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1. INTRODUCTION

The investigation of theories in the social and biological sciences
frequently results in data érrayed as multi-dimensional contingency tables.
guch tables vrepresent a complex underlying structure about which the sci-
entist wishes to evaluate certain research questions. Thus, the precise
formulation of gorresponding hypotheses within the framework of a general
statistical methodology is a necessary prerequisite for accomplishing this
objective in an informative manner.

Experiments (or surveys) with repeated measurements on subjects are
a class of research designs which frequently involve such conceptually
complex data arrays. Examples of such investigations are commonplace in
the literature and include the following:

i. Longitudinal follow-up studies of the health status of subjects
who are being treated for chronic diseases including situations
such as change-over designs in clinical trials (e.g-., the exam-
ples in Section 3.1, 3.2, and 3.3 and in Koch, Imrey, and Rein-
furt [ 20 1);

ji. Longitudinal panel surveys of political opinion or economic status
(e.g., Lehnen and Koch [ 24 1);
iii. Intensity of agreement SUrveys dealing with comparative attitudes
towards different policy questions (e.g., Lehnen and Koch [ 25 1);
i{v. Preference surveys involving complete or partial rankings of two
or more alternative issues or items (e.g., the example in Sec-
tion 3.4).
In all of these situatioms, the most common research design can be

fegarded as involving samples from s sub-populations of subjects with ecach



subject selected from each sub-population being exposed to d different

measurement conditions (e.g., treatments or a set of stimuli like compar-
ative attitudinal policy questions) and classified for each in terms of a
response with L levels. However, it should be recognized that the under-
lying structure of such studies can become extremely complex if data col-
lection is incomplete in the sense that different subsets of the d condi-
tions (or set of stimuli) are measured on different subjects. This topic
is outside the scope of this paper, but is discussed in detail in Koch,
Imrey, and Reinfurt [ 20 ] and Lehnen and Koch [ 24 1.

The questions of substantive interest which are associated with exper-
iments (or surveys) with repeated measurements are as follows:

1. Are there any differcnces among the sub-populations with respect

to the distribution of the responses to the d conditions?

2. Are there any differences among the distributions of responses to
the d conditions within each of the respective sub-populations?
3. Are there any differences among the sub-populations with respect
to differences among the distributions of responses to the d con-
ditions?
As indicated in Koch and Reinfurt [ 22 ], the questions (1) - (3) are directly
analogous to the hypotheses of 'no whole-plot effects,' "no split-plot effects,"
and '"no whole-plot x split-plot" interaction in standard split-plot experiments
as described in Anderson and Bancroft [ 1 ], Federer [ 10 ], or Steel and
Torrie [ 29 ]. Here, however, the conceptual formulation of such hypotheses
must be undertaken in terms of an underlying (s x r) contingency table where
T = Ld represents the number of possible multivariate response profiles.

This topic is discussed in considerable detail in Section 2.2 where it is

indicated that the first order marginal distributions of response for each .



of the d measurement conditions contain most of the reclevant information for
dealing with the questions (1) - (3). Test statistics for such hypotheses
and the estimation of paraméters for underlying linear regression models are
obtained through weighted least squares computations by methods as described
in Grizzle, Starmer, and Koch [ 16 ] (hereafter GSK). Four examples which
jllustrate various aspects of the scope of such analyses are discussed in

Section 3.

2. METHODOLOGY

The purpose of this section is the presentation of a general statis-
tical methodology for repeated measurement experiments (or surveys) which
involve multivariate categorical data. For this purpose, Section 2.1 is
concerned with summarizing the most important aspects of the matrix opera-
tions associated with the GSK approach to the analysis of complex contin-
gency tables. These procedures are then applied to repeated measurement
experiments in Section 2.2. In‘this céntext, attention is‘primarily focused
on the formulation of certain hypotheses of interest and specifying the
relevance of these hypotheses to the experimental (or survey) conditions
under consideration. Thus, the resulting methodology represents a cate-
gorical data analogue to more well-known counterparts for quantitative data
1ike multivariate analysis of variance as described by Cole and Grizzle [ 8]
and Morrison [ 27 1 in the parametric case and multivariate rank analysis
as described by Koch [ 17,18 ] in the non-parametric case. Finally, several
computational strategies for effectively dealing with certain problems asso-
ciated with the manipulation of large contingency tables are given in Sec-

tion 2.3.



2.1. General Framework .. . . ‘ _ ‘ .

Let j = 1,2,...,r index a set of categories which correspond to r, pos-—
sibly multivariate, response profiles associated with a specific set of depen-
dent variable(s) of interest. Similarly, let i = 1,2,...,s index a set of
categories which correspond to distinct sub-populations as defined in terms
of pertinent independent variables. If samples of size ni where i = 1,2,...,s
arc independently selected from the respective sub-populations, then the
resulting data can be summarized in an (s x r) contingency table as shown in
Table 1 where nij denotes the frequency of response category j in the sample

from the i-th sub-population.

1. OBSERVED CONTINGENCY TABLE

. Response profile categories
Sub-population 1 5 - - Total
1 n n cee n n
11 12 1r 1
2 n,y Ny, co n, n,
s n_y n_, cee n_ ng |

The vector n, where ni' 'nir) will be assumed to follow

N, 5D, ny e

( i1’ 42

the multinomial distribution with parameters n, and w,' = (7, ,T, y... T, ),
i ~1 il’ i2 ir

where "ij represents the probability that a randomly selected element from
the i-th population is classified in the j-th response category. Thus, the

relevant product multinomial model is

S r nij
= ! 1 ! 2.1
) 21 {n j=1[ﬂij /nij']} (2.1)




with the constraint

Y
Y, =1fori=12,...,8. (2.2)
3=1 1

Let p, = (ni/ni) be the {(r = 1) wvector of obscirved proportions asso—

~

ciated with the sample from the i-th sub-population and let p be the (sr x 1)
compound vector defined by p' = (pi,pé,...,p;). The vector p represents
the unrestricted maximum 1ikelihood estimator of T where T o= (ﬂ',ﬂé,...,ﬂé).

A consistent estimator for the covariance matrix of p is given by the (sr X sr)

block diagonal matrix v(p) with the matrices

1
v, () s By TR

~

1, (2.3)

(rxr)

for i = 1,2,...,5 on the main diagonal; here, D is an (r x 1) diagonal matrix
i
with elements of the vector p, o the main diagonal.

Let Fl(g),Fz(E),...,Fu(E) be a set of u functions of p which pertain to
some aspect of the relationship between the distribution of the response pro-
files and the nature of the sub-populations. Each of these functions is
assumed to have continuous partial derivatives through order two with respect
to the elements of p within an open region containing T = E{p}. If F = F{p)

is definced by

Fro= ()" = [F (R),Fy(p)se s F (@] (2.4)

~ ~ o~

ft

then a consistent estimator for the covariance matrix of F is the (u x u)

matrix

v, = VI, (2.5)

~

where H = [dF(x)/dx ‘ x = p} is the (u x sr) matrix of first partial deriva-



tives of the functions F evaluated at p. In all applications, the functions .

comprising ¥ are chosen so that YF is asymptotically nonsingular.

The function vector F is a consistent estimator of F(m). Hence, the
variation among the elements of F(W) can be investigated by fitting lincar

regression models by the method of weighted least squares. This phase of

the analysis can be characterized by writing

£ (F} = £, {r(»} = F(m) = X B, (2.6)

where X is a pre~-specified (u x t) design (or independent variable) matrix

of known coefficients with full rank t < u, B is an unknown (t x 1) vector

of parameters, and "EA means 'asymptotic expectation."

~

The model (2.6) implies the existence of a full rank [(u-t) x u] matrix

C which is orthogonal to X such that

E {c F} = CXB-= (2.7)

~A T~ Q(U"'t)’l,

where O(u is a [(u~t) x 1] vector of 0's. The equations (2.7) repre-

-t),1

sent the set of constraints on the vector F(m) which are implied by the
model (2.6). Thus, it follows that a consistent estimator for the covar-
iance matrix of the [(u-t) x 1] transformed functions vector G = C F is the

[(u-t) x (u-t)] matrix V, = C V_ C'. As a result, an appropriate test stat-
~G Z JF 2 pprop

istic for the goodness of fit of the model (2.6) is

Q= QW) =6 vV G=F v.c 1t e, (2.8)

[}

which is approximately distributed according to the Xz—distribution with
D.F. = (u-t) if the sample sizes {ni} are sufficiently large that the ele-

ments of the vector F have an approximate multivariate normal distribution

as a consequence of Central Limit Theory. Such test statistics are known as



Wald [ 30 j statistics and various aspects of their application to a broad
range of problems involving the analysis of multivariate categorical data
arc discussed in Bhapkar and Koch [ 6,7 ]} and GSK.

On the other hand, the actual manner in which statistics like (2.8)
are applied in practice involves a weighted least squares computational

algorithm which is justified on the basis of the fact that

(F - X b), (2.9)

14

- where b = (X' V -1 x)“1 X'V -

F is a BAN estimator for B based on the

~ ~

linearized modified Xi—statistic of Neyman [28]. 1In view of this identity
both Q and E are regarded as having reasonable statistical properties in
samples which are sufficiently large for applying Central Limit Theory to
the functions E. With these considerations in mind, it then can be noted

that

X) (2.10)

ijs a consistent estimator for the covariance matrix of E.

If the model (2.6) does adequately characterize the vector E(E), tests
of linear hypotheses pertaining to the parameters @ can be undertaken by
standard multiple regression procedures. In particular, for a general

hypothesis of the form,

Hy: CB=0, 4, (2.11)

where C is a known (q x t) matrix of full rank q < t and 0q 1 is a (q x 1)
~ ~M

vector of O's, a suitable test statistic is

p'¢c' {cv,_C'] “Chb

~ o~ ~

14

Q. = Q.(X,F)
¢ - b~ (2.12)
R

~



which has approximately a chi-square distribution with D.¥. = q in large sam- .

ples under HO.

In this framework, the test statistic QC reflects the amount by which
the goodness of fit Wald statistic (2.8) woulé increase if the model (2.6)
werc simplified (or reduced) by substitutions based on the additional con-
straints implied by (2.11). Thus, these methods permit the total variation
within E(H) to be partitioned into specific sources and hence represent a
statistically valid analysis of variance for the corresponding estimator
functions E.

Predicted values for E(H) based on the model (2.6) can be calculated

from

Foxb=x (x'v.1IxTx VF'1 F. (2.13)

~ ~

Congistent estimators for the variances of the elements of F can be obtained

from the diagonal elements of

Ve = X (X' vV -1 x)’l X'. (2.14)

~ ~

~ ~

The predicted values § not only have the advantage of characterizing essen-
tially all the important features of the variation in E(E), but also repre-
sent better estimators than the original function statistics E since they
are based on the data from the entire sample as opposed to its component
parts. Moreover, they are descriptively advantageous in the sense that they
make trends more apparent and permit a clearer interpretation of the rela-
tionship between E(H) and the variables comprising the columns of X.

As indicated in GSK, two classes of functions E pertain to most appli-
cations which are currently discussed in the literature. These are linear

functions of the type ' .



F(p) =Ap=a (2.15)
where A is a known (u x sr) matrix and log-linear functions of the type
F(p) = K [log, (a p)] = K [1og, (@1 =L (2.16)

~

~

where K is a known (k x u) matrix, A is as defined -in (2.15), and loge trans-
forms a vector to the corresponding vector of natural logarithms. On the

basis of (2.5), the estimated covariance matrix for the linear functions in

(2.15) is

v, = A V(] AT (2.17)

~

and for the log-linear functions in (2.16) is

-1

a

A @) A" DT K (2.18)

~

V., =KD

~

-

where Pa is a diagonal matrix with elements of the vector a on the main diag-
onal. )

More generally, Forthofer and Koch [12] comsider an extended class of
compounded logarithmic, exponential, and linear functions which includes
complex ratio estimates like rank correlation coefficients, survival rates
derived from life tables (see Koch, Johnson, and Tolley [21]), and log log
functions (see Freeman, Freeman, and Koch [13]). TFinally, Koch and Tolley
[23] discuss the application of this general approach to implicitly defined
functions of P in the context of the estimation of bacteria density in
serial dilution experiments. Thus, all aspects of this methodoloéy can be
directed at implicit functions which are based on maximum likelihood esti-
mation equations corresponding to preliminary or intermediate (as opposed
to final) models with a priori assumed validity; in other words, models in

which the likelilhood (2.1) initially (i.e., prior to any data analysis)

satisfies both (2.2) as well as certain-other constraints analogous to 2.7).
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2.2. Formulation ¥or Repcated Measurement Experiments

For repeated measurement experiments, each subject is observed under
each of d different conditions (e.g., treatments, policy questions, time
points, etc.), and the corresponding responses are each classified in terms

o d . . .
of L categories. Thus, there are r = L= possible multivariate response
profiles.

In accordance with the general framework in Section 2.1, these response
profiles will be indexed by a vector subscript j = (jl’jZ""’jd) where

i =1,2,...,L for =1,2,...,d. As a result, m,, = T,. . . repre-
Jg y &y s g s 4y ’ ) ll 131’32""’3(1 p

sents the joint probability of response profile j for randomly selected sub-

~

jects from the i-th sub-population. 1If there are no differences among the

sub-populations, then the {ﬂij} satisfy the hypothesis,

~

1. .: = = ... = ' 2.1
ISJ “lj M., . ﬂsj for all j; ( 9)

similarly, if there are no differences among the d conditions in a strict

overall sense, then the {ﬂij] satisfy the hypothesis of total symmetry

~

H _: = T, . f 1 j i = 1,2,...,8, .2
- ﬂij ﬂl’f(l) or all j and i = 1,2 s (2.20)

~

where z(j) is any permutation of j. These hypotheses, together with certain

~

no intcraction formulations like those discussed in Bhapkar and Koch [6,7]

can be tested by means of the general GSK methodology outlined in Section 2.1.

However, these statistical tests are of limited practical interest since the
quantities which provide the most obvious indication of the relative effects
associated with the respective measurement conditions and sub-populations

are the first order marginal probabilities

z X i=1,2, 3
¢ = e m for g = 1,2,...,d (2.21)
igk 1315300053y E oL

26de

with j =k >
jg .

SO

AN




11

Here, ¢igk represents the probability of the k-th response category for the
g-th condition in the i-th sub-population. If there are no differences
among the sub-populations in the sense of (2.19), then the {¢igk} satisfy

the hypothesis,

H = ¢ for

g
sgk b (2.22)

st Prgk = Pogk T

while if there are no differences among the conditions in the sense of (2.20),

then the {¢igk} satisfy the hypothesis of first order marginal symmetry (homogeneity)

_ _ i=1,2,...,8
Hoy? 31k = Pi2k = o0 " %ak T k=1,2,...,L (2.23)

Thus, it logically follows that

HSM false — HSJ false (2.24)
HCM false —— HQJ false (2.25)
which means that HSJ (or HCJ) must be rejected whenever HSM (or HCM) is

rejected. Alternatively, situations where HSM (or HCM)’is true, regardless

of whether HSJ (or HCJ) is true, would be interpreted as involving no gross

(macro) differences among the sub-populations (conditions). Thus, the

hypotheses HS and HC are of interest in their own right with respect to

M M

investigating the effects of sub-populations and conditions on the response
distribution under study.

Moreover, HSM (or HCM) have greater logical relevance for this pur-
pose than HSJ (or HCJ). This point of view can be justified by noting that
the additional constraints on the ﬂij which are associated with HSJ (or HCJ)
but not HSM (or “CM) involve relativ;ly complicated equations which do not

have a straightforward interpretation. Also, these constraints are partially

confounded with those which pertain to the patterns of association (i.e., lack
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of independence) among the responses to the respective measurement condi-

tions since the hypothesis,

g

H ¢ for all j and 1 = 1,2,...,s, (2.26)

1 ngg

o= e

] . .
JI ijl,JZ,...,Jd

of joint independence in conjunction with HSM (or H_, ) necessarily imply

CM

HSJ (or H,. ). 1In repeated measurement experiments, such association is

cJ
present to the extent that underlying subject effects cause measurements
under two different conditions on the same subject to be relatively more
similar than corresponding measurements on different subjects. This type
of dependence among responses may be even further compiicated by factors

pertaining to the adjacency of measurements in time and space (e.g., in cer-

tain longitudinal studies, measurements from adjacent time points are often

more related to each other than those for distant time points). Since such
association can be inherently present without having any real bearing on
the interpretation of sub-population and condition effects, it then becomes
reasonably appropriate to filter the corresponding constraints out of HSJ

Thus, for most practical

and H but this, of course, yields H and HC

cJ’ SM M

purposes, consideration can often be entirely restricted to HSM and HCM in
tepcated measurement experiments (or surveys). Finally, statistical tests
directed at HSM and HCM tend to have better asymptotic convergence prop-
erties (with respect to the valid application of Central Limit Theory argu-
ments) in moderately large samples than those directed at HSJ and HCJ since
they involve fewer constraint equations (i.e., degrees of freedom). This

aspect of the analysis of repeated measurement experiments (or surveys)

will be discussed in further detail in Scction 2.3. Otherwise, the remainder

of this section will be concerned with additional hypotheses involving the .
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{¢igk} and their subsequent analysis.

The hypothesis of no interaction between conditions and sub-populations

can be formulated for the {¢igk} in an additive sense in terms of the model

i=1,2,...,8
H ¢, =p +E .t Ty for g = 1,2,...5d, (2.27)
AM igk k i*k gk ko= 1,2, L

where My is an overall mean associated with the k-th response category, gi*k

is an effect due to the i-th sub-population, and T*gk is an effect due to
the g-th condition and where it is usually understood that the {uk},

{¢.,.}, and {1, _,} satisfy the following types of constraints
1k xgk

L L L
kzl Mo b kzl EL kzl Trgl 0
" (2.28)
s d
121 fiac T O gzl Tagle = O

as a consequence of (2.2) and certain parameter jdentifiability considera-
tions (i.e., removal of logical redundancies among parameters). 1f the
model (2.27) is appropriate for a particular experimental situation, then

the hypothesis Hgy in (2.22) implies

HSMlAM: gl*k = Ez*k = .. = Es*k =0 for k=1,2,...,L, (2.29)
and the hypothesis HCM in (2.23) implies
Nyl an® To1k = Thgr = **° = Tadk = 0 for k=1,2,...,L. (2.30)

Other hypotheses of interest can be formulated in an analogous manner in
order to account for any inherent structure associated with the s sub-popu-=
jations or the d conditions (e.g., trends or separate roles of two or more

underlying factors). Also, in some cases, it may be more appropriate to
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work with multiplicative no interaction models in which the additivity rela-
tionships like (2.27) pertain to the {log ¢igk} (for additional discussion
see, Bhapkar and Koch [6,7] and Darroch [ 9 ]. An example of this type of
situation 1is discussed in éection 3.3.

All of these consideratiosn can be extended somewhat further if the
response categories k = 1,2,...,L are ordinally scaled with progressively
larger intensities. In this event, the effects of the respective sub-pop-
ulations and measurement conditions can be compared in terms of one or more

of the following cumulative marginal probability functions:

o = § 4, fortThZicus 2.31)
B pe(kt1) B &7 o

where k = 1,2,...,(L-1). Here eigk represents the probability that the
response intensity is strictly greater than the k-th category for the g-th
condition and the i-th population. If the relative substantive importance

of the ei can be characterized by non-negative weights wl,wz,...,w(L_l)

gk

(at least one of which is non-zero), then attention can be ‘directed at sum-

mary indexes:

(L-1) L .

i=1,2,...,s ‘
= = > ? 2.32
Mg 7Ly Bl T L e T g - 102l (2.32)
(k-1)
= = = . ded
where ay 0 and ay gzl wg for k 2,...,L Thus, nig can also be regarde

as a mean score for the g-th condition and the i~th sub-population with
respect to an underlying numerical scaling @138ns e 0058y of the L response
caéegories. In this context, the {nig} are equivalent to mean scores derived
from strictly quantitatively scaled response variables as discussed by

Bhapkar [ 5 ]. Hence, if there are no differences among the sub-populations
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in the sense of HSM in (2.22), then the {nig} satisfy the hypothesis:

H : nl

SAM =My, = «-- = nsg for g = 1,2,...,d; (2.33)

4 4
while if there are no differences among the conditions in the sense of HCM

in (2.23), then the {nig} satisfy the hypothesis

H : N., =N for 1 = 1,2,...,5. (2.34)

eadt M1 = M2 = 000 T Mia

The logical relationship between HSAM (or HCAM) and HSM (or HCM) is
directly analogous to the relationship previously discussed between HSM

(or HCM) and HSJ (or HCJ)° In particular, it follows that

HSAM false —— HSM false (2.35)

HCAM false‘—-—-——-—-)HCM false (2.36)

which means that HSM (or HCM) must be rejected whenever HSAM (or HCAM) is

réjected. Alternatively, situations where HSAM {or H AM) is true, regard-

C
less of whether HSM (or HCM) is true, would be interpreted as involving no
average gross (macro) differences among the sub-populations (conditions).
Thus, the hpotheses HSAM and HCAM are of interest in their own right w1th.
respect to investigating the effects of sub-populations and conditions on

the response distribution under study. Moreover, H (or H ) have greater

SAM CAM

logical relevance for this purpose than HSM (or HCM), particularly if the
SCOTES ap,a8,5 0033y provide a reasonably meaningful and valid quantitative
measure of the intensity of the response. Further justification for this
point of view can be derived by noting that the additional constraints on
the {¢igk} which are associated with HSM (or HCM) but not HSAM (or HCAM)
involve relatively complicated equations which are difficult to interpret

because they pertain more to the "ghape" of the response distribution as
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opposed to its "location." TFor example, if HSM (or HCM) are false in the
sense that differcnces among the sub-populations (or conditions) are pro-
gressively increasing with respect to the probabilities of the response
categories k = 1,2,...,L so that the "weaker (smaller k) responses" are more
likely for some sub-populations (or conditions) while the "stronger (larger k)

responses' are more likely in others, then H (or H

SAM AM) will be correspond-

C

ingly contradicted since the mean scores {nig} based on (2.32) will tend to

be smaller in the former and larger in the latter. Although it is preferable

a )

for the weights W 12895+ sy

1,w2,...,w(L_l) (or alternatively, the scores a

to have a strong substantive scaling basis, these same conclusions still

apply to almost the same extent if these weights are equal; i.e.,

W, =W, =

L= Wy = e =Wy =1, (2.37)

so that

a,. =0, a, =1, a, = 2, ..., a = (L-1) (2.38)

represent an equally gspaced scale. Thus, for most practical purposes, con-
sideration can often be restricted to some reasonably appropriate formulation

of N and HC

SAM in repeated measurement experiments (or surveys) involving

AM

ordinally scaled response categories. Finally, statistical tests directed

at HQAM and HCAM tend to have better asymptotic convergence properties (with

respect to the valid application of Central Limit Theory arguments) in mod-

erately large samples than those directed at H,,, and HC since they involve

SM M

fewer constraint equations (i.e., degrees of freedom). As mentioﬁed pre-
viously, this aspect of the analysis of repeated measurement experiments (or
surveys) will be discussed in further detail in Section 2.3.

Other hypotheses can be formulated in terms of the {nig}' For example,

if there is no interaction between conditions and sub-populations in the
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sense of (2.27), then the {nig} satisfy the model

. -7 4 F = i=1,2,...,8
Bt Mg = He ¥ Sgne ¥ Tage for o -1,2,...,d° (2.39)
with the constraints
§: 3 % T
Eig. = 0, T = 0. (2.40)
Ko Koo
i=1 + g=1 &

Here a. is an overall mean, Ei*. is an effect due to the i-th sub-population,
and ;;g- is an effect due to the g-th condition. If the model (2.39) is
appropriate for a particular experimental situation, then the hypothesis

H in (2.33) implies

SAM
HSAMlAMA: E1x. = EZ*. = ... = gs*. =0, (2.41)
and the hypothesis H.,y in (2.34) implies
T = ... =T = 0. (2.42)

Boam|ama®  Txae T Txoe %d

The hypothesis (2.35) is directly analogous to the hypothesis of no whole-
plot by split-plot interaction in standard split-plot (or repeated measure-
ment) experiments involving a univariate quantitatively scaled response
variable. Similarly, the hypotheses (2.41) and (2.42) are analogous to the
hypothesis of no whole-plot main effects énd the hypothesis of no split-plot
main effects. Thus, all the models and hypotheses considered in this sec-
tion represent straightforward extensions of split-plot (repeated measure-

ment) analysis of variance to multivariate categorical data.
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Statistical tests for the hypotheses previously discussed in this sec-
tion as well as the estimation of corresponding model parameters can be under-
taken within the general framework of Section 2.1 by specifying the appropriate
set of functions F and operator matrices (eg., A, K, X, and g's). Yor this
purpose,

1. The é matrix specifies additive operations and can be used to gen-

erate linear functions of the observed compound proportion vector P
which are unbiased estimators for certain sets of cell probabilities
like the {ﬂij},marginal probabilities like the {¢igk} and/or mean

scores like ;he {nig}' In this regard, the roﬁs of é represent the

respective functions while the columns are the corresponding coef-

ficients of the elements of the compound vector p which produce

~

such functions.

2. The K matrix specifies multiplicative operations (i.e., additive
on the loge scale) and in combination with the appropriate A matrix
can be used to generate asymptotically unbiased estimators for

functions involving the {loge ﬂij} or the {loge ¢igk}'

=

3. The § matrix has the same role here as it does in standard multiple
regression; i.e., it indicates the manner in which the variation
among a certain set of functions E(H) of cell probabilities can be
characterized as linear functions of a smaller set of unknown
parameters. Thus, the columns of X correspond to the components
of g; and the rows of § specify the appropriate linear combination
of the components of the parameter vector @ which apply to the
respective elements of g(g).

4, The 9 matrix also has the same role as in standard multiple regres-

sion; i.e., it indicates which linear functions of the param-
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et e S

eters are equal to 2zero in accordance with a particular hypothesis
which is to be tested.
Although the construction of these matrices is reasonably straightforward
for repeated measurement experiments (or surveys) associated with specific
applications, the corresponding expressions for the general framework which
has been discussed here are uninformatively complicated and tedious. For
this reason, such mathematical details will be discussed in terms of the

special case where there are s < 2 sub-populations, d = 2 measurement con-

ditions, and an ordinal response with L = 3 categories which can be quanti-
tatively scaled in terms of scores al,az,a3 respectively. The functions
required to test’HSJ in (2.19) and HCJ in (2.20) can be generated (with

proper account given to (2.2)) by using

100000000

010000000

001000000

000100000
A =1000010000 ® Iy (2.43)
léxl8 |000001000

000000100

000000010

where ¥) denotes Kronecker product and I denotes the (u x u) jdentity matrix.

If X = Il is used, then

8x16

generates a test statistic for HSJ via (2.12) while

——

o 1 0-1 0 0 00
Coy = |0 0 2 0o 0 0-1 0| ® I, (2.45)
~ o 0 0 0 01 0-1 ~

6x10

similarly generates a test statistic for HCJ'
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The functions required to test HSM in (2.22) and H in (2.23) can be

CM

generated (with proper account given to (2.2)) by using

111000000
_]J0o00111000
A =l100100100| ® Iy (2.46)
8x18 010010010
If X = I8 is used, then
Co = 11 1, 2.47)
4x8
produces a test statistic for HSM via (2.12) while
{1 0-1 0
Com = {g 1 0-1 ® 1 (2.48)
4x8
similarly produces a test statistic for HCM' The hypothesis HAM of no inter- ‘

action in (2.27) can be tested by the goodness of fit statistic (2.8) which

corresponds to the model

— haa
Hy
1 1 1 Ho
X =1, ® |5 7Y wien g = |B1s1] . (2.49)
i ~2 1-1 1 b £
8x6 1 -1 -1 6x1 1%2
Tx11
Tx12
If the model (2.49) corresponding to HAM can be presumed to hold, then the
hypotheses HSMIAM and HCMIAM can be tested by using
_|0o0o1r1000 {00001
Com|an = [é:o 010 ;] and - Coy|ay = [&_o 00 o:ﬂ (2.50)
2x6 2x6

respectively. .
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The functions required to test HSAM in (2.33) and HCAM in (2.34) can

be generated by using

ay a) a; a, a, ay a5 a5 a,
A = ® L.. (2.51)

~

~ a, a, a, a, a, a, a, a, a
%18 192 7371727371723
If X = I4 is used, then
|11 0-1 O |1 -1 0 O

Csam ~ [o 10 -1:l and Coaw "o 0 1 -1] (2.52)

2x4 2x4
produce test statistics via (2.12) for HSAM and HCAM respectively. The
hypothesis HAMA of no interaction in (2.39) can be tested by the goodness

of fit statistic (2.8) which corresponds to the model

(2.53)

!
o
|
e
T
)
e
ct
=
w
H]

*] e

If the model (2.53) corresponding to H Mp Can be presumed to hold, then the

hypotheses HSAM|AMA and HCAMIAMA can be tested by using
ESAMIAMA = [0 1 0] and QCAMlAMA = [0 0 1] (2.54)
1x3 1x3

respectively.

Other aspects of the specification of these operator matrices will be
discussed in terms of the examples in Section 3. In particular, the example
in Section 3.3 illustrates the use of the E—matrix operator (in conjunction
with an Q—matrix analogous in structure to (2.46)) to form appropriate log~-

lincar functions of the {¢igk}'
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2.3. Special Considerations For Large Tables And Zero Cells

Unless both the number of conditions d and the number of response cate-
gories L are small (eg., d < 3, L < 3), the number of possible multivariate
response profiles r = Ld can become very large. 1In this event, there are
two sources of potential difficulty:

i. The manipulation of very large contingency tables and operator
matrices can become very expensive with respect to both computer
time as well as programmer effort.

ii. For each sub-population i = 1,2,...,s, some of the r possible

response profiles j will not necessarily be observed in the respec-

~

tive samples so that the corresponding cell frequencies nij are

zZero. ~
As noted in Section 2.2, the hypotheses of primary interest in repeated mea-
surement experiments (or surveys) involve the first order marginal prob-
abilities {¢igk}' Unbiased estimators for these quantities can be obtained
by applying an é matrix analogous to (2.46) to the hypothetical data in
Table 1. Alternatively, these same idéntical estimators caﬁ also be gen-~
erated by forming appropriate functions of the raw data associated with each
subject and then computing the corresponding across subject arithmetic means
within each of the respective sub-populations. 1In particular, let

1 if the m-th subject in the sample from the i-th

sub-population has the response for the g-th

yigkm = condition classified into the k-th category (2.55)

0 otherwise

where 1 = 1,2,...,8; g = 1,2,...,d; k =1,2,...,(L-1); and m = l,2,...,ni.

1f

- 1
yigk T n, z yigkm’ (2.56)
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— — — —
A1 (yill""’yil,(L—l)'""yidl""’yid,(L~1))’ (2.57)

(2.58)

then.; = a where a = A p as defined in (2.15). Moreover, the covariance

~

§‘is block diagonal with the matrices

~

matrix V— of
~y

~

N4
v— =t 1 Gyt YD) G 29 (2.59)
~Y . 2 Lo Mim 247 Hdm A4 ’
i n, =1
i
where
\} o .
Lim ~ (yillm"'"yil,(L~l),m"'”yidlm""’yid,(L—l),m) (2.60)
on the main diagonal; and
(2.61)

11

AEES RN

H
<

in (2.17). Since sd(L-1) is usually moderate in size, this method of compu-

tation of the estimators for the first order marginal probabilities is rea-

sonably straightforward and efficient. In additiom, it can be readily linked

with other algorithms for performing logarithmic operations as shown in

(2.16) and (2.18) as well as weighted least squares regression analysis.

Finally, this approach can be easily extended to deal with situations where

the response is ordinal and can be quantitatively scaled in terms of scores

al,az,...,aL. In this case, the functions formed from the raw data on each

subject are simply the observed values of the scored responses to each con-

dition; i.e.,

if m-th subject in the sample from the i-th
K sub—-population has the response for the g-th
condition classified into the k-th category

yigm = a (2.62)
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for 1 = 1,2,...,8; g = 1,2,...,d; and m = l,2,...,ni. Then
_ 1‘2‘1
Yio T 1 y (2.63)
ig ni mel igm

represents the observed mean score associated with the i-th sub-population
and g~th condition; and both the {;ig} and the corresponding covariance matrix
as obtained by operations like those in (2.59) are identical to what would
be obtained by applying an A matrix operation analogous to (2.51) to the
hypothetical data in Table 1. Thus, this computational strategy represents
an effective way of dealing with the problems associated with (i).

For repeatéd measurement experiments, the potential tendency for some
of the nij to be zero does not cause any real problems except when such zero

~

frequencies induce singularities in the estimated covariance matrix V_ in

~

(2.5) for the function vector F which is to be analyzed, or otherwise restrict
the extent to which Central Limit Theory arguments can be applied to the

distribution of F. With respect to the hypotheses HSJ and HCJ’ Central Limit

Theory arguments cannot be applied with confidence to the estimators

= - > .
pii (nij/ni) of the ﬂij unless most of the nij >5

~ ~ ~

This condition, however, is usually not satisfied for situations

involving moderately large samples (i.e., n, > 100) except when both L and d

i
are small (i.e., d < 3, L < 3). Thus, in such cases, the potential presence
of many zero frequencies implies that these hypotheses cannot be validly
tested by the general methodological approach given in this paper.

On the other hand, if attention can be restricted to hypotheses like
“SM and HCM or HSAM and HCAM which involve the first order marginal prob-

abilities {¢igk}’ then the sample size requirements are considerably less

severe. In particular, Central Limit Theory can be applied with reasonable
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validity to estimates of the ¢igk obtained either by A matrix operations
like (2.46) or by direct computations like (2.56) provided the overall

within sub-population sample sizes n, > 25 and most of the first order mar-

ginal frequencies

n = Yo} omy.o . . > 5. (2.64)
igk R 11]1,32:“-,Jd
wi =k
i ig
L
Since z n = n,, the conditions (2.64) tend to hold in most situations
k=1 igk i

where the sample sizes n, > 25 and where the number of response categories
is small (i.e., L < 3).

However, if L is not small, then cases where (2.64) tends not to hold
can be handled by pooling certain of the respbnse categories together so
that (2.64) is roughly satisfied by the pooled frequencies. Of course,
attempts should be made to base such pooling on conceptual similarities among
the response categories as well as to prevent such pooling from masking any

obvious differences among eithe? sub~p6pulations or among conditions. Other-
wise, the logical relationship between the interpretation of the hypotheses
HSM (or HCM) for the pooled categories vs. the original categories is anal-
ogous to the logical relationship between HSAM (or HCAM) and HSM (or HCM).
Alternatively, many of the situations where L is large involve ordinally
scaled response categories, and hence, the quantities of interest are esti-
mates of mean score functions {nig} which are obtained either by A matrix
operations like (2.51) or by direct computations like (2.63). Central Limit
Theory can be applied with reasonable validity tec these statistics provided

the overall within sub-population sample sizes, n, > 25, and the corresponding

observed response distributions for each measurement condition are not degen-
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erate in the sensce of being concentrated in a single response category.

This latter requircment is adequately satisfied for most purposes if there .
exist response categories k(i,g) for each sub-population x condition com-
bination such that,

k(i,g) L

o > 5,
g=1 '8 2=(k(i,g)+1)

nigk > 5. (2.65)
The previous remarks deal with the extent to which the presence ofb
zero frequencies affects the types of functions to which Central Limit
Theory arguments can be applied in a valid manner. Moreover, when such
functions are chosen judiciously, the resulting estimated covariance matrix
Y usuzlly will be nonsingular . However, if YF is singular, then a number

~ ~

of technical difficulties arise in applying the methodology of Section 2.1

because matrix inversion of V_ can no longer be performed.

~

There are several ways of dealing with these potential singularities.
One approach is simply either to delete functions from F or to peol two or
more functions within F together by forming appropriate averages in such a

way that the estimated covariance matrix VF for the reduced function vec-

~R
tor FR is nonsingular. On the other hand, when the sample sizes n, are

very.large (e.g., n, > 1000), such reductions in the dimension of F may be
unnecessarily conservative. For these situations, the vector F can be
analyzed by the methodology of Section 2.1 provided that the estimated co-

variance matrix VF is replaced by a suitably similar, nonsingular, pseudo

*
estimated covariance matrix VF.

If both L and d are small (e.g., d < 3, L < 3), such a nonsingular

*
matrix VF can be obtained by applying the same operations used to form VF

to the pscudo full (s x r) contingency table (1ike Table 1) in which .
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some of thé "0" frequencies are replaced by an appropriate small number like
"()". The motivation behind this strategy are the findings of Berkson

[ 4 ] who investigated its effects on estimation involving the logit (i.e.,
natural logarithm of the ratio of the proportions).associated with r = 2
responses. For the case where r = Ld is large, the properties of this rule
are largely uﬁknown; and thus the recommendation here is not to replace all
"0" frequencies by (%), but to modify only those which are necessary to the

%
construction of a nonsingular estimated covariance matrix V for F. Other

aspects of the analysis of F then proceed as described in Section 2.1, except

%
that VF is used as the estimated covariance matrix instead of VF' Finally,

~ ~

%
in some cases the separate determination of F and VF from different

~

"observed" contingency tables and subsequent linkage is a computational
3 » . 3 *
nuisance. For this reason, the pseudo function vector F , which is obtained

from the pseudo contingency table by the same operations used to form F, is

*
often analyzed with respect to VF as opposed to F since this only involves

computations on the pseudo contingency table. For most practical purposes,

the analyses of F and F are essentially equivalent and the choice between

them is mostly a matter of personal taste.

*
F

-~

The previously described method for comstructing V. is not really

practical when d > 4, L > 4 because the full contingency table is too large

to manipulate efficiently. Moreover, in these cases, attention is primarily
directed at the hypotheses pertaining to the first order marginal probabil-

ities {¢igk} for which unbiased estimators {;igk} are determined via (2.55)

and (2.56) and the corresponding estimated covariance matrix Y; is deter-

~

mined via (2.59). Unfortunately, if V; is singular, considerable effort

~

may be required within this computational framework to construct a nonsingu-

*
lar, pseudo estimated covariance matrix V;- which can be used in the analysis

~
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of the functions F = gl For this purpose, the basic strategy is to continue
to augment the raw data assoclated with the respective subjects with pseudo
data vectors for additional pseudo subjects which are then given a smaller

weight like (}) than the raw data vectors associated with the real subjects

*
in the computations (2.59) until the required nonsingular matrix V§.is

~

determined. If the singularities in V- are relatively obvious (eg., the

~

estimated variances for certain of the individual §;gk are zero), this method

*
of determining V; can be undertaken in a reasonably straightforward manner

~

which involves a minimum number of pseudo data vectors. However, if the

singularities in V— are more subtle (eg., the estimated variances for cer-

tain second order differences (y,

1gk_yig'k—yigk'+yig'k') are zero), then the

*
efficient construction of V;» requires some additional considerations. For

this purpose, let C be a block diagonal matrix with matrices Ci on the main
diagonal wherc the rows of Ci constitute a basis for the vector space

orthogonal to the columns of V;- in (2.59). Then the estimated covariance
2i

~

matrix for the functions G, = C ;1 is V, = C,V= C! = 0 which means that the
i ~idi 7Gi ~ivy.~i ~ '

observed data vectors for the n, subjects in the sample from the i-th sub-

population all satisfy the restrictions

giZim = 91 for m = l,2,...,ni (2.66)

where i = 1,2,...,s. Thus, if for each of the restrictions in (2.66), a

pscudo data vector which contradicts it is included in the augmented data

*
set, then the resulting pseudo estimated covariance matrix V— is nonsingu-

lar. Thus, the analysis of'; can proceed as described in Section 2.1 except

*
that V§~ is used as the estimated covariance matrix instead of V;u

Finally, from a general point of view, it is useful to note that the

*
construction of a pseudo estimated covariance matrix V 1s not necessary

Sy
~
~
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for certain types of analyses of a pertinent function vector F. 1In these

cases potential singularities in VF are bypassed by partitioning the func-

~

tion vector F into functions

> (2.67)

where the rows of R, constitute a basis for the vector space spanned by the

columns of VF’ and the rows of R, constitute a basis for the vector space
orthogonal to the columns of V_. The estimated covariance matrix for FR is

~ ~

0
vV, = - (2.68)
~ER VF
- “~R2

where O denotes matrices of 0's with appropriate dimensions. Since VF is
~ T<R1

nonsingular by construction, linear regression models can be fitted to the

functions FRl by the method of weighted least squares as described in Sec-

tion 2.1. It is also possible to formulate models indirectly for the func-

tions FRZ' This is accomplished by identifying matrices C such that
C F... = 0. Since the true covariance matrix V for F is necessarily
~ ~R2 ~ ~Fro 0 ~R2

~ ~R2, ~

nonsingular even though the estimated covariance matrix is null, it follows

that the pseudo-chi-square statistic

-1
Q (F,,) = F!, C' [CV c') CF = 0, (2.69)
9’0 "'}32 ~§2 ~ ~ ~~R2’0 ~ ~ R

which can be interpreted to mean that the functions F satisfy the hypothesis
} = 0. (2.70)

However, the hypothesis (2.70) implies that can be characterized by the

Fr2
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model

Ey {Epy} =%, By, ‘ (2.71)

where the columns of X, are a basis for the vector space orthogonal to C.

Since C FRZ = (0, the estimator EZ of §2 can be determined directly by
b= (X} X,)7F X! F (2.72)
~2 ~2 -2 ~2 “R2° )

~

From (2.72), it follows that the estimated covariance matrix for b, is

= 1 -1 o ' -1 _
%, " X %) 7 % Y, %2 Xy %) 7 =0 (2.73)

Finally, the separate analyses of the functions G, and G2 can be tied together

through comparisons of linear combinations of appropriate sets of model

parameters. However, only hypothesis testing can be undertaken, and this

is limited to the extent that the corresponding estimated covariance matrices

(which are based entirely on V since VF = 0) for such comparisons must
TIR1 “IR2

~

be nonsingular. Although the logical conclusions of such hypothesis testing

define models which link FRl and FRZ togéther, the estimation of the respec-

tive parameters and their covariance matrix is not straightforward within

the scope of the methodology presented in this paper. In this context, the

major reason for this problem is V = 0 suggests there is no inherent var-
~R2 7

iance in the functions FRZ which confounds the ease with which relative

weights can be assigned to the functions FRl and FRZ with respect to param-

eter estimation, particularly since the functions really do have inherent

Fr2

variance as expressed by the conceptual existence of nonsingular V .
“IR2,0

These remarks thus provide further motivation for the use of a pseudo esti-
mated covariance matrix as previously discussed. .

In conclusion, the best solution to the technical difficulties asso-

ciated with potential singularities in.V_ 1s to avoid them in the first

~
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place. For many gituations involving moderately large samples, this can
be accomplished by restricting attention to hypotheses involving the first
order marginal probabilities {¢igk} (or mean scores {nig}) and working
with estimates obtained through operations like (2.46) and (2.56) (oxr (2.51)
and (2.63)). In other cases, the use of modular maximum likelihood estimates
as discussed in Koch and Tolley [ 23 ] may be required in order to "smooth"
away the singularities in YF through the assumptién of certain a priori
constraints on the likeliho;d (2.1). However, if singularities are still
present in YF for the function vector F obtéined after taking these more

rigorous strategies into account, then the analysis of F can be effectively

undertaken through the use of a nonsingular pseudo estimated covariance
N .

¥

~

matrix Y as described here represents an effective computational tech-

nique. Thus, questions pertaining to zero cells and singularities are, for
the most part; best resolved in the context of statistical judgments which
suitably take into account, on an individual basis, the special features of

each particular experimental (or survey) situation where such methods are

to be applied.

3. EXAMPLES

Four examples are presented to iilustrate the methodology outlined in
Section 2. First of all, a simple experiment for the comparison of three drugs
is considered in Section 3.1 to indicate the full range of hypotheses which
can be tested and the relationships between the corresponding fitted models.
Sections 3.2 and 3.3 are concerned with two typical, but relatively complex,
medical experiments in which interaction is present among the effects of fac-
toré associated with the sub-populations and measurement conditions. Finally,
Section 3.4 deals with the analysis of data resulting from a well known social
science research tool which involves within subject rankings of several atti-

tudes or policy questions.
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3.1. A Single Population Drug Comparison Example

The hypothetical data in Table 2 have been previously analyzed in
both GSK and Koch and Reinfurt [ 22 ] to illustrate the construction of
test statistics analogous to that in (2.48) for the hypothesis HCM of first

order marginal symmetry (homogeneity) in (2.23). They are being reanalyzed

here to demonstrate the relationships between the test statistics for the

2. TABULATION OF RESPONSES TO DRUGS A, B, AND C

Response profile for Drug A vs Drug B vs Drug C

F F F F U U U U
Sub-population F F U U F F U U
F 1) F u F U F 3
Overall group 6 16 2 4 2 4 6 6
Observed proportions .13 0.35 0.04 0.09 0.04 0.09 0.13 0.13

o o

Estimated s.e. .05 0.07 0.03 0.04 0.03 0.04 0.05 0.05

Joint model pred. prop. 0.13 0.35 0.04 0.10 0.04 0.10 0.10 0.13
Estimated s.e. 0.05 0.07 0.02 0.02 0.02 0.02 0.02 0.05
Marg. model pred. prop. 0.13 0.35 0.04 0.09 0.04 0.09 0.13 0.13
Estimated s.e. 0.05 0.07 0.03 0.03 0.03 0.03 0.05 0.05
Assoc. model pred. prop. 0.16 0.31 0.05 0.09 0.05 0.09 0.09 0.16
Estimated s.c. 0.04 0.06 0.01 0.01 0.01 0.01 0.03 0.04

F denotes favorable response; U denotes unfavorable response.

hypotheses H , and H in Section 2 and the respective predicted values

cy’ Hem JI

from corresponding fitted models.
The experimental design for this example involves s = 1 sub-population,

d = 3 conditions which represent three drugs (Drug A, Drug B, and Drug C),

and L

2 response categories (favorable F and unfavorable U). Thus, there

Ld = 2% = 8 possible multivariate responée profiles. If 7

313533

arc r
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represents the probability of response profile (jl’jZ’j3) for (Drug A, Drug B,

Drug C), then the hypothesis HCJ of total symmetry in (2.20) here corresponds

to

Tepy =~ "FUF T TUFF
HCJ: - - - . (3.1)
Fuu - "uru T "wur

The functions required to test this hypothesis can be gencrated (with proper

account given to (2.2)) via

ol
J

.13
.35
. 04
.09y . (3.2)
04
.09
.13

2
|c>c>o o C)C)hq
coocoorOo
cocoroO
coorROoOO
coroOoOO
ocrroocooO
HOOOOOO
|looocoooo]
FHOO OO WM
jwW W O SO B w)

jcooooo

.
.

lCoocoooo o

is used, then a test statistic for H in (3.1) is obtained via

If X=1I cJ

7
(2.12) with

(3.3)

Ces =
4x7

[oNeNol o4
- = O O
OO O
OlL'OO
L oo o]

'c>o<3 o l
OO = =

The resulting QC = 16.29 with D.F. = 4 which implies that there are signif-
icant (o = .Ol)Ndifferences among drug effects. The nature of these dif-
ferences can be attributed to the relatively large magnitude of Prry the
observed proportion with favorable responses to Drug A and Drug B but an
unfavorable response to Drug C. This conclusion can be formally justified

by fitting the model associated with

T 0 0 0

01 00

0 0 1 0
x, =0 0 0 1f. (3.4)
oa jo0 10

0 0 0 1

0 0 0 1

S g o
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From (2.8), the goodness of fit statistic for (3.4) is Q = 0.51 with D.F. = 3

which 1s non-significant (o = .25). Thus, this model provides a satisfactory

characterization of the distribution of the joint probabilities {ﬂj 5.3 }.
‘ 1°2°3

Predicted values for these quantities, which are obtained for the model (3.4)
via (2.13), are given in Table 2 with corresponding estimated standard errors
based on (2.14) in the "joint model" row.

The hypothesis H_ of first order marginal symmetry (homogeneity) in

CM

(2.23) is formulated for this example as

Bt $ar = ®pr = Ycp (3.5)
where
¢ar = "rrr T "rru ¥ "rur T "ruu
bpr = Trrr T "rru t "urr T Turu (3.6)
¢ ., =T + T + 7 +

CF FFF FUF UFF UUF

The functions required to test HCM can be generated (with proper account given

to (2.2)) via

[0.13]
0.35
11110000 8'33 !'5.61 :
F=Ap= 11002100 [0/ ="lo61]. (3.7)
10101010 4 |0.34
0.13
0.13

If X = 13 is used, then a test statistic for HCM in (3.5) is obtained via

(2.12) with

1-1 0
Cou = |1 o _;] : (3.8)

2x3

The resulting QC = 6.58 with D.F. = 2 which implies that there are signif- ‘
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jcant (o = .05) gross (macro) differences among the drug effects. In par-
ticular, the proportion with favorable responses for Drug C is less than those
associated with Drug A and Drug B which are essentially the same. A model

which reflects this conclusion is

(3.9)

o
= O O

X =

for which the goodness of fit statistic from (2.8) is Q = 0.00 with D.F. = 1.
However, this model only pertains to the first order marginal probabilities
{¢gk}' For this reason, there is occasionally some interest in fitting a

model directly to the joint probabilities {ﬂj 3.3 } which induces (3.9)
. 1°2°3

on the {¢gk}' This type of analysis can be undertaken by using an augmented

A-matrix
11110000
11001100
10101010
A=l10000000 (3.10)
738 lo1000000
00100000
00001000

whose rows include the A-matrix in (3.7) on the one hand and constitute a
basis for the same vector space as the rows of the A-matrix in (3.2). These

functions are then analyzed in terms of an augmented X matrix

1000

1000

0100
Xy~ [0010 (3.11)
e |0001

0000

10000

which applies (3.10) to the (3.7) functions and a non-restrictive identity

matrix I, to the others. The goodness of fit test statistic (2.8) for this
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model is Q = 0,00 with D.F. = 1 which is identical to that associated with .

(3.9) by construction. Predicted values for the joint probabilities, which
are obtained for the model (3.11) via (2.13), are given in Table 2 with
corresponding estimated standard errors based on (2.14) in the "marginal
model" row.

Although the results for the "joint model" approach and the "marginal
model" approach are reasonably similar, certain differences do exist between
them; in particular, HCJ is contradicted at the a = .01 level while HCM is
contradicted at the a = .05 level. However, as discussed in Section 2.2,
such paradoxes are usually a consequence of the pattern of association among

the responses to the three drugs as reflected by the hypothesis H in (2.26).

JI

From Bhapkar and Koch [ 6,71, it follows that the hypothesis HJI can alter-

natively be formulated for this example in terms of the following constraint

equations
Log UMbt ppy) =208 Upypt T pyy 1 =208 My pt Ty o8 My it Ty = 00 (3212
Log (it e =108 Upp ™ oy 108 Iy e 108 Iy = 00 (3.13)
loge{ﬂFFF+wUFF} log {ﬂFFU UFU} log {ﬂFUF UUF}+]og {WFUU UUU} =0 (3.14)
loge{ﬂFFP} log {HFFU}—1oge{WFUF}+1oge{ﬂFUU}—1oge{ﬂUFF}+loge{ﬂUFU}
+log {m; }-log {m .} =0 (3.15)
where (3.12) - (3.14) specify no first order interaction (or pairwise inde-—

pendence) between the response to Drug A and Drug B, Drug A and Drug C, and

Drug B and Drug C respectively, and (3.15) specifies no second order inter-

action among the responses to the three drugs. 1In order to test HJI in the

sen f (3.12) - (3.1 1l as it t g y
nse of ( ) ( 5) as well as the logit transform ”CML of HCM where

Hyt Log {0,/ (-6, 0} = log {6,/ (-6, )} = Log {60/ (-0}, (3.16)
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log—linear.functions as defined in (2.16) are required. These can be gen-

erated by using the A-matrix in (3.17)

11000000
~ 00110000
Ay . s 00001100
6x8 11110000 00000011
00001111 10100000
Al 11001100 01010000
A= 12;2“”“5"00110011"32’00001010’3“‘“33"58 (3.17)
26x8 e 110101010 12x8 [00000101
. 01010101 10001000
Ay 01000100
| 8x8 00100010
= 00010001
and the K-matrix in (3.18).
1-1 0 0 00 OO0 O0COTO 0O 0 0 0 0 O
001-1oooooooooooooggggggggg (3.18)
0o 0 0 0 1-1 000O0OO0O OO O 0O 0 0 0 00 0 O O 0O 0 O
E «!0 0 0 0 0 0 1-1~11 0 00O O 0O 0 0 00 0O 0O O 0 O O
O 0 0OOOOOCO OO0 1-1-11 0O 0 0 0 0 0 OO 0O 0 06 O
0 0 0 0 0O OO 0.0 0 0 O0O0O0CT1 -1-11 0 0 0 0 0O 0 0 O
-9__9 0O 0 0 0 O OO O 0O ODOOOTG 0D O1 -1-1 1-1 1 1-1

In this format, the first three functions correspond to estimators for the
first order marginal logits specified in (3.18) for Drug A, Drug B, and Drug C
respectively; and the last four functioﬁs correspond to estimators for the
measures of association specified by the left hand sides of the constraint
equations (3.12) - (3.15) respectively. These quantities and their esti-

mated covariance matrix are given in (3.19).

[ 0.44 70,0913 ; 00|
: 0.0413 -0.0152 0.0000 0.00G0  0.0091  0.6000
0.44 0.0413 0.6913 =-0.0152 0.0000 0.0091 0.0000  0.0000

f -0.63| 0.0152 -0.0152 0.0958 0.0102 0.0000 0.0000  0.0000 (3.19)
f - 1.994 , Yf = 0.0000 0.0000 0.0102 0.4621 -0.0481 -0.0481 0.0000
-0.69 - 0.0000 0.0091 0.0000 -~0.0481 0.4000 0.15850 0.0000
E.w . 0.0091 0.0000 0.0000 -0.0481 0.1850 0.4000  0.0000
0.41 10,0000 0.0000 0.0000 0.0000 0.0000 0.0000  2.0625
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If X = I, 15 used, then a test statistic for H in (3.12) - (3.15) is

. o JI
obtained via (2.12) with

0001000
~looo0oo0100
51" jo0oo00010 (3.20)
0000001

The resulting QC = 9.49 with D.F. = 4 which implies that significant (o = .05)

association cxists among the responses to the three drugs. On the other hand,

if each of the rows of C in (3.20) are tested individually, the only one

~JI

which is significant (o = .01) in its own right corresponds to the pairwise

association between the Drug A response and the Drug B response. Other test

statistics of interest in this framework are those for HCMI in (3.16) and an
analogous logarithmic equivalent of HCJ' The latter is obtained via (2.12)
with
1-1 0 0 0 0 0
¥ 0-1 0 0 0 O
3L Jo 0 0 1-1 0 0 (3.21)
0O 0 01 0-1 0
for which QC = 14.96 with D.F. = 4; and the former with
(-1 6 0 0 0 O
CemL [: 0-1 0 0 0 g (3.22)
for which QC = 5.95 with D.F. = 2. Both of these results are consistent with

those previously obtained in terms of (3.2) - (3.3) and (3.7) - (3.8) respec-
tively. Here, however, it is possible to identify the additional constraints
associated with HCJ but not HCM as being equivalent to the equali£y of the
pairwise mecasures of association defined by the left hand sides of (3.12) -

(3.14). This hypothesis can be tested via (2.12) with

0 00 1-1 070
ECPAL=EO 0 1 0-1 _o_l (3.23)
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for which Q = 8.48 with D.F. = 2. As with the test of HJI in (3.20), the
significance (o = .05) of this result is a conscquence of the significant
positive Drug A vs. Drug B pairwise association in contrast to the non-
significant negative pairwise assoclations for Drug A vs. Drug C and Drug B
vs. Drug C. On the basis of these conclusions and those noted earlier with
respect to HCM’ it follows that the nature of sigﬁificant differences among
the effects of the three drugs can be explained in terms of the existence of
a relatively large proportion of subjects that have favorable responses to
Drug A and Drug B but an unfavorable response to Drug C. A final model for

the functions f which formally reflects this structure is

- -

1 0 0

1 00

01 0
x =10 0 1] . (3.24)
~£ 1o 0 0

0 0 O

0 0 0

The goodness of fit statistic from (2.8) is Q = 1.72 with D.F. = 4 which is

non-significant (o = .25). Thus, this model provides a satisfactory char-
acterization of the distribution of the joint probabilities {m, . . }.
J13233
With this model, the calculation of predicted values for the {ﬂj 3.3 }
1423

and their estimated standard errors is considerably more difficult because

it involves the solution of non-linear equations, and hence the specific
computational details are beyond the scope of this paper. lowever, such
quantities can be obtained in a reasonably straightforward mannef by the
implicit function approach of Koch and Tolley [ 23 ] and are given in Table 2

in the "association model" row.
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3.2, A Complex Split Plot “untingency Table

The following hypothetical example arose from a two-period change-over
design clinical trial pertaining to the comparison of three treatments
(Drug A, Drug B, and Drug P) with respect to the occurrence of a favorable
response associated with the relief of certain persistent symptoms of a
particular chronic discase. In this setting, the patients were sub-divided
into two groups according to age with 50 patients'being assigned to each of
three sequence sub-groups in each age group. The resulting data are shown in

Table 3 where 0 denotes the older age group and Y denotes the younger age group.

3. TABULATION OF RESPONSES FOR TWO-PERIOD-CHANGE-OVER DESIGN

Response profile at time 1 vs time 2
| Age Sequence | TF ru UF Uu - Total
0 A:B 12 12 6 20 50
0 B:P 8 5 6 31 50
0 P:A 5 3 22 20 50
Y B:A 19 3 25 3 50 -
Y A:P 25 6 6 13 ' 50
Y P:B 13 5 21 11 50
¥ ~ Favorable, U - Unfavorable

The A-matrix

~

~fI100
SRR 3.29)

generates estimates for the first order marginal probabilities of patients
with a favorable response and its corresponding estimated covariance matrix

shown in Table 4.

4. ESTIMATES OF FIRST ORDER MARGINAL PROBABILITILS
OF A FAVORABLE RESPONSE

Period 1 Period 2 ,
Age Sequence | Prob. fav. Variance Prob. fav. Variance Cova?lancc
estimate estimate estimate estimate estimate
0 A:B 0.48 0.0050 0.36 0.0046 0.0013
0 B:P 0.26 0.0038 0.28 0.0040 0.0017
0 P:A 0.16 0.0027 0.54 0.0050 0.0003
Y B:A 0.44 0.0049 ' 0.88 0.0021 -0.0001
Y A:P 0.62 0.0047 0.62 0.0047 0.0023
Y P:B 0.36 0.0046 0.68 0.0044 0.0003




Let
¢1112g

i

1—th age group,

2

i -th treatment, and g-th period.
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denote the probability of a favorable response for the

If there are no carry-

over effects of the drug in Peried 1 to the response in Period 2 in the

sense described in Grizzle [ 15 ] or Koch [ 19 ],

is of interest

where My is an overall mean for the il—th age group, £i

1

due to i2—th treatment in ilrth age group, and T

g-th period for il—th age group.

sion model in (3.27)

for which the goodness of fit statistic is Q

tical tests for certain hypotheses are given

= 0,24 with D.F.

in Table 5.

then the following model

(3.26)

i is an effect
172
is an effect due to
1 .

This model can be fitted via the regres-

(3.27)

YA
EYB

R

4, Statis-

These results sug-

5. STATISTICAL TESTS FOR Xi MODEL

Hypothesis D.F. QC
Tyy = Tyo 1 6.08
Ug = Uy 1 40.34
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gest that the model can be simplified to reflect no age x treatment inter-

action as indicated in (3.28). .
101 0-170 _ _
1 0 0 1 1 O uo
1 0 0 1-1 0O
1 0-1-1 1 of Y
1 0-1-1-1 O gA

_ 1 01 01 0
E(F} =X,8,= 16 1 0 1 0-1 |5 (3.28)

0 1 1 0 0 1 T
011 0 0-1f [©
0 1-1-1 0 1 Y2
0 1-1-1 0 -1 -
LQ, 1 0 1 0 1

For this model, the goodness of fit statistic is Q = 0.41 with D.F. = 6; the

resulting estimated parameters and predicted values are shown in (3.29).

=

.45
.35
.26
.27
.18
.55
43
.88
.63
.61
.35,
.69

COOOOOH MM I
I

(3.29)

OO O OOOo
frnd
[e))

HFRPHOOFRORKHPHO

!
OHKFHHEPEPOMREMOOH
!
!

bt b e O O OO0 O0OO0
HH RSO OOOOO

o
£~
locococooocococoo oo ol

|c>o COOOHHMMHK H'

|

Finally, statistical tests for hypotheses pertaining to this model are given

in Table 6.

6. STATISTICAL TESTS FOR X, MODEL

~2
Hypothesis D.F QC
£y =8 =0 2 49.21
“0 = Hy 1 40.37
Tgy = 0 1 4.81
Ty = 0 1 31.16
Toa = Tyz 1 6.37
26, + &5 =0 (5, = &) 1 47.55
Ey + 2865 =0 (65 =&p) 1 3.68
& = &g 1 21.17
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Thus,'this analysis suggests that Drug A is significantly different
from Drug B and Drug P which are relatively similar, period effects are
significant for each group and interact with age in the sense of being of
greater magnitude for the younger age group, and the overall mean for the
younger age group is significantly greater than that for the older age

group.

3.3. A_}ongitudinal Crowth Curve Model Contingency Table

The following hypothetical example arose from a longitudinal follow-up
study to compare & new drug and a standard drug with respect to the treat-
ment of patients with both mild and severe diagnoses of a particular disease.
In this regard, 2 patient's condition was graded as normal (N) or abnormal (A)

at the end of 1 week, 2 weeks, and 4 weeks of continuous treatment with the

results shown in Table 7.

7. TABULATION OF RESPONSES FOR LONGITUDINAL STUDY

Response profile at week 1 vs week 2 Vs week 4
NNN NNA NAN NAA ANN ANA AAN AAA

Diagnosis Treatment

e

Mild Standard 80
Mild New drug 70
Severe Standard 100
Severe New drug 90

The A-matrix

71110000
00001111
11001100 =
A= lpgp110011 ® I, (3.30)
10101010
01010101

gencrates estimates for the first order marginal probabilities of normal (M)



and abnormal (A) for each week vs diagnosis vs treatment combination; and
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the K matrix K = [1 -1] & I12 generates their respective log ratios (or

logits) as shown in Table 8 together with the corresponding estimated covar-

8. OBSERVED AND PREDICTED ESTIMATES
FOR FIRST ORDER MARGINAL PROBABILITIES
FOR NORMAL RESPONSE AND CORRESPONDING LOGITS

Observed Observed Predicted Predicted

. . " ) Est. Est. Est. Est.

Diagnosis Treatment Week est. prob. s.e est, s.e est, s.e est. prob. s.c.
normal Tt logit T logit T normal

Mild Standard 1 0.51 0.06 0.05 0.22 -0.07 0.13 0.48 0.03

Mild Standard 2 0.59 0.06 0.35 0.23 0.42 0.11 0.60 0.03

Mild Standard 4 0.68 0.05 0.73 0.24 0.92 0.16 0.71 0.03

Mild New drug 1 0.53 0.06 0.11 0.24 -0.07 0.13 0.48 0.03

Mild New drug 2 0.79 0.05 1.30 0.29 1.38 0.15 0.80 0.02

Mild New drug 4 0.97 0.02 3.53 0.71 2.84 0.25 0.94 0.01

Severe Standard 1 0.21 0.04 -1.32 0.25 -1.35 0.13 0.21

Severe Standard 2 0.28 0.04 -0.94 0.22 ~-0.86 0.10 0.30

Severe Standard 4 0.46 0.05 -0.16 0.20 -0.36 0.15 0.41 0.04

Severe New drug 1 0.18 0.04 -1.53 0.27 -1.35 0.13 0.21 0.02

Severe New drug 2 0.50 0.05 0.00 0.21 0.10 0.12 0.53 0.03

Severe New drug 4 0.83 0.04 1.61 0.27 1.56 0.21 0.82 0.03

iance matrix as shown in (3.31).
5.00 1.27 -0.76 ]
1.27 5.16 -0.51
-0.76 -0.51 5.70
5.73 0.94 3,12 (3.31)
0.94 8.48 -1.87
Vo= 3.12 -1.87 51.47 x 10—2

~f 6.03 -0.56 0.08
-0.56 4.96 -0.38
0.08 -0.38 4.03

7.60 0.34 -0.81
0.34 4.44 0.18
-0.81 0.18 8.00

Let Ai ig denote the large sample expected value of the logit corresponding

12

to the i -th diagnosis, 1

1 2

to represent a metric which reflects dosage of the drugs under study,

~th treatment, and g-th week. If time is assumed
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then the linear logistic model with respect to log time represents a reason-
able model by analogy to well known results from existing methodology for
quantal bio-assays as discussed by Berkson [2,3,4] or Finney { 11 ]. More

specifically, we first consider the model (3.32)

1: Mild, 2: Severe

[
i

1
Xilizg = uili2 + Yilizxiligg i, = 1: Standard, 2: New Drug (3.32)
g = 1: Week 1, 2: Week 2, 3: Week 4
where My oy represents an intercept parameter in reference to week 1 which
172
is associated with il—th diagnosis and iz—th treatment, Yi i represents a
172
corresponding continuous slope effect over time, and X, 4 . is the log to
172
the base 2 of week (i.e., X5 4 . = 0,1,2). In matrix notation, this model
172
can be fitted via the regression model (3.33)
10 1w,y
11 11
12 Y11
10 U
11 le
12 12
E ) =%,8,= 10 1y, (3.33)
” 11
12 Y21
10 u
11 22
- 12] [Y22
for which the goodness of fit statistic is Q = 1.60 with D.F. = 4. The

hypotheses and test statistics in Table 9 suggest differences exist among

9. STATISTICAL TESTS FOR X, MODEL

X1

Hypothesis D.F. QC
Mip = Mpp = My = Mgy 3 4h . 47
Y11 T Y12 T Y21 T Y22 3 29.46
Mip = Wp, 1 0.01
U21 = U22 1 0.17
Y11 = Vo1 1 1.29
Y12 = Yo 1 0.16
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the respective diagnosis x treatment patient groups with respect to both
the intercept and slope parameters; and that such differences among the
intercepts can be explained in terms of a diagnosis effect while such dif-
ferences among the slopes can be explained in terms of a treatment effect.
On the basis of these results, the original model can be simplified to that

shown in (3.34)

10 070
101 0}
102 o;
1000 .
1001] (;l*
vy B {1002 |"ox
Eg{f} X2, 0100 iY*l (3.34)
0110] iY
012 oi Y2
0100
0101,
0102

where p.
!

is an intercept parameter associated with the il—th diagnosis and

Y*i is a slope effect associated with the iz—th treatment. For this model,
2

the goodness of fit statistic is Q = 4.20 with D.F. = 8. The corresponding

estimated parameter vector b, and its estimated covariance matrix Vb are
~ ~b,

given in (3.35).

[0.07] 1.82  0.75 -0.74 -0.64
-1.35 0.75 1.82 -0.83 -1.04 _2
b, = s Vb = x 10 (3.35)
~2 0.49 ~b, |_0.74 -0.83 0.93 0.53
1.46 ~0.64 -1.04 0.53 1.69
e e e po—

From these results, predicted logits as shown in Table 8 can be determined

via (2.13). These can then be used to obtain the predicted values for the .
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first order marginal probabilities of normal (N) responses by reverse trans-
formation. These quantities are also shown in Table 8. Estimated standard
errors for these predicted values obtained through suitable manipulations of
(2.14) are substantially smaller than those for the corresponding observed
estimates, and thus reflect the extent to which the fitted model § enhances
statistical efficiency. Finally, the hypotheses and test statistics in

Table 10 justify the conclusions that the effects of diagnosis are signficant

10. STATISTICAL TESTS FOR X, MODEL

Hypothesis D.F. QC
Hix = Hog 1 77.02
Yx1 = Yo 1 59.12
Yy = 0 1 26.35
Yxp = 0 1 125.08

but do not interact with time. Drug effects are also significant, but are
modulated in terms of different linear logistic trends over time. In other
words, for both mild and severe diagnoses, a patient's condition becomes
graded (N) relatively sooner with the new drug than the standard even though
there is essentially no difference between the treatments at the end of one

week.

3.4. Ranked Policy Preference Data

The following example is based on a survey which was administered to a
national sample of adult Americans in order to elicit ranked preferences
regarding the following seven tax alternatives: education (ED), environment
(EN), cut taxes (CT), anti-poverty (P), foreigﬁ aid (F), income supplements

(1), and health (H). Respondents were also classified into sub-populations
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according to sex (male or female), ideology (conservative, liberal, in-between,

no ideology) and tendency to criticize governmental tax policies (no, yes). .
Other aspects of this survey are described in Lehnen and Koch [ 26 J. 1In
order to analyze the relationship between sex x ideology x criticism and the
ranked response profile of the seven tax alternatives, attention must be
directed at a contingency table with 16 rows and 7! = 5040 columns. How-

ever, it is not necessary to generate this conceptual contingency table

if the within group mean ranks for the respectiv; alternatives can be viewed

as a reasonable measure of preference since the corresponding A-matrix
operation can be achieved by direct computation of these mean scores and

their covariance matrix on the observed respondent-wise raw data by opera-
tions like those described in (2.55) - (2.61). For the sub-population of

n = 169 respondents with ideology = in-between, sex = male, and criticism = no,

this process gave rise to the results shown in Table 11. .

11. MEAN RANK PREFERENCE AND COVARIANCE MATRIX
FOR THE SUB-POPULATION
WITH IDEOLOGY = IN-BETWEEN, SEX = MALE, CRITICISM = NO

Tax Mecan rank Estimated covariance matrix x 10"
alteynative preference ED EN CT P F 1 H
ED 2.1 118 6 - 41 3 - 11 - 64 - 11
EN 3.7 6 172 - 24 - 32 23 -100 - 45
CT 3.7 ~ 41 - 24 260 -~ 87 - 34 - 29 - 45
P 4.5 3 - 32 - 87 156 -9 - 10 - 21
) O 6.1 - 11 23 - 34 - 9 89 - 45 - 13
I 4.4 - 064 -100 - 29 - 10 - 45 222 26
H 3.4 - 11 - 45 - 45 - 21 - 13 26 109

More completely, Table 12 presents mean ranks for each of the sex x

12. MEAN RANKS FOR EACH SEX X CRITICISM SUB-POPULATION
WITHIN THE IDEOLOGY = IN-BETWEEN SUB-POPULATION

Equal
Mcan rank preferences ¥ricedman's] marg. mean
Sex Critdcism{ n | ED EN CT P ¥ I 0 xX*M.1r.=0) Qe (D F.=6)

M No 1691 2.1 3.7 3.7 4.5 6.1 4.4 3.4 325.6 815.7
M Yes 751 2.2 3.1 3.6 5.0 6.3 4.8 3.1 191.7 1065.1
¥ No 191 2.3 3.8 3.3 4.7 6.2 4.3 3.4 381.6 1365.5
¥ Yes 521 2.5 3.3 2.5 5.1 6.7 4.4 3.4 153.7 1372.8
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criticism sub-populations within the ideology = in-between sub-population
together with corresponding Friedman [ 14 ] Xz—statistics and equality of mar-
ginal mean score QC—statistics for the hypotheses of within group indifference
(i.e., equality of~mean ranks) in a sense analogous to HCAM in (2.34).

Here, it can be noted that the marginal mean Qc-statistic is considerably
larger than the Friedman Xz—statistic. This r;sults from the fact that the
underlying variance of the mean ranks is greater when the hypothesis is true
than when it is not true in the direction of a systematic pattern of prefer-
ence, together with the fact that the Friedman statistic is based on estimates
of variance under the hypothesis while the marginal mean Qc—statistic is

based on unrestricted estimates of variance derived from the underlying con-

tingency table.

The effects of sex and criticism on the mean ranks associated with each
alternative can be investigated in a univariate context by testing the coef-

ficients of the regression model in (3.36).

(3.36)

s

The resulting QC statistics with D.F. 1 are indicated in Table 13. However,

13. TEST STATISTICS QC WITH D.F. 1 FOR REGRESSION PARAMETERS

ED EN CT -P ¥ 1 n

Sex 2.2 1.2 ° Y4.4%* 1.8 7.1% 2.0 1.7

Criticism 1.0 12, 8%%* 4. 4% 8.2%% 13.1%% 1.7 1.9

$xC 0.1 0.3 2,2 0.0 2.6 0.6 2.2
* means significant at a = .05; %% means significant at a = .01

should be recognized that the mean ranks satisfy a constraint in the sense

that their sum is always (L + 2+ 3 + 4 + 5+ 6 + 7) = 28. For this reason,

it
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a simultancous multivariate analysis of the effects of sex and criticism on

the entire profile of response is more appropriate than univariate analyses .
of each tax alternative since it {eflects the extent to which increases

associated with one choice are offset by decreases associated with another.

This type of analysis can be undertaken by deleting one of the tax alter-

natives from consideration (e.g., cut taxes CT) ahd handling the remaining six
choices for each of the four groups simultaneously. Since the univariate

analyses suggested no sex x criticism interaction on all of the choices, an

appropriate preliminary model is given in (3.37)

=6 =6 -
1 I, -I -
I, ® X ~6 ~6 6 Y (3.37)
~6 - I, -I I -
=6 <6 <6
| &

%6 “l6 i) o

where | corresponds to overall mean parameters, Y corresponds to sex effects,

and § corresponds to criticism effects. The goodness of fit statistic for
this model was Q = 8.3 with D.F. = 6 for multivariate sex x criticism inter-
action on preference which supports the validity of the model in a multivar-
iate context. For the hypothesis y = 0, QC = 24.8 with D.F. = 6 and for the
hypothesis § = 9, Qc = 42,6 with D.F. = 6, both of which are significant

(oo = .01). Moreover, the univariate tests suggest that sex effects can be
primarily attributed to CT and F while criticism effects are associated with
EN, CT, P, and F. Further investigation and analysis of these effects gave
rise to the final model with seven parameters shown in (3.38) for which the

goodness of fit statistic Q = 22.2 with D.F., = 17.
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The predicted values from this model for mean rank preferences are given in

Table 1l4.

14. PREDICTED MEAN RANKS FOR EACH SEX X CRITICISM SUB~POPULATION
WITHIN THE IDEOLOGY = IN-BETWEEN SUB-POPULATION

Sex Criticism D EN CT _ P i F I H
M No 2.2 3.7 3.6 4,7 6.0 4.5 3.3
M Yes 2.2 3.3 3.2 5.1 6.4 4.5 3.3
F No 2.2 3.7 3.2 4.7 6.2 4.5 3.5
¥ Yes 2.2 3.3 2.8 5.1 6.6 4.5 3.5
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