {p4 (t), p5(t), p6(t)},

 a=i+Qxr', r'= {x',y',z'}.

 With this notation, the deflection at x', y', z' is

 00

 u= a+ Pr(t) Ur,
 r=7

 the rotation is
 00

 = Q+ E Pr(t) Or,
 r=7

 the velocity is
 00

 Vs = Uz+ + E pr(t) Ur,
 r=7

 the unit normal is
 00oo

 n = n i+ x n+ E pr(t) Or x n ,
 r=7

 and the velocity of the steady flow is

 c00

 Wl, = [1 + (a V)] Wig+ E pr(t) (Ur V) WI-.
 r=7

 It is immediately clear that if the structure is rigid, so that there is no distortion possible and
 Pr(t) = 0 for r > 7, then the rigid-body theory of Newman (I977, 1978) results.

 Suppose that the structure is such that 'bending' and 'twisting' are identifiable effects and

 that Mr, Vr, Tr denote the characteristic functions of bending moment, shearing force and
 twisting moment associated with the dry-hull principal modes. If the structure is placed in fluid
 the equivalent responses are expressible as

 oo

 M(x, , z, t)= 5 pr(t) =Mr(x, y, z),
 r=7

 etc., because no contribution to these loadings arise from the body motions. That is

 M = 0? = =V ...=V T?T T
 M1 = 2 = =... 6 V= V2 =... 6 = T1 = T2 = ... =T6.

 4.2. Velocity potential

 The unsteady component of the velocity potential function q must include contributions from
 the distortions of the structure in the fluid as well as the incident and diffracted wave fields.

 That is, the total potential remains in the form

 0(xo, Yo, zo, t) U(fx, y, z) + (x, y, z, t),
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 with the unsteady component expressed as
 00

 d(x, y, z, t) = qo(X, y, z, t) + D(x, y, z, t) + E Or(X, y, z, t).
 r=l

 The quantities 0, OD), Or denote the incident wave potential, diffracted wave potential and
 radiation potential arising from the response of the flexible structure.
 Because the deflection of the structure may be expressed in the form of a series of distortions

 in the principal modes, a similar series expression will be adopted for the radiation potentials.
 That is to say we shall postulate the existence of a series of potentials ql, q2, ,2., q,007 ..., each
 corresponding to one of the principal modes of the dry structure and, hence, to one of the
 principal coordinates. Thus these radiation potentials may be written in the form

 Or(X, y, z, t) = Or(X, y, z) p(t)

 for r= 1, 2, ..., 6, 7,....
 The unsteady potential for a sinusoidal wave excitation with encounter frequency (e thus

 takes the oscillatory form

 0(x, y, z, t) = q(x, y, z) eioet
 0c

 = [0o(X, , Z) +OD(X) y, Z) + E PrOr(X, y, z)] et
 r=l

 The amplitude of the incident wave potential is

 =o = (iga/w) exp [kz-ik(x cos X-y sin X)],

 OD is the amplitude of the diffracted wave potential, Or is the amplitude of the radiation
 potential and the principal coordinates are assumed to be of the form

 Pr(t) =Preiwet

 in which the amplitudepr may be complex. In this notation the principal coordinatepl(t) relates
 to surge motion, 2 (t) to sway, p3 (t) to heave, p4 (t) to roll, p5 (t) to pitch, P6 (t) to yaw, and p7(t),
 p8(t), ..., to the distortion responses of the structure.

 4.3. Generalized Timman-Newman relations

 The boundary condition on the instantaneous wetted surface S of the flexible body is

 a0/an = V8 .n.

 On substituting for 0 and VS, it is found that

 0/en = V' n = (UVq +VO)' n = (Ui+ i) n

 or a0/an = (i- W) n

 on S. However, because quantities may be related to states S and S it follows, after neglecting
 second-order terms in q, u and 6 that the linearized boundary condition at the wetted surface
 reduces to

 aq/an = [i + x W- (u V) W] n
 27-2
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 on S and after further substitutions of these quantities in series forms it follows that

 00

 E [a,r/an- iwur n-Or x Wn + (ur V) W n]p,r eiwet = 0
 r=l

 on S. This boundary condition must be satisfied for any arbitrary combination of the quantities
 Pr. This is always true if the condition is satisfied for each Pr separately, and so

 a8r/an = [iwe Ur + Or X W-(ur V) W] n,

 on S for all r = 1,2, ....

 This result is a generalization of the Timman-Newman (Timman & Newman 1962) relation
 derived previously for the rigid-body modes. This may be verified by discarding all contributions
 from modes r = 7, 8, .... This shows that

 aVr/an = i0o, nr + Umr
 on S for r = 1,2, ..., 6, while

 n = {nl, n2, n3, r x n = {n4, n5, n6}, r' = {X, y, z'}

 (n V) W = -U(m, m2, m3), (n V) (r' x W) = -U(m4, m, m6).

 Unfortunately, regardless of whether the structure is treated as rigid or flexible, the steady
 motion problem in calm water (involving ., W, etc.,) must be solved before the boundary
 conditions for the perturbed motion can be defined. It has been shown by Inglis & Price (1980)
 that this complication greatly increases the difficulty of deriving the linear velocity potentials
 for a rigid body, If, by way of simplification, it is assumed that the perturbation of the steady
 flow by the body is negligible, then

 W=-(U, 0,0) =-U =--U.

 This approximation allows the unsteady motion problem to be solved without prior description
 of the steady motion in calm water.

 4.4. Summary of linearized boundary conditions

 The linear velocity potentials associated with the flow around the moving flexible body satisfy
 the following boundary conditions.

 (i) On the free surface, the incident, diffracted and radiation potentials 00, SD and qf
 (r = 1, 2, ...) respectively satisfy the linearized boundary condition

 U2oxx - 2iWe UOx -- w 0 +g0Z = 0

 on z = 0, where 0 represents either 00, OD or Or.

 (ii) Suitable bottom and radiation conditions at infinite distance from the oscillating,
 translating structure.

 (iii) The incident and diffracted potentials associated with the incoming and outgoing
 sinusoidal waves satisfy the relation

 acl/an = - OD/an

 on S.
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 (iv) The radiation potentials are governed by the body boundary condition

 a6r/an = [i(e ur + Or x W- (u, V) W] n

 on S. For the approximation W = - La this generalized Timman-Newman relation reduces to

 60r/8n = i(oe (Ur nl + r n2 + Wr n3)

 + U[n3 (8ur/' - r/X) - n (8vr/ax - aur/6y')]

 on S for each r = 1, 2, ..., 6, 7, .... Further, if only rigid-body modes (r = 1, 2, ..., 6) are
 considered, then

 Qyr/Qn = i(e nr + Umr,

 with m = 0 = m2 = m = m4, m5 = n3, m6 =-n2.

 4.5. Pressure distribution

 The fluid pressure acting on the instantaneous wetted surface S during oscillatory motion
 of the flexible structure may be found from the Bernoulli equation. It is given by

 p= -p[ao/at+ WVO+l(W2- U2) +VO VO +gz].

 Unfortunately a knowledge of the position of S is necessary if this expression is to be used.
 Newman (1978) shows that this difficulty may be overcome by relating the pressure on the
 surface S, i.e. p I, to the pressure on the surface S, i.e. p Is, by a Taylor series expansion. Thus,
 for the flexible structure, it follows that

 P1s = [1+(U.V) +(u'V)2+...]pIg.

 If it is also assumed that the oscillatory motion of the structure and parasitic flow are small,
 so that the second-order terms of the unsteady component may be neglected, then the linearized
 form of the pressure on the wetted surface S becomes

 PIs = -p{f4/at+ W. Vq + [I2(W2- U2) +gz'] + [gw+(u' V) W2]}g.
 This approximation implies that the oscillatory flow and the motion of the structure are

 linearized but the steady flow due to the steady forward motion remains nonlinear. However,
 if W =- Ui, then the pressure expression reduces to

 P Is = -p(0/lat- uaS/ax)s-g(z' + w) Is.

 The orders of magnitude of the terms in this expression for the pressure have been discussed

 by Price & Wu (i 984) for structures with various geometries; those considered are a thin body,
 a flat body, a general three-dimensional body and a slender body.

 4.6. Generalizedfluid forces

 The rth component of the generalized external force Z acting on the flexible structure which
 arises from the fluid only may be expressed in the form

 Zr(t) =-ff nT* Ur dS,
 $
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 where nT denotes the transpose of the matrix representing the unit normal vector pointing out
 of the structure's surface into the fluid. The integration extends over the instantaneous wetted
 surface S. This last equation may be shown to be equivalent to the rth generalized fluid force
 defined in ?3.2 (c). That is,

 Zr DT P = dr Pe.
 e

 The results

 Pe = LPe, n = ln, Pe =-PN T n dS

 or Pe,=LTP, =-LT FpNT.n dS
 Se

 are found in ?? 3.1 (b), 3.2 (c) and, from them, it follows that the rth generalized fluid force may
 be written as

 Zr = -E dT LT N NTlnp dS.
 e Se

 If, now, this expression is transposed and rearranged it is found that

 Zr E f nT (ITNLdr) p dS,
 e Se

 -= ffnT.urP dS,

 as the results in ? 3.2 show. The summation of the surface integral over the wetted surface of
 each element is the instantaneous wetted surface area S.

 When the steady and the unsteady potential components in the pressure equation are
 substituted, the contribution from the generalized gravitational force is included, the rth
 generalized external force may be found in the component form

 Zr(t) = r(t) + Hr(t) + Rr(t) + Rr

 for r = 1, 2, ..., m. In this expression, ,r) Hr, Rr, Rr, denote the rth generalized wave exciting
 force, radiation force, restoring force, and hydrostatic force respectively.

 (a) Generalized wave forces

 The rth generalized wave exciting force is found, after some algebraic manipulation, to be

 "r(t) = =re = (or?+ -Dr) eiwet,

 = npfJ T Ur(/1t+ W V) (0 + OD) eiOet dS.

 In this expression, the amplitude

 -oPr = pf nT U(ie+ WV) VO dS

 denotes the rth generalized Froude-Krylov contribution, while the amplitude of the rth
 generalized diffraction force accounting for the scattering of the incident wave owing to the
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 presence of the flexible structure is

 'Dr p fj nT u(i,e + W V) DdS.

 When W = - U, the rth generalized Froude-Krylov contribution reduces to

 "or = P nT Ur wq? dS

 and is independent of forward speed for all r = 1, 2, ..., m. This contribution reflects the fact
 that the presence of the structure does not influence the pressure distribution in the incident
 wave.

 (b) Generalized radiation force

 The rth generalized radiation force

 m

 Hr(t) = p nT ur [a/at+ W' V] E pk(t) qk dS,
 S k=1

 where m denotes the number of principal coordinates admitted in the analysis. If the rth
 principal coordinate varies sinusoidally so that

 Pr(t) = Pr eiet,

 the rth generalized radiation force becomes

 m

 Hr(t) = pk Trk ei?et =- pi (O Ark iWeBrk) eiet
 k=l k=l

 for r = 1, 2, ..., m. The coefficients

 Ark = (p/w) Re [ff nUr(iWe+ W V) q dS]

 represent variations that are in phase with the acceleration, while the

 Brk = (-P/e) Im[f nfT Ur(iwOe+ W'V)qk dS]

 terms are in phase with the velocity.
 The terms containing the Ark represent the effects of 'added mass' or 'added inertia'. The
 terms containing the Brk, on the other hand, represent fluid damping. Both of these terms are
 associated with the rth mode and represent coupled effects owing to oscillatory distortion of
 unit amplitude in the kth mode. The theory suggests that these coefficients might be determined

 experimentally by forced oscillation of the flexible structure in a prescribed principal mode of
 the dry hull, at the arbitrary frequency (e as the structure travels with constant speed in calm
 water. That is, the contemporary experimental techniques of oscillatory testing with a planar
 motion mechanism (which are used to determine the frequency-dependent hydrodynamic
 coefficients of a rigid-hull model) might be extended to oscillatory testing of a flexible hull.
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 (c) Generalized restoring force

 In the present mathematical model, the rth generalized restoring force is of the form

 Rr(t) = pJ nT Ur [gw + I(u V) W2] dS.

 Because the displacement at any chosen point in the structure is given by

 m m

 U = {u, v w} = UkPk eie = {Uk) Vk, Wk}Pk eiet,
 k=l k=1

 it follows that the rth generalized restoring force may be written as

 m

 Rr(t) = -E Pk Crk eilet,
 kc= 1

 where the coefficient

 Crk = -P nT Ur [gWk + (Uk V) W2] dS

 for r = 1, 2, ..., m and k = 1, 2, ..., m.
 When W=- Ui this coefficient reduces to

 Crk = -Pg nT 'Ur WkdS,

 and it can be shown easily that this expression includes a description of the restoring coefficients
 usually associated with a seakeeping analysis of a slender ship-like structure (i.e. when r < 6,
 k < 6). The coupling terms between the body and distortion modes are

 Crk = -pg nrwk dS (r = 1, 2, 3; k = 7, 8,..., m),

 C4k = PgS _lJ- 3(/Y-YG)-^n2(Z-ZG)] WkdS (k = 7, 8, ...,m),

 C5k = JJ -[n (z-ZG-3 (XIn -Xz)] Wkn dS (k= 7,8,...,m),

 C6k = -P f[n2s(x'- X)-nl, (y' -YG)] wkdS (k = 7, 8,, m),

 Crk= O (k = 1, 2, 6, r= 7, 8,..., m),

 Cr3=- p f nT'Ur dS (r= 7, 8,...,m),

 Cr =-pgSjnT'ur(y'-yG) dS (r= 7, 8, ..., m),

 Cr5 =--pgffnT.Ur(X'--X) dS (r = 7, 8, ..., m).

 The distortion of the body then provides additional restoring forces to the rigid-body motions
 and vice versa. It is interesting to note that C is not necessarily a symmetric matrix.
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 (d) Generalized hydrostatic and gravitational forces

 The contributions to the generalized forces of hydrostatic and gravitation effects are
 independent of all unsteady motions. The rth generalized hydrostatic force takes the form

 Rr = P nT ur[gz' + ( -U2)] dS.

 This expression contains components arising from the hydrostatic fluid action (gz') and from
 forces arising from the structure travelling with constant forward speed in calm water (W2 U2).
 The rth gravitational force is

 Gr =-Pf Pb gwr dV,

 where V denotes the total volume of material, whose density is Pb, and r = 1, 2, ..., m.

 4.7. The generalized equation of motion

 The matrix equation of motion derived in ?3.2 (c) is

 ap(t) + bp(t) + cp(t) = Z(t) + G + A(t)

 or, in general,
 m

 rarrpr(t) + [ark k (t) + brkPk(t) ]
 k=1

 = Zr(t) + Gr + Ar(t)

 - ,r(t) +Hr(t) +Rr(t) +Rr+Gr+Ar(t)
 m

 =r e e- E [Arkk (t) +BrkPk (t)]
 k:--1 k=1

 m

 - E CrkPk(t)+Rr+Gr+Ar(t)

 for r = 1, 2, ..., m. For a freely floating structure with no concentrated external forces, A r(t) = 0.

 (a) Equations of steady motion

 For the flexible structure in calm water, there exists a steady-state solution (i.e. we = 0),

 Pr(t) =Pr,
 satisfying the equation

 m
 arr OrPr = - CrkPk Rr+Gr

 k=l

 for r = 1, 2, ..., m. As shown previously by Bishop & Price (I 979) this formulation gives a modal
 description of structural distortion in still water, trim, sinkage, etc.

 (b) General equations of motion of a floating structure

 The generalized linear equations of motion for a freely floating structure moving or
 stationary in waves, after extraction of the portion accounting for steady-state conditions, may
 28 Vol. 316. A
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 be written in the form

 m

 2 eioe t
 wrarrPr(t)+ ? [(ark + Ark) k(t) + (brk+ Brk)Pk(t) +CrkPk(t)] = _reie k=l

 where r = 1, 2, ..., m. This may be written in the matrix form

 (a+A) p(t) + (b+B)(t) + (c+C)p(t) = - e'et,

 which agrees with that found previously by Bishop & Price (I979).
 Thus, for a solution

 p(t) =p eiwet,
 it follows that

 Ip = [adj D/detD] D

 where I is the unit matrix,

 D = -2 (a+ A) + ioe(b+B) + (c+ C)

 and the matrices A, B and D are dependent on the frequency of encounter we.
 Knowing the principal mode shapes of the dry structure and having determined principal

 coordinates, one may find the displacement at any position in the structure. It is given by
 m

 U(x, y, z, t) = Ur(X, y, z)preiet.
 r=l

 The bending moments, shearing forces, twisting moments (if such are identified), and any other

 relevant response may be determined in a similar manner using the appropriate characteristic
 function of the dry structure.

 It is interesting to note that, having no rigid-body modes (r = 1, 2, ..., 6), a fixed flexible
 structure produces responses in its distortion modes only. Thus the linear equation of motion
 remains valid, but only contributions arising from modes r = 7, 8, ..., m of the dry structure
 need be considered.

 5. COMPUTATIONS

 Singularity distribution methods have provided a successful method of predicting the
 loadings applied to, and motions of, a rigid ship or offshore structure in waves. In this section,
 a composite singularity distribution (c.s.d.) method is discussed which allows the unknown
 singularity (i.e. source) strengths to be determined for a flexible structure having port and
 starboard symmetry travelling in waves. By using the symmetry of the structure, the diffraction

 and radiation problems may be solved for sinusoidal waves approaching from any angle.
 Brard (1972) has shown that, when a singularity distribution method is used for a

 surface-piercing structure with forward speed, a line-integral contribution must be included
 in the expression for the velocity potential at any point r = (x, y, z) in the fluid. That is

 q(x , z) = I- Q(xl, y, l) G(x, y, z; xl, yl,' z1) dS
 4f+ 2 ir

 + - J Q(xl, Y1, 0) G(x, y, z; xl, yl, 0) n2(x , ) dC,
 firg
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 where (x,, yl, zl) denotes a point on the wetted surface of the structure, the contour C is the
 intersection of the structure's outer surface and the mean calm water surface, Q, is the source

 density on the surface of this structure; G is the appropriate Green function.

 5.1. Composite functions

 If the plane of symmetry of the structure is Oxz, the direction cosines of the normal vectors
 pointing out of the body surface satisfy the relations

 nj(x, y, z) = nj(x, -y, z), (j = 1, 3)

 n2(x, y, z) = -n2(x, -y, z).

 Similarly, the direction cosines for small body rotations are such that

 nj(x, y, z) = -nj(x, -y, z), (j = 4, 6)

 n5(x, y, z) = n5(x, -y, z).

 Composite potential functions may be defined to satisfy the relations

 q0 = o(x, y, z) +? (X, -y, z),

 f = D(X. y, z) + D(X, -y, z),

 r = r,(x. y, z)+ ?,r(X, -y, z).

 for the incident wave, diffracted wave and radiation potentials (r = 1, 2, ..., m) respectively.
 If the definition of the velocity potential derived by Brard (1972) is adopted, the composite

 velocity potential,, , for example, may be expressed as

 ( ) Q? G dS+4g Q+ G+n2 dC,

 with a derivative

 aqS+ (x, y, z) 4= 1_ Cf ?G S U2 aG? n (X, 2Y,) Q+ dSQ+? Q+ n n2dC.
 an 4t JJ r an 4tgJ4 P an

 In these integrals, Sp denotes the mean wetted surface area of the port structure, Cp the line
 contour along the port structure and the point (x, y, z) lies within the volume of fluid
 surrounding the port structure or lies on the wetted surface area of the port structure. Similar
 formulations are valid for q?+ and ?D.

 In these expressions the composite Green function is defined as

 G+ = G(x, y, z; xl, yl, zl) ? G(x, y, z; xl, -Yl z1),

 with the properties

 (a/an) G(x, y, z; x1, Y, zl) = (8/an) G(x, -y, z; x1, -y, z1),

 (a/an) G(x, -y, z; xl, y1, zl) = (a/an) G(x, y, z; xl, -Yi, z1).

 The composite source strength is

 Q+ = Q(x, y, z)+ Q(x, -y, z),
 28-2
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 402 R. E. D. BISHOP, W. G. PRICE AND Y. WU

 and a composite boundary condition

 P+ = P(x, y, z) ?P(x, -y, z)
 is to be defined later.

 5.2. Application of the composite source distribution (c.s.d.) method

 The boundary conditions at the body surface, discussed in ?4.4, require that the composite
 diffraction, incident and radiation potentials satisfy the following relation on the port side (say)

 of the structure Sp:

 aO?/Ian = - -aO-/ n =- [(alan) 00 (x, y, z)+(alan) 00 (x, -y, z)] = P

 while the generalized Timman-Newman relation may be cast in the form

 aq?+/an = P on sp
 for r = 1, 2, ..., m.

 Now the modal shapes of a dry structure with port-starboard symmetry may be separated
 into two groups. The symmetric modes are such that

 (Ur, Vr, Wr)st = (Ur, -Vr, Wr)p,

 (0xr, Oyr' Owr)st = (-Oxr' Oyr -Ozr)p;

 and the antisymmetric modes are such that

 (Ur, V, Wr)st = (-Ur, Vr, -Wr)p,

 (0xr, Oyr, Ozr)st = (Oxr -0yr, Ozr)p,

 where the subscripts st and p relate to the starboard and port sides respectively. In addition,
 the steady flow W around this symmetric body will also exhibit symmetry such that

 (Wx, WY, Wz)st = (Wx, - WY, WZ)P.

 From these symmetry properties, the right-hand side of the generalized Timman-Newman
 relation may be written as

 Pr = 2[ie, Ur+ Or x W-(ur V) W] n;

 P,-=O Pr -

 for symmetric modes, and
 P+ =0;

 Pr = 2[ie ur + Or x W- (ur V) W] ' n

 for antisymmetric modes. When the simplification W = - Ui is made, these reduce to

 Pr+ = 2ie(urnl+vrn2+wrn3) + 2U(yrn3 - zr n2);

 P,-=O

 for symmetric modes and

 P+ = 0;

 Pr- = 2i()e(ur n + vr n2 + Wr n3) + 2U(Oyr n3m- Ozr n2)

 for antisymmetric modes.
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 If body motions only are considered, then

 f2ie nr (r = 1,3)
 Pr+ , _ (r = 2, 4,6)

 2iWe(znl--xn3) +2Un3, (r = 5);

 and

 0, (r= , 3, 5)

 p 2iWe n, (r 2)
 r 2ie, (yn3- zn2) (r = 4)

 2iWe (xn2--ynl) - 2Un2 (r= 6).

 5.3. Discretization in the c.s.d. method

 Because the Green function formulation for the appropriate type of singularity source (i.e.
 pulsating, translating, or pulsating and translating) and the sinusoidal incident wave velocity
 potential are known, the only unknowns occurring in the set of equations discussed in the
 previous section are the source strengths QD and Q+. These functions can only be found by
 numerical means and, to this end, the equations must be 'discretized' in some way.

 Several possible procedures are available, and one of the first practical approaches is that
 of Hess & Smith (1962), in which the wetted surface of the structure is represented by a large
 number of quadrilateral elements, N. The source strength over each of the elements is assumed

 to be constant and so an integral equation is replaced by a set of linear algebraic equations,
 to solve for the values of the source strength on the elements. For example, the body boundary
 condition given by the generalized Timman-Newman relation may be discretized to form the
 set of algebraic equations

 NG+ [ GG(k, )dS - 2rQ+ (Ai) + E Q? (Ai) )[JJ ')dS r k) r i[ an(Ak) i==1 A Si

 + U2 J aG, (aGk( A) n2(A) dC] = 4rP (Ak)

 for r = 1, 2, ..., m and k = 1, 2, ..., N where 4k(= Xk, Yk, Zk) denotes the position of the field
 point which is now on the wetted surface, and Ai(= x, y, zi) denotes a source point which
 is also on the wetted surface. In this expression, Ndenotes the number of elements on the port
 side of the structure and ASi is the area of the ith element. The quantity AC1 is the length of
 the edge of the ith element piercing the water surface, which is zero if there is no such piercing.
 This set of algebraic equations may be written in the matrix form

 aQ+ = P? clumaro r

 for r = 1, 2, ..., m, where a is the matrix of influence coefficients of order N x N and Qrt is a
 column matrix of order N for the composite radiation source strengths.

 A solution for Q+ may be found for any distortion mode provided that the modal shapes
 Ur and fr in Pr are known at the centre of each surface panel used to define the wetted surface

 area of the port section of the structure. Because of the way the solution of the general problem
 has been posed, the discretization of the dry structure for the finite-element calculation is
 completely independent of the discretization adopted to discuss the fluid actions. When the
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 finite-element method is used to obtain the principal modes, however, there is the additional
 requirement to calculate the modal displacement u, and the modal rotation 0r at each panel of

 the wetted surface Sp, by using the data on the modal shapes at the nodes.
 In a similar manner, the unknown diffraction source strengths QD may be determined from

 the set of algebraic equations
 aQD = PD

 where Q? is a column matrix of order N.

 In general, the composite Green's function may be expressed as

 G? (xk, Yk, Zk; X, y, Z) + ? +f(xk, Yk, Zk; X, y, Z) +f(Xk, Yk, Zk; X, Y, Z), R RI

 where R= [(x-xk) + (y-yk)2 + (z-zk)2]2,

 R1 -- [(X--Xk)2 + (y +yk)2+ (Z --zk)2]1

 and the functionf ( ) depends on the type of source distribution considered (see, for example,
 Wehausen & Laitone (I960)). It will be seen that the term 1/R is singular when rk coincides
 with r but, as proved by Hess & Smith (1967), in the limit as rk approaches the element AS.

 san R

 and this accounts for the existence of the first term in the set of algebraic equationsjust discussed.

 It is interesting to note that the value of this limit is independent of the shape of the panel
 element.

 In the calculations the centroid of each panel element rk is used as the point at which the
 normal velocity and derivative of the Green function are evaluated and the composite source
 strength determined. Because rk will never be in the water line, the line integral over ACk is
 not singular and so the coefficient -2x arising from the singular nature of 1/R remains
 unchanged.

 The numerical approach adopted to obtain solutions for the velocity potentials is a
 generalization of the methods used in previous investigations by Inglis & Price (1980, 1981,
 1982 a, b) and by Inglis ( 1980). While refinements and modifications from other investigations -
 for example, those of Hogben & Standing (1974), Faltinsen (1976) and Hess & Smith
 (1962) - are included in the numerical procedures, in all these studies the body is assumed to
 be rigid. Price & Wu (1982, 1983) have developed the c.s.d. method to evaluate the unknown
 velocity potentials associated with rigid-body motions of a mono-hull or multi-hull vessel, but

 their procedures have been extensively extended to permit the velocity potentials OD, er
 (r = 1, 2, ..., 6, 7, ..., m) to be determined for a flexible structure moving in waves.

 5.4. Generalized fluid forces

 The symmetry properties of the structure allow the expressions for the generalized fluid forces

 derived in ?4.6 to be cast into more appropriate forms for numerical evaluation. For example,
 the added-mass and damping coefficients in ?4.6 (b) may be expressed as

 Ar (p/1) Re (Trk) rk = e "

 Brk = -(p/tOe) Im ( Trk)

 404
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 respectively for r = 1, 2, ..., m and k = 1, 2, ..., m, the function Tr being

 Tr kP n=T'Ur(iWe+ WV) 0? dS,

 where q+ is taken for symmetric modal shapes and S- taken for antisymmetric modal shapes.
 But the results of ??3.2, 4.6 show that this integral may be further modified to

 Tr P E ff (nTIT NLd,) (iwe+ WV) ) dS e c: Sp Jse

 for r = 1, 2, ..., m, the integration being performed over the wetted surface Se of a structural
 element and the summation performed over all the elements adjacent to the water within the
 port section of the structure. This formulation implies that Ark = 0 = Brk if one of the rth and
 kth modal shapes is symmetric while the other is antisymmetric, or vice versa.

 If a similar procedure is followed, the Froude-Krylov and diffraction forces of ?4.6 (a) may
 be expressed for r = 1, 2, ..., m, as

 ror = P , nT' (it)e + W V) + dS

 and

 'Dr = Pff nT Ur(iWe+ W V) 0S dS

 =p (TNLdffr) (ielN +( W V) dS
 e c Sp Se

 respectively. Here the positive superscript is used when the rth modal shape is symmetric, and
 the negative superscript is used when the rth modal shape is antisymmetric.

 Finally, when W =- Ui the restoring coefficient ?4.6 (c) reduces to the form

 Crk - 2pg nT'urWkdS

 =-2pg E f F(nTlTNLdr) (TNLdk) dS,
 ecSp J S

 when both the rth and kth modal shapes are symmetric or antisymmetric, and Crk = 0 when
 one of the rth and kth modal shapes is symmetric while the other is antisymmetric and vice
 versa. The matrix 1T denotes the third row of the transposed matrix 1, defined in ?3.1 (c).

 Thus a method has been proposed and developed by which the responses of a flexible
 structure travelling in waves may be found.

 6. NUMERICAL EXAMPLES

 While no general analytical criteria were established to confirm the convergence of results,
 the convergence was checked by considering the influence of discretization, mesh size, etc. In
 all cases, it was found that results were satisfactorily convergent. A selection of results will be
 presented which relate to an idealized uniform mono-hull structure of ship-like proportions and
 a multi-hull structure (i.e. a semi-submersible or small water-plane area twin hull s.w.a.t.h.).

 405
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 6.1. The Green function

 To demonstrate the numerical procedures adopted, figure 2 shows the components of the
 composite Green function at a field point (x, y, z) arising from a source located at (x1, Yl, z1)
 and travelling with forward speed U = 7 m s-1. It is seen that this result is well behaved over
 the entire frequency range. T'he calculation confirms theoretical predictions in the sense that
 as the frequency of encounter increases the real part of the Green function tends to a constant
 value while the imaginary part tends to zero.

 6.2. Uniform mono-hull

 Figure 3 shows the form of the tubular ship-like hull structure considered. The wetted surface

 area is described by 208 panel elements and the ship travels with a forward speed of U = 7 m s-~

 (Froude number Fn = 0.203), in sinusoidal head waves of unit amplitude.

 0.4 -

 0.3 -

 0.2 __\,

 0.1 -
 0 0 n otEEJO Qf iit5EiI1iiiiU.R II tI<iiB5IIIIIII-ii 0 00 D

 0 -ele- -- [ ] .E'Fl{ ?itt! AIiUA11 eI -eE]"
 0II~ '"' ' '~,"'^ ' ' ''''...~ '' .... .'.

 -0.1

 w(e(L/g)I

 -0.1

 -0.3

 --0.4 - (b) V

 FIGURE 2. The calculated forms of the Green function for values x- x = 5.0 m, y = 7.0 m, Yl = 1.75 m, z = -4.18 m,
 1 = -5.57 m, U = 7 m s-. (a) o, ReG+; o, ReG(x, y, z; xl, yl, z1); and A, ReG(x, y, z; x1, -yl, z). (b) Full
 line, Im G+; broken line Im G(x, y, z; xl, Yi, zi); and chained line, Im G(x, y, z; x,, -y,, z1).
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 FIGURE 3. The mean wetted surface of the uniform tubular ship represented by 208 panel elements. The ship
 travels with a Froude number Fn = 0.203 (U = 7 m s-l).

 Figure 4 shows a selection of the principal modes that were used to define PD, P+ in
 calculations of the composite source strengths for each mode r = (1, 2, ..., 6, 7, ...). Generalized
 hydrodynamic coefficients, generalized wave-exciting forces, principal coordinates and responses
 (i.e. of deflections, bending moments, and shearing forces) were obtained over a wide range
 of frequencies. A typical selection of results are given in figure 5.
 Whenever possible, these results were compared with results obtained from the program

 UCLMARS developed by Bishop et al. (1977) for the two-dimensional hydroelastic problem. In
 this earlier approach, the strip theory developed by Gerritsma & Beukelman (1964) was used
 in conjunction with a simple Euler beam representation of the structure. A comparison of the
 findings obtained from these two totally different methods reveals an impressive degree of
 agreement.

 6.3. Multi-hull

 We consider next a multi-hull structure travelling with forward speed U= 6 m s-
 (F, = 0.223) in regular sinusoidal waves. The form of this vessel is illustrated in figure 6 and
 it raises many interesting problems of both a structural and hydrodynamic nature. Thus the
 structure may be likened to a tuning fork, with some properties quite unlike those of a
 conventional ship, and a number of unusual hydrodynamic interactions are brought to light.
 (In this latter connection, it is worth noting that a slight modification of the theory permits
 hydrodynamic interactions between passing ships of the same or differing sizes to be studied.
 And if one hull is made infinitely long and deep it is possible to investigate hydrodynamic
 interactions between a ship and a bank or dock. While these problems, and others, lie outside
 the scope of this paper, they are amenable to solution by slight alterations of the theory
 proposed.)

 Figure 7 shows a selection of dry hull principal modes associated with the flexible multi-hull.
 Modes up to and including r = 16 were calculated, though it is impractical to record all details
 of these modes in this paper so only a limited selection is given.

 407
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 FIGURE 4. Dry modal characteristics of the uniform ship for (a) symmetric modes of vertical deflection wr(m), modal
 bending moment Myr(Nm), modal shearing force Vzr(N) and (b) horizontal deflection vr(m), modal horizontal
 bending moment Mzr(Nm) and modal torsional rotation 6xr.
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 FIGURE 5. Selection of typical data for the uniform ship. (a) Non-dimensional generalized added-mass coefficient
 Arr = Arr/pV and damping coefficient Brr = Brr/[pV(g/L)] for the symmetric modes r = 3, 5, 7, 9 (o, present
 three-dimensional theory; , strip-beam theory). (b) Arr and Brr for the antisymmetric modes r = 2, 4, 6, 8, 10.
 (c) Amplitudes of the non-dimensional generalized wave-exciting force Fr/apgV for modes r = 3, 5, 7, 9, 12 when
 the uniform ship travels with Froude number 0.203 in sinusoidal head waves of unit amplitude ( , present
 three-dimensional theory; ---, two-dimensional strip-beam theory). (d) The variations in the amplitudes of
 the principal coordinates p,r (r = 3, 5, 7, 9) for the uniform ship proceeding at Fn = 0.203 in head waves ( ,
 present three-dimensional theory; ---, two-dimensional strip-beam theory). (e) The amplitudes of vertical
 deflection I w(x, t) 1, bending moment I M(x, t) I and shearing force I V(x, t) I distributed along the length of the
 uniform ship travelling at F, = 0.203 in head waves, calculated for three values of the frequency of encounter
 We (- , W e = 0.804 rad s-1; ---, We = 4.14 rad s-1; -- , w = 11.39 rad s-l).
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 FIGURE 6. (a) The geometric form of the multi-hull s.w.a.t.h. (i.e. small water-plane area twin hull) model and (b)
 the mesh used to describe the wetted area of the s.w.a.t.h. model as viewed at different angles. A total of 432
 panels were distributed over the hulls.
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 FIGURE 7 (a-c). For description see page 419.
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 FIGURE 7. (a) Finite-element idealization of the dry s.w.a.t.h. model structure; (b) r = 7, antisymmetric mode shape,
 (07 = 9.52 rad s-'; (c) r = 8, symmetric mode shape, os = 9.67 rad s-l; (d) r = 9, symmetric mode shape,
 09 = 12.28 rad s-; (e) r = 10, antisymmetric mode shape, wo = 16.72 rad s-; (f) the dry modal bending
 moments and shearing forces associated with the symmetric modes acting along the shear centre line of the
 port hull of the s.w.a.t.h. model; (g) the dry modal bending moment and shearing force associated with the
 antisymmetric modes acting along the shear centre line of the port hull of the s.w.a.t.h. model; (h) the dry
 modal torsional moments acting at the cross section of the port hull of the s.w.a.t.h. model; (i) the variation
 in the amplitudes (O'max)n and directions %V/ of the maximum modal stresses acting on the outer surface of
 the port strut along the fount with the main dry hull (see also figure 8 e,f).

 Generalized hydrodynamic coefficients, wave forces, responses, etc., were determined, and
 some of these are shown in figure 8. In general, the generalized hydrodynamic coefficients Ark,

 Brk display complicated variations, with distinct peaks or jumps in the frequency range
 1.5 < oe(L/g)l < 10.0. In a detailed analysis for this frequency range, it was observed that
 considerable fluid-structure interaction arises between the two pontoons. For example, when
 e, (L/g)' l= 4.7, the added-mass coefficients for the symmetric modes change rapidly from a local

 maximum value to a local minimum (or negative) value, while the corresponding damping
 coefficients attain peak values. At this frequency

 Ae/Bi = 1.01,

 where Ae = 2ng/W2 and Bi( = 0.28L) is the distance between the two struts at the waterline.
 Moreover a wave pattern is generated between the two hulls with a maximum wave height
 at the centre line and a wavelength conforming with the above conditions.

 At the dimensionless encounter frequency o,(L/g)i = 3.3, the added-mass and damping
 coefficients associated with antisymmetric modes show similar proportions, but now

 Ae/Bi = 2.05.

 This frequency relates to an antisymmetric wave pattern having a maximum elevation at one
 pontoon and a minimum elevation at the other, with a zero crossing in the vicinity of the centre
 line.

 Similar variations to these are apparent in all the hydrodynamic coefficients at particular
 values of encounter frequencies. A possible reason for this is to be found in a localized wave
 pattern that is carried along between the two hulls, perhaps akin to a standing wave pattern.
 Although such a localized wave pattern can be numerically generated between the two hulls
 and may be given a physical identity, there is always the possibility that because of the

 419
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 FIGURE 8 (a). For description see page 424.
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 FIGURE 8. Selection of typical data for the s.w.a.t.h. model. (a) Non-dimensional generalized added-mass coefficient
 Arr = Arr/PV and damping coefficients Brr = Brr/[pV(g/L)] for the rigid-body modes r = 2, 3, 4, 5. (b) Arr
 and B'rr for the distortion modes r = 7 (antisymmetric), r = 8, r = 9 (both symmetric), r = 15 (antisymmetric).
 (c) Amplitudes of the non-dimensional generalized wave-exciting force Fr/apgV for modes r = 3, 5, 8, 9, when
 the s.w.a.t.h. travels with Froude number Fn = 0.223 in sinusoidal head waves of unit amplitude. (d) The
 variations in the amplitudes of the principal coordinates P8 1 and Ip9 I for the s.w.a.t.h. proceeding at Fn = 0.223
 in head waves. The resonance frequencies being (we)8 = 5.06 rad s-1 and (oe)0 = 6.72 rad s-1. (e) Variations
 of the maximum stress (m.ax) and direction /r with frequency and position on the outer surface of the port
 strut along the four with the main hull (Fn = 0.223, head waves). (f) Variations of the maximum stress (O!max)
 and direction v with frequency and position on the inner surface of the port strut along the join with the main
 hull (Fn = 0.223, head waves).
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 numerical procedures adopted the variations in the results may be caused by the occurrence
 of so-called 'irregular frequencies' in the calculation (see, for example, John (1949, I950)).
 That is, the irregular frequencies and standing-wave frequency occur at nearly coincident
 values.

 7. CONCLUSIONS

 Based on the techniques of structural dynamics and hydrodynamics, a general three-
 dimensional linear hydroelasticity theory has been developed. It has been used to investigate
 the behaviour of a flexible mono-hull and a flexible multi-hull floating structure travelling in
 waves.

 No distinction need be made between body motion and distortions for the purposes of
 calculation, because the theory allows all deflections to be placed on the same footing in the
 linear structural theory. Although the assumption of linearity has also been made in the
 hydrodynamic analysis this restriction may be lifted and a nonlinear hydrodynamic theory used
 if desired. The effect of using a nonlinear theory will, of course, introduce greater difficulty
 in calculating the variations of the principal coordinates of the dry structures.

 The theory has already been used with other types of structures (for example, a jack-up rig
 in transit, partly and fully immersed vibrating plates, etc.), in which fluid--structure interaction
 is important. In addition, the theory can be modified easily to apply to fixed structures in which
 body motions do not occur, so that only the distortion modes (r = 7, 8, ...) are relevant.

 The theory and the numerical techniques need not necessarily be restricted to the solution
 of marine problems. With slight modification they may be adapted to other engineering fields
 in which there is a fluid-structure interaction (for example, in the determination of stresses in
 flexible arteries owing to blood flow).
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