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ABSTRACT

Application of the Fourier space deconvolution algorithm to three-dimensional
reconstruction problems necessitates the computation of a frequency space filter.
This calculation, which requires taking the Fourier transform of the system res-
ponse function, is often lengthy and complex. In addition, it is mot always pos-
sible to find a closed-form expression, and three-dimensional numerical integration
becomes necessary., In this paper, it is shown that for system response functions
of the form d(9,¢)/r? with d(0,¢) an angular function describing the imaging sys-
tem, the filter computation can in gemneral be reduced to a single integratiom,
which in many cases may be performed amalytically. Complete expressions are de-
rived for the gemeral three-dimensional filter, and two examples are given to

illustrate the use of such expressions.






INTRODUCTION

The reconstruction of a three—dimensional distribution by two-dimensional
sectional imaging is a well-known. technique in both X-ray and nuclear medicine
computed tomography. Consecutive two~dimensional sections are stacked to form a
three-dimensional image, with the data for each section bheing acquired and recon-
structed independently of any other section. This approach makes poor use of the
available imaging photons in the case of nuclear medicine by rejecting photons
whose paths do not lie within a single section. .Collimators are used to define
the direction of the photons within a sectiom.

Positron—emission tomography, however, eliminates the need for physical col-
limation by actually measuring the photon direction using coincident detection of
the positron annihilation radiation. Thus, positron imaging systems with large
angular acceptancé, such as.dual Anger cameras or dual wife chambers, require a
three-dimensional reconstruction algorithm if all photon directions within the
detector acceptance are.to be used.

Several authors have proposed suitable reconstruction algorithms with par-
ticular application to positron tomography. These algorithms are in general based
on a Fourier space deconvolution of the imaging-system point response function
from a back—projeéted image. They differ in the calculation of the filter, the
three-dimensional Fourier transform of the point response function, a calculation
which is dependent on the geometry of the imaging system. The three-dimensional
deconvolution approach has been proposed by Chu and Tam (1977) for a large-area,
dual detector, stationary positron camera, with a numerical integration to evaluate
the filter. The closed-form expression for this filter has beem given by Schorr
and Townsend (1981), and Colsher (1980) has coﬂsidered the case of the rotating,
dual Anger cameré system.. |

Closed~form expféssions have the advantage of easy and‘effiéient comﬁuter im~
plementation, with freedom from the potential instabilities‘inherent in fhree—
dimensional numerical integration. However, their derivation;.even when ﬁossible,
is often lengthy and complex, and strongly dependent on the particular imaging geo-

metry.
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In this paper, & general method of filter computation is proposed that in-
volves only & single integration. The method ig applicable to imaging systems
with a response function of the form d(8,¢)/r2, where d(8,¢) is a function
allowing for both the acceptance of the system and any angular factors occurring
in the back-projection. In many cases, the remaining integration may be evaluated
analytically. Numerical problems are therefore either greatly reduced or com~
pletely eliminated.

In the next section, a review of the deconvolution recomstruction method is
given, followed by a description of the general method for filter computation in

section 3. Application to specific imaging geometries is discuased in section 4.

THE RECONSTRUCTION METHOD

Let a(x,y,z) represent the unknown function that is to be reconstructed, in
particular a distribution of a positron~emitting radicisotope. Distributions of
interest will have compact support Sa [a(x,y,z) £ 0 outside a bounded and closged
region Sa]’ and be smoothly varying within 8,

Consider the coordinate gystem shown in figure 1; e = (e;,e;,e;) is a unit
vector, ¢ is the angle between the x-axis and the projection of e onto the x-y

plane, and 8 is the angle between e and the x-y plane. The components of e are

given by
e; = cos ¢ cos 6
e, = gin ¢ cos O (2.1)
e; = sin 9 .
The plane

Xge) *+ ygez + zgey = 0 (2.2)
is a plane orthogonal to e which passes through the origin, It is called the
projection plane in the direction e. If (u,v) are the Cartesian coordinates of a
point in the plane such that u =y and v = z for @ = ¢ = 0, then if any point

(Xg,¥0,29) lies in the plane,
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X = -u 8in ¢ - v cos ¢ 8in B
Yo =ucos ¢ ~ v gin ¢ sin 9 {(2.3)
Zg = Vv cos © ,

Let (x,y,z) be a point on a line parallel to e that intersects the projection

plane at the point (u,v). It can be shown that

u=ycos ¢ -~ x sin ¢

(2.4)
v=zcos 8~ (xcos ¢+ ysin ¢) sin 6
Xg =X ~-0ey, Yo=Yy -0ey, 2Zy =2z~ Ceg (2.5)
where
g=(xcos ¢ +y gin ¢) cos 8 + z sin 6 . (2.8)

2.1 The projection operator

The projection operator P for any function a(x,y,z) on Sa is defined by

00

Pa[u,v,@,d)] = Pa(u,V,e,¢) ”I a(xy-Te;, yo-Tey, z,-Te;) dT , 2.7)

)

where the relationship between (u,v) and (x%4,¥,,24) is'given by equations (2.3).
For given ¢, the functien pa(u,v,6,¢) is a two-dimensional projection of a(x,y,z)

onto the plane given by equation (2.2), and it is easy to see that
pa(u,v,e,d)) = Pa(U,V,e"'T",dJ) . (2.8)

Thus, it is sufficient to limit the subsequent discussion to the (8,4) region de-

fined by

., T l‘. - r
Ee,¢={(e’¢)‘ 73837, 254’52}'

2.2 The back-projecticn operator

Let Q € Eq 6 be some region, and let d = d(6,4¢) be a function with support .
]
Consider the function p = p(u,v,8,$) on R, * Ee ¢ for which (u,v) and points
?
(x,v,2) on the projection line through (u,v) are related by equation (2.4). De-

fine the back-projection operation B, by:
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de[stsz] = bp(stsz) = jj d(6,$)p(u,v,0,9) dw , 2.9
f

where dw = cos 9 d© d¢. The function d(0,9) is termed the detector function because
its support § is defined by the angular acceptance of the imaging system, and its
value must include any angular weighting factors that occur in the back-projection
process. Some specific examples will be discussed in section 4, The function
bp(x,y,z) in equation (2.9) is called the back-projection of p{u,v,0,¢).

Suppose pa(u,v,9,¢) are the set of projections of the function a(x,y,z) as de-
fined by equation (2.7) measured along projection directions e within 0 by a detec-
tion system with detector function d(8,4). Using equations (2.9), (2.7), and (2.5),
the result of the back-projection of these projections is a function denoted by

ab(x,y,z) and given by

ab(x,y,z) = II d(B,d))f a{x-te;, y-tep, z-tejz) dt dw, (2.10}
Q '

where t = T + ¢ and dt = d1. This may be written formally as

a, = BJPa . (2.11)

2.3 The reconstruction problem

The reconstruction problem in positron-emission tomography may be stated as
follows: consider an unknown distribution of poéitron-emitting radiocactivity a(x,y,z)
and 2 positron camera with the capability of measuring projections pa(u,v,8,¢) of
a{x,y,z) within an angular range Q, where (u,v) and (x,y,z) are related by equa-
tions (2.4); determine the unknown function a(x,y,z), given the detector functiom
d(6,¢).

The first step in the solution to be adopted here is to obtain the back-
projection ab(x,y,z), using equation (2.9), from the measured projections pa(u,v,6,¢)
and the known detector function d(8,¢). Equation (2.10) represents an integral
equation of the first kind in the unknown function a(x,y,z) which may be solvéd,

as will be shown below, by Fourier transformation,
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Recall that the Fourier transform in three dimensions, denoted by Fy, is de-

fined by

Fs s[kx,ky,kz] Sk Kok,

I

Jt[[ s{X,¥,2) exp (-Zﬁi(xkx+yky+zkz)) dx dy dz (2.12)
R,
for any function s for which equation (2.12) exists. Applying this tranformation

to both sides of equation (2.10) yields

jjd(es(p) f J’II a(x—tel, y—te,, z—teg)
1) ™ R,

X exp (-2ﬂi(xkx+yky+zkz)) dx dy dz dt dw , (2.13)

it

Ay (koK k)

[}

By setting £ = x - tej; N =y - tey, § = z - tez, this reduces to

Ab(kx,ky,kz) = H(kx,ky,kz) A(kx’ky’kz) (2.14)

where

ﬁ(kx,ky,kz) - ” d(9,¢)6(e1kx+ezky+e3kz) dw , (2.15)
f
using the Dirac &-function representation §(x) = f. exp (-2mixt) dt [see for example
-0
Gel'fand and Shilov (1964), p. 359]. The functions Ab and A are the Fourier trans-

forms of a and a, respectively,

Let V ¢ R3 be the support of ﬁ(kx,ky,kz) and let

S for (k,k k)€ V
_ Hk ,k_,k ) :
G(kx,ky,kz) = X"y 'z (2.16)
0 otherwise

It then follows from equations (2.14) and (2.16) that
A(kx’ky’kz) = G(kx’ky’kz) Ab(kx’ky’kz) (2.17)
for all (kx,ky,kz) e V., As defined previously, a(x,v,z) is a function with com—

pact support Sa’ and thus its Fourier transform A(kx,ky,kz) must be an entire
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function in each of kx,ky,kz. Clearly, since equation (2.17) defines A on the

set V, if V # Ry, the function A is known only on V but is completely determined

in R3 by analytic continuation. The case V # R; has been termed the limited-angle
reconstruction method. Techniques to éstimate A outside V by, for example, an
iterative method (Papoulis 1975, Jeavons et al, 1981) have not proved very success-—
ful in practice . For V ={R;, the reconstruction is exact.

Applying the inverse Fourier transform to equation (2,17) yields the solution

af(x,y,z) - J]].G(kx,ky,kz)Ab(kx,ky,kz) exp (2ﬂ1(xkx+yky+zkz)) dkx dky dkz (2.18)
Vv
with a. = a for the exact reconstruction (V = R3) and a = a in the limited-angle

case. The closeness of a_ to the exact solution depends strongly on the extent of

f
the region of unmeasured frequencies, i.e. the (kx’ky’kz) 2V,
Using the convolution theorem of the three-dimensional Fourier transform in

equation (2.14) results in

ab(x.y,z) = J:[j' h(x-, y-n, z-g)a(&,n,r) d dn &g , (2.19)

Rj
where the function ﬂ(x,y,z), the inverse Fourier transform of ﬁ(kx,ky,kz), is the
system point-response function for the back-projection de6 of projections Ps of a
point source 8(x,y,2z). It can immediately be seen from equation (2,15) that, in

polar coordinates, ﬁ(x,y,z) may be written
hr,8,0) = E&8  for w<r<o, @4 €0 (2.20)

with (see figure 1}:
x =171 cos ¢ cos O
y =1 sin ¢ cos © (2.21)

z=1r sin &

-~ < <o, =wf2<0TW/2,~T/2L¢51/2,
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Implementation of this recomstruction algorithm [equation (2.14)] is there~

fore based on the knowledge of ﬁ(kx,ky,kz), which is defined by:
ﬁ(kx,ky,kz) =J:[J.ﬂ(x,y,z) exp (-Zﬂi(xkx+yky+zkz)) dx dy dz (2.22)
R

for all (kx,ky,kz) e V., This algorithm has also been proposed by other authors
{Chu and Tam 1977, Colsher 1980), and in each case it has been necessary to evalu-
ate equation (2.22) for the particular angular acceptance region {1 of the imaging
system. In the next section it is showm that, under the general condition:

d(-8,¢) = d(6,-¢) = d(0,¢) (2.23)

equation (2.22) may be reduced to a single integration.

GENERAL EVALUATION OF ﬁ(kx,ky,kz)

Transforming equation (2.22) in polar coordinates [equations (2.21)] and sub-

stituting for h(r,0,¢) from equation (2.19) yields:

H(R,0,8) = IJ‘d(B,dJ) cos 8 48 d¢'[ exp {-2mirR(cos (¢~¢) cos 8 cos @ + sin 8 sin O©)}dr,

(]

0 (3.1)
where
k =R cos & cos O
X
ky =R gin ¢ cos & (3.2)
k =R sin @

and ~¢ < R < », -1/2 <9 <m/2, -n/2 < ¢ < 7/2., It should be noted that the inte-
gralé on the right-hand side of equation (3.1), and other integrals of this type,
are to be considered within theztheofy of generalized functions (Gel'fand and
Shilov 1964). Note also that symmetry with respect to integration in the variable
r implies

H(ﬁ,@,@) = H(-R,0,%) (3.3)

®w =2Tisx
e

for any d(8,¢). Again using 6(x)==[ ds, and setting s = r|R|, equation (3.1)

00

becomes

H(R,0,0) = 2(G:2) (3.4)

IR |



with
D(0,%) =JJ5_('cos (®-¢) cos 0 cos O + sin O sin O) d(6,¢) dw (3.5)

for -n/2 £ @ < w/2, ~w/2 < 0 < /2.
Let @ c o ¢ E8,¢’ where
| Q0 = {(8,0): =By < 0 < Bg5 ~¢o S & S ol (3.6)
for 0 < 89 < M/2 and 0 < ¢y < W/2.
Then, from equations (2.23), (3.5) (replacing £ by $) and (3.6), it can be séen that
D(-0,%) = D(O,-9) = D(O,d) . (3.7)
Hence, with these conditions, the évaluation of equation (3;5).may be confined to
the Fourier space region:
0go<m/2, 0<dsui2.
It will be seen later that © = 0 and @ = 7/2 are special caées and must be
treated separately. Thus, with —8¢ < 6 < 0y for 0 < 8y < 7/2 and 0 < @ < w/2, the

product cos § cos © is greater than zero. Using
1
S{£(x)g(x)) = 7= 8(g(x)), £(x) > 0 (3.8)
f(x)
[see Gel'fand and Shilov (1964)3, equation (3.5) may be written:

D4y

D(O,d) = §(cos ¢ + tan O tan Q) d(B,d~4) dO d¢ . (3.9)

cos O 06, ¢ -8,

Setting t = cos ¢ + tan © tan O, ® = tan™' {(t-cos ¢)/tan O} equation (3.9) becomes

D(0,p) = L3 9 J’(M% Itz 5(t) d{tan"'[ (t-cos ¢)/tan 0], Qq‘;} dt db

cos © tan* O+ (t-cos ¢)2 (3.10)
o-9¢
where
t; = cos § — tan O tan G
ty = cos ¢I+ tan 6y tan © .
Since
b 1
J. S(t)f(t) dt ='E{sign {b) - sign (a)} £(0) (3.11)
a



equation (3.10) may be written

@+¢o ‘ '
p(@,%) = J s($;00,0) 2(4;0,9) do v (3.12)
' B-do
for 0 < ©<m/2, 0<% <2,
where the functions s and g are given by
1
s($3;87,0) = E{sign {(cos ¢ + tan 8, tan ©) - sign (cos ¢ - tan 8¢ tan @)} (3.13)

tan © d[tan™!(cos ¢/tan 0),%-¢]
cos © tanZ C + cos? ¢ ’

g($;0,8) = (3.14)

since d(-8,¢) = d(8,9). Equation (3.1) is thus reduced to a single integrationm,
equation (3.12), with the functions s and g given by equations (3.13) and (3.14).
Computer implementation of equation (3.12) may be made more efficient by a detailed
analysis of equation (3.13), The function s{(¢;00,9), with a value of +1, -1 or 0,

has the effect of segmenting Fourier space into at most four regions as follows:

D(9,%) =0 L (3.15)
' 029 <2 - ¢o ‘
B+ m/2 - 89 £ 90 < W/2
- D(6,%) = I g($;0,%) d¢ f(3.16)
d-d o 0<d <72
rb 0 <0 <T/2 - 6y .
D(0,%) = 2(430,9) 4o | (3.1
/a |22 = ¢o| < @ < m/2
TN B+ 0<0<m/2-8p
D(9,%) = g($;0,%) do + I g($:;0,9) d¢ ‘ (3.18)
v $-do 2 029< g -0
with
a = max{® - ¢o, 41}
b = min{¢ + ¢y, 22}
and

27 = cos !(tan 8¢ tan O)

L2 cos™{-tan By tan Q) .
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The special cases D(0,9) and D(n/2,9) may be computed from equatioms (3.5),
(3.8), and (3.11). It can be shown that

0 0<£0<w/2- ¢,
p(0,% = ; (3.19)

b
2I P d(o,m/2-8) 46 m/2 - ¢, 0 S /2
Q

: $
D(N/2,8) = 2 J' * 4(0,6) dé 0<d<m/2 (3.20)
1]

In summary, equatioms (3.15) to (3.20) may be used to compute D(@,%) for a

given detector function d{(6,$). The deconvolution filter required in equation (2.14)

" is then-giﬁen'immediately by equation (3.4). The remaining one-dimensional integra-

tions over finite intervals may be performed either numerically, or, if d(6,¢) is of
a suitable form, analytically.

It can be seen from eﬁuation (3.15) that for ¢g = m/2, i.e., full rotation, the
two~dimensional region in which D(6,%) = 0 reduces to a line even for 6o < T/2 and
an exact reconstruction is possible, If both ¢y < T/2 and 8 < 7/2 only the limited
angle approximation to a(x,y,z), as discussed in the previous section, may be found

using this method.

In the next section, to illustrate the use of these equations for the evalua-

tion of H(kx,ky,kz), two interesting imaging geometries will be considered.

SPECIFIC DETECTOR FUNCTICONS

Suppose the detector function d(8,¢) is of the form
dn(8,¢) = cos™ 6 cos™ ¢ forn =0, 1 . (4.1)
The filters corresponding to these two detector functions may be evaluated directly |
using equations (3.15) to (3.20).
41 n=0

In this case, the detector function is a comstant, independent of 8,4, Suppose

0 <6 <8y <T/2 and ¢o = 1/2, i.e, large-area detectors rotated through 180°, such
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as the Anger camera system congidered by Colsher (1980). Let 0 < © < /2, so that

go, the g-function for n = 0, from equation (3.14) is independent of ¢ and given by

.oy _ tan @ 1
80(9i9) = 555 Tz O+ cos? ¢ (4.2)
It may be verified that
. 0= < £
tan”! ——=. 2 cgs 2 - tan } 2= F c;s B g 0"01:'8 "
8 sin O sin o sin O sin m<a<B<O
J 80 (4;0) d¢ = (4.3)
o i

cos a - cos F
1 - tan ! B

T + tan =& —p———— ——
sin © sin o gin @ sin B *

-TEa<0<BEw,

The remaining integration may therefore be performed analytically amd the ap-
propriate filter written down immediately from equations (3.15) to (3.20) with
equations (4.2) and (4.3). From equation (3.15), since ¢, = m/2 there is no two-
dimensional region for which D(©,%) = 0 and an exact reconmstruction is possible.
From equations (3.16) and (3.17), after some manipulation:

m T2 - 8y £ 0 < 7/2

Dy (@) = 1 sin 8, (4.4)

2 tan

0<@<'ﬂ'/2"99

veos2 @ - sin? B,

for 0 £ ¢ < /2. Using equation (3.4) and the identity

- in . - in 6 i
tan™! sin O = gin™! %%E“@l . !
Yeos2 @ — sin? 8,

the result is essentially the filter derived by Colsher (1980) for a rotating
positron camera. It may easily be verified that the result agrees with Colsher
also at @ = 0 and @ = 7/2 using equations (3.19) and (3.20). This work therefore
generalizes Colsher's result, valid only for ¢, = 7/2, and shows that, as expected,
for ¢, < m/2 only an approximate reconstruction of a(x,y,z) will be possible.
Equation (4.3) is valid also in the case of ¢, < m/2.
4.2 n=1

The detector function, from equation (4.1), is

d,(8,0) = cos & cos ¢ , within &

= cos 8/
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where 6’ is the angle between the unit vector e and the x-axis, the axis perpendi-
cular to the detectors, This is the angular function discugsed by Chu and
Tam (1977), which arises when the back-projected image is formed by the inter-
section of positron annihilation event lines with a set of yz planes parallel to
the stationary detectors. When the detectors remain stationary, the filter is the
one given by Schorr and Townsend (1981). Suppose, however, that the detectors are
rotated through an angle ¢’ < m/4, while keeping the back-projection planes fixed
in the no-rotation position. The back-projection process remains the same, but
the filter must be modifiea to include the data from the additional angular posi-
tions.

The new filter is computed as follows: let g; be the g-function from equa-

tion'(3.l4) for the detector function d;(8,¢). Then, for 0 < 0 < 7/2,

21 (630,8) = tan @ cos[tan"!(cos ¢/tan ©)] cos(&-¢)

cos O tan? @ + cos? ¢ (4.3)
Using the identity
. -1 €Os by _ -1 cos ¢
tan © sin(tan tan e) cos ¢ cos(tan ot
it may be verified by differentiation that
] o o . -1 cos ¢, sin O ., -1 cos ¢
.f g1(9;0,0) do sin © sin ¢ cos ¢ cos (tan ton e) o5 O sin (tan e )
(4.6)

0<B<wf2, 05¢gnf2

for all ¢. Expressions for D,(0,®) may then be written down using equations (3,15)

to (3.18) with equation (4.6). Finally, from equations (3.19) and (3.20),

0 05¢<TT/2-¢°
D;{0,9) =
' . , 4.7)
2 sin B¢ sin & m/2 - ¢ < ¢ < W/2
D,(r/2,%) = 2 sin ¢y 0gd<gmf2 (4.8)

The filter H; (R,0,9) is obtained using equation (3.4). The use of this filter

is discussed elsewhere (Townsend et al. 1982).
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CONCLUSTON

The reconstruction of fully three—dimensional images requires a suitable
algorithm, Extension of the back—proﬁection and Féﬁrier space deconvolution
algoritﬁm to three—dimensions is one possibility that has been suééessfully im-
plemented. However, the evaluation of the three~dimensional Fourier transform of
the imgging system response function can be lengthy and complex. In this paper,
a method has been given that greatly simblifies the calculation by reducing the
Fourier transform to, at worst, a one-dimensional integration over a fiﬁite in-
terval that must be performed numerically. Depending on the imaging-system geo~
metry, expressed in a general detector function 4(8,9), the final integration may
be solved analytically. The resulting closed-form expressions, although appearing
lengthy, are easily implemented on a computer.

The method has been shown to agree with the work of Colsher (1980) for a

rotating positron camera,
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