
A GENERAL METHOD FOR MULTI-AGENT REINFORCEMENT
LEARNING IN UNRESTRICTED ENVIRONMENTS

Jfirgen Schmidhuber
IDSIA, Corso Elvezia 36, CH-6900 Lugano

juergen~idsia.ch
http://www.idsia.ch/-juergen

Abstract

Previous approaches to multi-agent reinforcement
learning are either very limited or heuristic by na-
ture. The main reason is: each agent’s environment
continually changes because the other agents keep
changing. Traditional reinforcement learning algo-
rithms cannot properly deal with this. This paper,
however, introduces a novel, general, sound method
for multiple, reinforcement learning agents living a
single life with limited computational resources in
an unrestricted environment. The method properly
takes into account that whatever some agent learns at
some point may affect learning conditions for other
agents or for itself at any later point. It is based
on an efficient, stack-based backtracking procedure
called "environment-independent reinforcement accel-
eration" (EIRA), which is guaranteed to make each
agents learning history a history of performance im-
provements (long term reinforcement accelerations).
The principles have been implemented in an illustra-
tive multi-agent system, where each agent is in fact
just a connection in a fully recurrent reinforcement
learning neural net.

BASIC IDEAS

I will first focus on a single agent. In the next section
we will see that the generalization to the multi-agent
case is straightforward.

Single agent scenario. Consider a single learning
agent executing a lifelong action sequence in an un-
known environment. The environment is unrestricted
-- in what follows, it won’t even be necessary to in-
troduce a formal model of the environment. Different
agent actions may require different amounts of exe-
cution time (like in scenarios studied in (Russell and
Wefald, 1991; Boddy and Dean, 1994)). Occasionally
the environment provides real-valued "reinforcement".
The sum of all reinforcements obtained between "agent
birth" (at time 0) and time t > 0 is denoted by R(t).
Throughout its lifetime, the agent’s goal is to maxi-
mize R(T), the cumulative reinforcement at (initially

unknown) "death" T. There is only one life. Time
flows in one direction (no resets to zero).

Policy. The agent’s current policy is embodied by
modifiable parameters of an arbitrary algorithm map-
ping environmental inputs and internal states to out-
put actions and new internal states. The number of
parameters needs not be fixed. In the first part of this
paper, it won’t be necessary to introduce a formal de-
scription of the policy.

Learning by policy modification processes
(PMPs). During certain time intervals in agent
life, policy parameters are occasionally modified by
a sequence of finite "policy modification processes"
(PMPs), sometimes also called "learning processes".
Different PMPs may take different amounts of time.
The i-th PMP in agent life is denoted PMPi, starts at
time tl > 0, ends at t~ < T, t~ > tl, and computes pol-
icy modification M(i). A non-zero time-interval will
pass between t~ and t~+1, the beginning of PMPi+I.
While PMPi is running, the agent’s lifelong interac-
tion sequence with the environment may continue, and
there may be reinforcement signals, too. In fact, PMPi
may use environmental feedback to compute M(i) 
for instance, by executing a known reinforcement learn-
ing algorithm. For the moment, however, I do not care
for what exactly happens while PMPi is running: in
what follows, I won’t need a formal model of the PMP
details. The following paragraphs are only concerned
with the question: how does M(i) influence the re-
maining agent life?

The problem. In general environments, events /
actions / experiments occurring early in agent life may
influence events / actions / experiments at any later
time. For instance, the agent’s environmental condi-
tions may be affected by learning processes of other
agents (this is a major reason why previous approaches
to multi-agent learning are heuristic by nature). In
particular, PMPi may affect the environmental condi-
tions for PMPk, k > i. This is something not properly
taken into account by existing algorithms for adaptive

84

From: AAAI Technical Report SS-96-01. Compilation copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



control and reinforcement learning (e.g., (Kumar and
Varaiya, 1986; Barto, 1989; Watkins and Dayan, 1992;
Williams, 1992)), and not even by naive, inefficient,
but supposedly infallible exhaustive search among all
policy candidates, as will be seen next.

What’s wrong with exhaustive search? Apart
from the fact that exhaustive search is not considered
practical even for moderate search spaces, it also suf-
fers from another, more fundamental problem. Let n
be the number of the agent’s possible policies. For the
sake of the argument, suppose that n is small enough
to allow for systematic, sequential generate-and-test of
all policies within the agent’s life time. Suppose that
after all policies have been generated (and evaluated
for some time), during the remainder of its life, the
agent keeps the policy whose test brought about max-
imal reinforcement during the time it was tested. In
the general "on-line" situation considered in this pa-
per, this may be the wrong thing to do: for in-
stance, each policy test may change the environment in
a way that changes the preconditions for policies con-
sidered earlier. Likewise, the quality of a policy may
be affected by policy changes of other agents. A policy
discarded earlier may suddenly be the "best" policy
(but will never be considered again). Similar things
can be said about almost every other search algorithm
or learning algorithm -- exhaustive search is just a
convenient, very simple, but representative example.

But then how to measure performance im-
provements? Obviously, the performance criterion
used by naive exhaustive search (and other search and
learning algorithms) is not appropriate for the general
set-up considered in this paper. We first have to ask:
what is a reasonable performance criterion for such
general (but typical) situations? More precisely: if 
do not make any assumptions about the environment,
can we still establish a sensible criterion according to
which, at a certain time, (1) the agent’s performance
throughout its previous life always kept improving or
at least never got worse, and which (2) can be guar-
anteed to be achieved by the agent? Indeed, such a
criterion can be defined, as will be seen below. First
we will need additional concepts.

Reinforcement/time ratios. Suppose PMPi
started execution at time t~ and completed itself at
time t~ > t~. For t > t~ and t _~ T, the reinforce-
ment/time ratio Q(i, t) is defined as

Q(i,t) R(t) - R(t~).
t-tI

The computation of reinforcement/time ratios takes
into account all computation time, including time re-
quired by PMPs.

Currently valid modifications. After t~, PMPi’s
effects on the policy will stay in existence until (a)
being overwritten by later PMPk, k > i, or until (b)
being countermanded by "EIRA", the method to be
described below. To define valid modifications, only
(b) is relevant: after t~, the policy modification M(i)
generated by PMPi, will remain valid as long as EIRA
(see below) does not reject M(i) (by restoring the old
policy right before PMPi started).

Reinforcement acceleration criterion (RAC).
At time t, RAC is satisfied if for each PMPi that com-
puted a currently valid modification M(i) of the agent’s
policy,

(a) Q(i,t) > R_ff)., and (b) for all k < i, where
PMPk computed a currently valid M(k): Q(i, t) 
Q(k,t).

In words: RAC is satisfied if the beginning of each
completed PMP that computed a currently valid mod-
ification until now has been followed by long-term re-
inforcement acceleration.

Single experiences. Note that at a given time
t, there is only one observable training example con-
cerning the long term success of PMPi, namely Q(i, t).
Since life is one-way (neither time nor environment are
ever reset), our statistics with respect to the long term
success of a given, previous PMP will never consist of
more than a single experience.

The methqd to achieve RAC is called "environment-
independent reinforcement acceleration" (EIRA). 
uses a stack to trace and occasionally invalidate policy
modifications:

Environment-independent reinforcement ac-
celeration (EIRA). EIRA uses an initially empty
stack to store information about currently valid policy
changes. Occasionally, at times called "checkpoints",
this information is used to restore previous policies,
such that RAC holds. EIRA is based on two comple-
mentary kinds of processes:

(1) Pushing. Suppose PMPi starts at time t~ and
ends at t~. Let I(i) denote a record consisting of the
values t~, R(t~) (which will be needed to compute
Q(i,t) values at later times t), plus the information
necessary to restore the old policy (before modification
by PMPi). I(i) is pushed onto the stack. By defini-
tion, PMPi is not finished until the pushing process is
completed. From now on, the modification M(i) will
remain valid as long as I(i) will remain on the stack.

(2) Popping. At certain times called "checkpoints"
(see below), do:

While none of the 3 conditions below holds, pop the
topmost/(.)-value off the stack, invalidate the corre-
sponding modification M(.), and restore the previous

85



policy:

(1) Q(i, t) > Q(i’, t), where i > i’, M(i) and M(i’)
are the two most recent currently valid modifica-
tions (if existing), and t denotes the current time,

(2) Q(i, t) > nt-~-~, where M(i) is the only existing
valid modification,

(3) the stack is empty.

For all PMPi, checkpoints occur right before time t~,
such that, by definition, t~ coincides with the end of the
corresponding popping process (additional checkpoints
are possible, however). The time eaten up by pushing
processes, popping processes, and all other computa-
tions is taken into account (for instance, time goes on
as popping takes place).

Theorem 1. Whenever popping is finished,
EIRA will have achieved RAC. The nature of the
(possibly changing) environment does not matter.

Proof sketch. Induction over the stack contents
after popping.

What’s going on? Essentially, at each check-
point, EIRA makes the history of the agent’s valid pol-
icy modifications consistent with RAC: each modifica-
tion led to further long term reinforcement speed-ups.
Then, by generalizing from a single experience, the
agent keeps all apparently "good" modifications, ex-
pecting they will remain "good", until there is evidence
to the contrary at some future checkpoint. Note that
EIRA does not care for the nature of the PMPs -- for
all completed PMPi (based, e.g., on conventional rein-
forcement learning algorithms), at each "checkpoint",
EIRA will get rid of M(i) if tl was not followed by long-
term reinforcement speed-up (note that before counter-
manding M(i), EIRA will already have countermanded
all M(k), k > i). No modification M(i) is guaranteed
to remain valid forever.

CONSEQUENCES FOR MULTI-AGENT
LEARNING

Basic observation. Now consider the case where
there are multiple, interacting, EIRA-learning agents.
For each agent, the others are part of the changing
(possibly complex) environment. But since EIRA 
environment-independent, each agent will still be able
to satisfy its RAC after each checkpoint. In cases
where all agents try to speed up the same reinforce-
ment signals, and where no agent can speed up rein-
forcement intake by itself, this automatically enforces
"learning to cooperate". This observation already rep-
resents the major point of this paper, whose remainder
serves illustration purposes only.

Illustration: multi-agent EIRA for a recur-
rent reinforcement learning net. To exemplify
the insight above, I implemented the following system
consisting of multiple agents, where each agent is in
fact just a connection in a fully recurrent neural net
(a by-product of this research is a general reinforce-
ment learning algorithm for such nets). Each unit of
the net has a directed connection to all units, including
itself (recurrency allows for storing representations of
previous events). The variable activation of the i-th
unit is denoted oi (initialized at time 0 with 0.0). wij
denotes the real-valued, randomly initialized weight (a
variable) on the connection (i, j) from unit j i. Each
connection’s current weight represents its current pol-
icy.

Viewing each connection as a separate agent may
seem unconventional: standard AI research is used to
more complex agents with full-sized knowledge bases
etc. For the purposes of this paper, however, this is
irrelevant: EIRA does not care for the complexity of
the agents.

Cycles. There is a lifelong sequence of "cycles".
A cycle involves the following computations: the ac-
tivations of the network’s input units are set by the
environment. Each noninput unit i updates its acti-
vation as follows: oi ~ 1.0 with probability f(netl);

oi ~ 0.0 otherwise, where f(x) -- ~, and the net-
values (initially 0) are sequentially updated as follows:

neti ~ neti + ~j wijoj. Depending on the activation
pattern across the output units, an action is chosen and
executed. The action may influence the environment,
which occasionally may provide (typically delayed) re-
inforcement.

Weight stacks. Each connection is an agent. The
current weight of a connection represents its current
policy. For each connection (i,j), there is an ini-
tially empty stack. Following the EIRA principle (see
above), whenever a weight is modified (see below), 
following values are pushed onto (i, j)’s stack: the cur-
rent time, the total cumulative reinforcement so far,
and the weight before the modification.

Weight modification / restauration by EIRA.
For each connection, a checkpoint occurs after each
cycle. At each checkpoint, the connection follows
the EIRA principle, by sequentially popping entries
from its stack and restoring the corresponding previous
weight values, until its RAC (see above) is satisfied. 
between two checkpoints, a small fraction (5 percent)
of all weights are replaced by a randomly chosen value
in [-2.0, 2.0] (this simple procedure implements the
PMPi above -- of course, more sophisticated PMPs
would be possible, but this is irrelevant for the pur-
poses of this paper).

86



Changing environment. Each single connection’s
environment continually changes, simply because both
network activations and all the other connections in its
environment keep changing. However, all connections
receive the same global reinforcement signal (whenever
there is one). Hence, for each connection, the only way
to speed up its local reinforcement intake is to con-
tribute to speeding up global reinforcement intake. If
no connection can solve the task by itself, this enforces
learning to cooperate.

Illustrative application. The simple system
above was applied to a non-Markovian variant of Sut-
ton’s (1991) Markovian maze task (unlike with Sut-
ton’s original set-up, the system’s input is not a unique
representation of its current position). To maximize
cumulative reinforcement, the system has to find short
paths from start to goal. With a preliminary experi-
ment, after slightly more than 10,000 "trials", the av-
erage trial length (number of cycles required to move
from start to goal) was 89, down from 2660 in the
beginning. This corresponds to a speed-up factor of
about 30. In the end, no weight stack had more
than 7 entries (each followed by faster reinforcement
intake than all the previous ones). Details can be
found in (Schmidhuber, 1995), where it is also shown
how the policy can learn to define and exe-
cute its own PMPs, and learn to set appro-
priate checkpoints by itself ("meta-learning"
and "self-improvement"). See (Schmidhuber, 1995;
Zhao and Schmidhuber, 1996; Wiering and Schmidhu-
ber, 1996) for more recent work along these lines.

It should be emphasized that the preliminary exper-
iment above in no way represents a systematic experi-
mental analysis, which is left for future work. The only
purpose of the current section is to illustrate what has
been said in the theoretical part of this paper.

CONCLUSION

It is easy to show that there cannot be an algorithm
for general, unknown environments that is guaranteed
to continually increase each agent’s reinforcement in-
take per fixed time interval. For this reason, the re-
inforcement acceleration criterion (RAC) relaxes stan-
dard measures of performance improvement, by allow-
ing for consideration of arbitrary, possibly lifelong time
intervals. For each agent, the method presented in this
paper is guaranteed to achieve histories of lifelong per-
formance acceleration according to this relaxed crite-
rion. Whenever such a history is established, EIRA
makes the most straight-forward generalization step
based on the only available training example: until
there is evidence to the contrary at a future checkpoint,
EIRA assumes that those modifications that kept ap-

pearing useful in the past up until now will keep ap-
pearing useful.

Standard AI research may be used to more complex
agents than those of the illustrative experiment above.
The method presented in this paper, however, does
not care for the complexity of the agents. EIRA is
a general framework -- you can plug in your favorite
reinforcement learning algorithm A, especially in sit-
uations where the applicability of A is questionable
because the environment does not satisfy the precon-
ditions that would make A sound.

ACKNOWLEDGMENTS

Thanks for valuable discussions to Sepp Hochreiter,
Marco Wiering, Rafal Salustowicz, and Jieyu Zhao
(supported by SNF grant 21-43’417.95 "Incremental
Self-Improvement" ).

References
Barto, A. G. (1989). Connectionist approaches for con-
trol. Technical Report COINS 89-89, University of Mas-
sachusetts, Amherst MA 01003.

Boddy, M. and Dean, T. L. (1994). Deliberation schedul-
ing for problem solving in time-constrained environments.
Artificial Intelligence, 67:245-285.

Kumar, P. R. and Varaiya, P. (1986). Stochastic Systems:
Estimation, Identification, and Adaptive Control. Prentice
Hall.

Russell, S. and Wefald, E. (1991). Principles of metarea-
soning. Artificial Intelligence, 49:361-395.

Schmidhuber, J. (1995). Environment-independent rein-
forcement acceleration. Technical Note IDSIA-59-95, ID-
SIA.

Schmidhuber, J. (1996). A theoretical foundation for
multi-agent learning and incremental self-improvement in
unrestricted environments. In Yao, X., editor, Evolu-
tionary Computation: Theory and Applications. Scientific
Publ. Co., Singapore.

Sutton, R. S. (1991). Integrated modeling and control
based on reinforcement learning and dynamic program-
ming. In Lippman, D. S., Moody, J. E., and Touretzky,
D. S., editors, Advances in Neural Information Process-
ing Systems 3, pages 471-478. San Mateo, CA: Morgan
Kaufmann.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning.
Machine Learning, 8:279-292.

Wiering, M. and Schmidhuber, J. (1996). Plugging Levin
search into EIRA. Technical Report IDSIA-1-96, IDSIA.

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229-256.

Zhao, J. and Schmidhuber, J. (1996). Learning as the cost
function changes. Technical Report IDSIA-2-96, IDSIA.

87


