
 Open access  Journal Article  DOI:10.1109/59.709086

A general method for small signal stability analysis — Source link 

Y.V. Makarov, Zhao Yang Dong, David J. Hill

Institutions: University of Sydney

Published on: 01 Aug 1998 - IEEE Transactions on Power Systems (IEEE)

Topics: Stability criterion, Constrained optimization, Optimization problem, Numerical analysis and
Eigenvalues and eigenvectors

Related papers:

 Power System Stability and Control

 
Computing an optimum direction in control space to avoid stable node bifurcation and voltage collapse in electric
power systems

 Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system

 Voltage Stability of Electric Power Systems

 Efficient calculation of critical eigenvalue clusters in the small signal stability analysis of large power systems

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-general-method-for-small-signal-stability-analysis-
gy3j6rq9xo

https://typeset.io/
https://www.doi.org/10.1109/59.709086
https://typeset.io/papers/a-general-method-for-small-signal-stability-analysis-gy3j6rq9xo
https://typeset.io/authors/y-v-makarov-ywairs177b
https://typeset.io/authors/zhao-yang-dong-2rpjq2xt7e
https://typeset.io/authors/david-j-hill-3rjbilbez8
https://typeset.io/institutions/university-of-sydney-34hirb5f
https://typeset.io/journals/ieee-transactions-on-power-systems-2ajwh8az
https://typeset.io/topics/stability-criterion-2dxhxnpu
https://typeset.io/topics/constrained-optimization-5o0j10pa
https://typeset.io/topics/optimization-problem-xnbzp3ib
https://typeset.io/topics/numerical-analysis-1tfs1ilj
https://typeset.io/topics/eigenvalues-and-eigenvectors-d2l9s7nq
https://typeset.io/papers/power-system-stability-and-control-3vv4rniiyu
https://typeset.io/papers/computing-an-optimum-direction-in-control-space-to-avoid-57y7vqd7cr
https://typeset.io/papers/bifurcation-theory-and-its-application-to-nonlinear-1ab5uutued
https://typeset.io/papers/voltage-stability-of-electric-power-systems-u8d49oug8z
https://typeset.io/papers/efficient-calculation-of-critical-eigenvalue-clusters-in-the-2ctv5r47y2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-general-method-for-small-signal-stability-analysis-gy3j6rq9xo
https://twitter.com/intent/tweet?text=A%20general%20method%20for%20small%20signal%20stability%20analysis&url=https://typeset.io/papers/a-general-method-for-small-signal-stability-analysis-gy3j6rq9xo
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-general-method-for-small-signal-stability-analysis-gy3j6rq9xo
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-general-method-for-small-signal-stability-analysis-gy3j6rq9xo
https://typeset.io/papers/a-general-method-for-small-signal-stability-analysis-gy3j6rq9xo


IEEE Transactions on Power Systems, Vol. 13, No. 3, August 1998 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A Generlal Method for Small Signal Stability Analysis 

Yuri V. Makarov Zhao Yang Dong David J.  Hill 

979 

Department of Electrical Engineering 

The University of Sydney 

NSW 2006, Australia zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A b s t r a c t -  This paper presents a new general method for 

computing the different specific power system small sig- 
nal stability conditions. The conditions include the points 
of minimum and maximum damping of oscillations, saddle 
node and Hopf bifurcations, and load flow feasibility bound- 
aries. All these characteristic points are located by optimiz- 
ing an eigenvalue objective function along the rays specified 
in the space of system parameters. The set of constraints 
consists of the load flow (equations, and requirements applied 
to the dynamic state matrix eigenvalues and eigenvectors. 
Solutions of the optimization problem correspond to specific 
points of interest mentioned above. So, the proposed gen- 
eral method gives a Comprehensive characterization of the 
power system small signal stability properties. The specific 
point obtained depends upon the initial guess of variables 
and numerical methods used to solve the constrained op- 
timization problem. The technique is tested by analyzing 
the small signal stability properties for well-known example 
systems. 

I. I N T R O D U C T I O N  

Modern power grid:; are becoming more and more 
stressed with the load demands increasing rapidly. The 

voltage collapses which occurred recently have again drawn 
much attention to the issue of stability security margins in 
power systems [I]. The small signal stability margins are 

highly dependent upon such system factors as load flow 

feasibility boundaries, minimum and maximum damping 

conditions, saddle node and Hopf bifurcations, etc. Un- 

fortunately, it is very difficult to say in advance which of 
these factors will make a decisive contribution to instabil- 

ity. Despite the progress achieved recently, the existing 
approaches deal with these factors independently zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- see [a], 
[3] for example, and additional attempts are needed to get 
a more comprehensive view on small-signal stability prob- 
lem. 

To study the power system small signal stability prob- 

lem, an appropriate model for the machine and load dy- 
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namics is required. For example, the models given in [4] - 
[ll] can be used. They include generator and excitation 

system differential equations, stator and network algebraic 

equations. These equations build up the set of differential- 

algebraic equations (1) 

X l  = F ( Z l 1 2 2 , Y , T )  

0 = G ( X I , Z Z , Y , T )  (1) 

In the equation (l), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 is the vector of state (differential) 

variables, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx~ is the vector of algebraic variables, y is the 
vector of specified system parameters, and T is a param- 

eter chosen for bifurcation analysis. In many cases y is a 

function of T. 

In the small signal stability analysis, the set (1) is then 

linearized at an equilibrium point to get the system Jaco- 
bian and state matrix. The structure of the system Ja- 
cobian J is shown in Fig. 1 (which follows the structure 
given in [12]), where J l f  stands for the load flow Jaco- 

bian, J11 = d F / d x l ,  Jla = d F / d x z ,  J z ~  = dG/dx l  and 
Jzz = d G / d x z  are different parts of J corresponding to dif- 
ferential and algebraic variables. In Fig. 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQgen stands 

for the reactive power at generator buses, Psb is the active 

power at the swing bus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is the vector of machine rotor 

angles, w is the vector of machine speeds, K is the vector of 

the state variables except 6 and w (such as E;, E&, E f d ,  VR, 
and RF; load bus voltages K o a d  and angles @load should be 
considered as dynamic state variables in cases where load 
dynamics is considered [la]), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAid and i, are vectors of d-axis 
and q-axis currents; v,,, and N o a d  stand for generator and 
load bus voltages; d s b  is the swing bus voltage angle, and 
B denotes voltage angles at all buses except the swing bus. 

The prefix A means a small increment in corresponding 
variables. 

The problem addressed here is that these different small 

signal stability conditions correspond to different physi- 

cal phenomena and mathematical descriptions [13]. Saddle 
node bifurcations happen where the state matrix 

J" = J11 - JlzJ,-,lJzl 

becomes singular and, for example, a static (aperiodic) 

type of voltage collapse or angle instability may be observed 
as a result. Hopf bifurcations occur when the system state 
iiiatrix J has a pair of conjugate eigenvalues passing the 
imaginary axis while the other eigenvalues have negative 
real parts, and the unstable oscillatory behavior may be 

seen. Singularity induced bifurcations are caused by sin- 
gularity of the algebraic submatrix Jzz - see Fig. 1, and 
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Fig. 1. Structure of the system Jacobian. 

they result in fast collapse type of instability [14]. The load 

flow feasibility boundary corresponds to a surface where the 
load flow Jacobian matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJi f  is singular, and it restricts 
a region in the space of power system parameters where 
load flow solutions exist. Under certain modeling simplifi- 
cations, this boundary coincides with the saddle node bi- 
furcation conditions [15], [16], but in general case it should 
be taken into account separately. 

To locate the saddle node and Hopf bifurcations along a 

given ray in the space of y, the following equation can be 

employed PI, [31, ~ 7 1 ,  ~ 8 1 :  

f ( z , y o  + r a y )  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) 
P ( Z ,  yo + rAy)l’ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW l ”  = 0 (3) 

F(z, yo + 7Ay)l” - wl’ = 0 (4) 

1;-1 = 0 (5) 

1;’ = 0 (6) 

where w is the imaginary part of a system eigenvalue; 1‘ 
and 1‘‘ are real and imaginary parts of the corresponding 

left eigenvector 1; 11 + jl:’ is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi - t h  element of the left 
ejgenvector 1; yo + r A y  specifies a ray in the space of y; 
J stands for the state matrix obtained from the linearized 
model given in Fig. 1 provided that the algebraic subma- 
trix J 2 2  is nonsingular. 

In the above set, (2) is the load flow equation and condi- 
tions (3)-(6) provide an eigenvalue with zero real part and 
the corresponding left eigenvector. 

Solutions of the system (2)-(6) correspond to either sad- 
dle node (w = 0) or Hopf (w f 0) bifurcations. Neverthe- 
less the extreme load flow feasibility conditions (if they do 
not coincide with the saddle node bifurcations) can not be 
located by means of this system. Actually, if the load flow 
feasibility boundary is met on the ray yo + rAy  but there 
is no an eigenvalue with zero real part, the system (2)-(6) 
becomes inconsistent and has no a solution. 

Therefore, if the system (2)-(6) is used, it is necessary 
to analyze the load flow feasibility conditions additionally. 

The corresponding procedures are well known - see [a], [19], 

[20] for instance. The general idea behind these procedures 

I ‘  

Fig. 2.  Different solutions of the problem (10)-(15): 

1 , 2  - minimum and maximum damping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 - saddle (w = 0) or Hopf (w # 0) bifurcations 
4 - load flow feasibility boundary 

is illustrated by the following system: 

f ( z , y o  + TAY) = 0 (7) 

Jif  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z, yo + rAy)l = 0 (8) 

l i - 1  = 0 (9) 

where 1 is the left eigenvector corresponding to a zero eigen- 
value of the load flow Jacobian matrix J i f .  The system 

(7)-(9) gives the load flow feasibility boundary points along 

the ray yo + rAy  by a similar way as the system (2)-(6) 

generates saddle node and Hopf bifurcation points. 

By subsequent solution of both the problems (2)-(6) and 

(7)-(9) the general issue may be resolved, but a challenging 

task is to find a procedure which can generate all small- 
signal characteristic points by itself. 

11. GENERAL METHOD 

To locate the saddle node and Hopf bifurcations as well 
as the load flow feasibility boundary points within one pro- 
cedure, the following constraint optimization problem is 

proposed 

a2 j maxlmin (10) 

f ( ~ ,  YO + r a y )  = 0 (11) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
?(x, yo + rAy)l’ - al’ + wl” 0 (12) 

?(z, yo + rAy)l” - al“ - wl’ = 0 (13) 

( - 1  = 0 (14) 

1;’ = 0 (15) 

subject to 

where a is the real part of an eigenvalue of interest. 

The problem may have a number of solutions, and all of 
them presents different aspects of the small-signal stability 
problem as shown in Fig. 2. 

The minimum and maximum damping points 1 and 2 
correspond to zero derivative d a l d r .  The constraint set 
(11)-(15) gives all unknown variables at  these points. The 
minimum and maximum damping, determined for all oscil- 
latory modes of interest, provides an essential information 

about damping variations caused by a directed change of 
power system parameters. 
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The saddle node or IHopf bifurcations 3 correspond to 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. They indicate the small-signal stability limits along 

the specified loading tra.jectory yo + r a y .  Besides revealing 

the type of instability (aperiodic for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw = 0 or oscillatory 

for w # 0) ,  the constraint set (11)-(15) gives the frequency 

of critical oscillatory mode. The left eigenvector l = l’+jl’’ 
(together with the right eigenvector r = r’+jr’’ which can 
be easily computed in its turn) determine such essential 
factors as sensitivity of a with respect to y, the mode, 

shape, participation factors, observability and excitability 

of the critical oscillatory mode [21] -[23]. 

The load flow feasibility boundary points 4 reflect the 

maximal power transfer capabilities of the power system. 
Those conditions play a decisive role when the system is 

stable everywhere on th- ray yo + r A y  up to the load flow 

feasibility boundary. The optimization procedure stops at 

these points as the constraint (11) can not be satisfied any- 
more. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A strict proof of the optimality conditions in the load 
flow feasibility points requires a complicated mathematical 

analysis, and we will not give this proof in the paper. Some 

initial ideas of this proof are briefly reported in the sequel. 

Consider the trajectory of ~ ( r ) ,  r + 03 satisfying (11). 
At the load flow feasibility point, parameter r can not be 

increased anymore beyond its limit value r*. Nevertheless, 
the trajectory x ( r )  can be smoothly continued by further 
decreasing r see [24], for example. Suppose that the func- 
tion a[z(r)] is monotonous and continuous in vicinity of 
r,, say, along the trajectory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ(T), the increment da is pos- 

itive. As the increment rlr changes its sign at the point r,, 
this means that the derivative daldr changes its sign at  

r*. Thus the enough optimality conditions (the constant 

sign of the second derivative of the objective function with 

respect to r )  are met at the point r, [33]. 

The problem (10)-(15) takes into account only one eigen- 

value each time. The procedure must be repeated for all 
eigenvalues of interest. The choice of eigenvalues depends 
upon the concrete task l,o be solved. The eigenvalue sensi- 
tivity, observability , excitability and controllability factors 
[all,  [22] can help to determine the eigenvalues of interest, 
and trace them during optimization. For example, the in- 

terarea oscillatory modes can be identified and then ana- 

lyzed using (10)- (15). 
The result of optimization depends on the initial guesses 

for all variables in (10)-(15). To get all characteristic points 

for a selected eigenvalue, different initial points may be 
computed for different values of T. At each point, the load 

flow conditions, state matrix eigenvalues and eigenvectors 
can be obtained, and then a particular eigenvalue selected 
to start the optimization procedure. More effective ap- 
proaches for finding all characteristic points require addi- 
tional development. At the moment we are analyzing the 

possibility to use the Genetic Algorithms for this purpose. 

111. TESTING AND VALIDATION O F  THE METHOD 

Our purpose here is to demonstrate whether the pro- 

posed method is able to locate all these characteristic 
points depending on the initial guesses of r ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, a ,  w ,  E’ 

c T  Pd+jQd 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  The single-machine infinite-bus power system model 

and 1”.  The results will be then validated by comparing 

some of them with the results obtained in other papers, 

and by transient simulations conducted at the characteris- 

tic points. 

The single machine infinite bus power system model [25] 

presented in Fig. 3, and 3 machine 9 bus power system [26] 

shown in Fig. 12 will be studied here. Similar models were 
studied in [4] -[6], [17], [26] -[30]. 

The standard Gauss -Newton procedure from Matlab 
was used here for optimization [31]. 

A. Sangle Machane Injnate Bus Power System Model 

cover both generator and load dynamics [25]. 

The model consists of four differential equations, which 

The mathematical model of the system is the following: 

ICqw s 

+dKiw + K~,[--E~y~Vcos(S + BO - h )  - 

-F,y,Vcos(S - s, + 8, - h )  + 
+ ( Y ~ C O S ( Q O  - h)  + y,cos(Q, - h) )V2]  - 

-1<pw(p0 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI) + I y p w ( Q ~  + QI) (19) 

where k4 = TI<q,Ii-pw and h = tan-l(I<qw/I<pw). Pa- 

rameters of the system are the following [25]: IC,, = 0.4, 

T = 8.5, PO = 0.6, QO = 1.3; PI and Q1 are taken zero 
at the initial operating point. 

Network and generator values are: yo = 20.0, QO = -5.0, 

K p v  = 0.3, I(Qw -0.03, ICpu = -2.8, K q u 2  = 2.1, 

Eo = 1.0,  C = 12.0, yb = 8.0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOb = -12.0, El, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2.5, 
ym = 5.0, 8, = -5.0, E, = 1.0, P, = 1.0, M 0.3, 

6, = 0.05. 

All parameters are given in per unit except for angles, 
which are in degrees. The active and reactive loads are 

featured by the following equations: 

pd = PO + pl + I<pwS + I<pt,(v + T v )  (20) 

&d 1 QO + QI + ICqw6 + KpV + ICq;qv2V2 (21) 



982 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 5 -  

1 -  

O 5 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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-1 5 -  1 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-O:: Reactive Load Power Q1 p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 
10 1 2  

Fig. 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = ReX computed for PI = 0 and & I  =variable 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Subcritical (I) and supercritical (11) bifurcations 

The system (16)-(19) depends on four state variables S, 
S,, w ,  V .  Their values at the initial load flow point are 
the following: S = 2.75, 6, = 11.37, w = 0,  and V = 1.79. 

Note that the initial point is not a physical solution as the 

voltage V is too high as &1 is zero. 

The results of numerical simulations are presented in in 

Fig. 4-11. 

The dependence of the real part a = ReX of critical 
eigenvalue X upon QI is shown in Fig. 4. It is seen that 
there are both subcritical (point I) and supercritical (point 
11) Hopf bifurcations along the chosen loading direction. 
Fig. 5 presents the root locus for the critical eigenvalue con- 

jugate. The subcritical (point I) and supercritical (point 
11) Hopf bifurcation points are displayed. Both these char- 

acteristic points were successfully located by the proposed 
method, (10 -15). 

Fig. 6. shows the load flow feasibility and bifurcation 
boundaries on the plane of the Ioad parameters PI and &I. 
The boundaries were obtained by the proposed optimiza- 
tion method when the loading direction was changed by 
subsequent rotation of Ay in the plane PI and &I. Exactly 
the same curves were computed in [17] by separate solution 

of the problems (2)-(6) and (7)-(9). To verify the results, 

transient simulations were performed at several points in 

the plane PI - Q1. Point A with PI = 0 and &I = 10.88 

- 1 5 1  -20 -20 -15 -10 -5 0 5 10 15 20 

Active Load Power P1 p u 

Fig. 6. The feasibility and Hopf bifurcation boundaries 

-2’ 
03074 03076 0.3078 0308 03082 03084 0 

Machine angle 

Fig. 7. Phase portrait a t  point A near subcritical bifurcation 

was placed within the load flow feasibility region close to 
subcritical bifurcation boundary. Then a small disturbance 

was applied. The corresponding phase portrait is shown in 

Fig. 7. In a complete correspondence with the theoretical 

expectations, the system has experienced sustained oscilla- 

tions. 

Those oscillations can be viewed in Fig. 8 where the load 
bus voltage against time is presented. 

Point B with PI = 0 and Q1 = 11.4 was placed within 
the load flow feasibility region close to the supercritical bi- 
furcation boundary. (Note that, in the vicinity of points A 
and B,  the Hopf bifurcation boundary as shown in Fig. 6 
actually consists of internal subcritical and external super- 

critical boundaries located very closely). All eigenvalues 
at point B have small negative real parts. The phase por- 
trait for a small disturbance applied at point B is given in 

Fig. 9. The system undergoes decreasing oscillations. The 
corresponding voltage behavior is shown in Fig. 10. 

The next point was taken close to the point B but outside 
the load flow feasibility boundary. The system experiences 
voltage collapse as illustrated by Fig. 11. 

By solving the optimization problem, the system small 

signal stability boundaries were obtained. 

The minimum and maximum damping conditions on the 
plane Pl - Q1 were studied as well. Table 1 presents the 
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Fig. 8. Transient process near subcritical bifurcation (point A)  

-10- ' I 
03447 0.3448 0.3449 0.345 03451 0.3452 0.3453 0.3454 
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Fig. 9. Phase portrait a t  point B near supercritical bifurcation 

Voltage transient process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 9 3 6 5 1 . 1  

0 1 2  3 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 6 7 8 9 10 
Time, s 

Fig. 10. Load bus voltage transients near supercritical bifurcation 

:::I , , , , , 

0 
0.5 1 1.5 2 2.5 

Time s 

Fig. 11. The system load bus voltage transients near feasibility 
boundary 

TABLE 1 

MINIMUM AND MAXIMUM DAMPING CURVES 

FOR THE SINGLE-MACHINE INFINITE-BUS SYSTEM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I min-d;mping max-dymping I 
21 -4.5537 -0.9679 

curves of minimum and maximum damping for different 

eigenvalues. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B .  Three-Machine Nine-Bus Power System Model 

The power system model is composed of 3 machines and 

9 buses [26] as shown in Fig. 12. Stability studies for a 

similar system can be found in [4], [30]. The machines of 
the system are modeled by using the classical model for 

machine 1 and two-axis model for machines 2 and 3 - see 

equations (22) -(27). 

Unlike [4] and [30], in our tests we neglected the excitation 
system dynamics, so our state variables were the following: 
6, w ,  E;, and E&. Algebraic variables were I d ,  I,, 6 ,  and V ;  
bifurcation parameters were Pld and Q l d .  . The notations, 
parameter values and description of the system (22) -(27) 
can be found in [as]. 
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Bus damping point damping point Bifurcation point 

Fig. 12.  The 3-machine %bus system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
bdc23 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAps zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.02, I , , I 1 , , I I I 

-002si ’ ’ ’ ’ ’ ’ ’ ’ ’ 
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Fig. 13. Real parts of system eigenvalues vs reactive power 

Unlike the used single machine infinite bus model, which 

includes an induction motor load, this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 machine 9 bus 
model considers constant load models only. In the general 
case of small signal stability analysis, the load dynamics 
should be definitely taken into consideration, but neverthe- 
less some stability aspects can be studied with the constant 
load model [32]. 

In the preliminary examination, the loads zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPld and Q l d  

at buses 5, 6 and 8 were increased in proportion with the 

load size. The increase of load was followed by the cor- 
responding increase of generation in proportion with the 

generator size. The total increment in load was equal to 
the total increment in generation. The loading was re- 
peated till the point where load flow did not converge. At 
each step, eigenvalues of the state matrix were computed to  

reveal the bifurcation points and minimum and maximum 
damping conditions. 

The system eigenvalue behavior along the chosen loading 
direction is shown in Fig. 13. 

There are several points of interest which can be clearly 

seen in Fig. 13. They include the maximum damping. 

minimum damping, bifurcation points and points close t o  
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the load flow feasibility boundary. Some of the obtained 
characteristic points are summarized in Table 2. 

In the examination of the proposed method based on the 
optimization problem (10) -(15), the method has been ap- 

plied to locate these points of interest. The results showed 
that the constrained optimization procedure converged to- 

ward all the points of interests depending the initial guess 
of variables. The initial guesses were chosen using the routh 
estimates of the characteristic points obtained in prelimi- 
nary examination. 

IV. CONCLUSION 

A new method which computes the minimum and maxi- 

mal damping, saddle node and Hopf bifurcations and load 

flow feasibility boundary points as part of a common pro- 
cedure has been developed in the paper. The method has 

been tested and validated by numerical simulations, com- 
parison with the previous results obtained for the used test 
systems, and by transient simulations conducted at the 
characteristic points. Further work is required to develop 

techniques for obtaining the initial guesses of variables, fast 

and reliable solving the constrained optimization problem, 
and handling of large power systems. Various practical 

applications of the new method await for further develop- 

ments as well. 
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