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Abstract— A unified tree-search detection scheme based on
Dijkstra’s algorithm is developed for MIMO systems. The pro-
posed framework generalizes the original Dijkstra’s algorithm
by allowing the memory usage, detection complexity, and sorting
dynamic associated with the algorithm to be customized. By
tuning different parameters, desired performance-complexity
tradeoffs are attained and a fixed-complexity version can be

produced to facilitate hardware implementation. Simulation re-
sults demonstrate that the proposed algorithm shows abilities to
achieve highly favorable performance-complexity tradeoffs.

I. INTRODUCTION

The multiple-input multiple-output (MIMO) detection prob-

lem can be viewed as a tree-search problem, where opti-

mal detection corresponds to finding the leaf node with the

smallest cost of likelihood metric [1]. Since exhaustive search

of the tree is computationally prohibitive, various optimal

and suboptimal methods with reduced complexity have been

proposed. These methods, categorized in tree-search terms,

include depth-first search (sphere decoding or SD [2] [3]),

breadth-first search (K-best detection [4] [5]), and best-first

search (the stack or Dijkstra’s algorithm [6]–[8]). Hybrid

schemes were also proposed to leverage the advantages of

different methods, e.g., the combination of SD and Dijkstra’s

algorithm in [9] [10]. Furthermore, unification frameworks

building on relations between different categories were sug-

gested, including the generic branch and bound algorithm in

[6] and the unified algorithm in [10] which augments the

depth-first search scheme with the best-first ability to improve

search complexity.

Unification is attractive from an algorithmic as well as a

performance point of view, as it provides a general framework

that incorporates strengths of different schemes. The idea of

this work is to extend the original Dijkstra’s algorithm to a

generalized framework for MIMO detection. Our approach

differs from the unification in [6] [10] in the following

aspects:

1) Memory usage: In order to implement Dijkstra’s algo-

rithm in practice, its extensive memory requirements

have to be addressed. Different from the memory-

efficient modifications in [6] [10], our scheme adopts

an explicit memory constraint and nodes are visited

only once, similar to [8].
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2) Sorting scheme: Sorting in Dijkstra’s algorithm deter-

mines tree exploration and the performance of the al-

gorithm. As reported in our previous work [11], manip-

ulating sorting dynamics can yield better performance-

complexity tradeoffs given the same memory con-

straint. Different from the unification in [6] [10],

our scheme accommodates adaptable sorting that is

designed specifically from the statistics of the problem.

The proposed generalized Dijkstra’s algorithm incorporates

a parameter triplet that are used to control the memory

usage, expansion complexity, and sorting dynamic associated

with the algorithm. The scheme, referred to as generalized

Dijkstra’s search (GDS) algorithm, is demonstrated by simu-

lation to show flexibility in achieving improved performance-

complexity tradeoffs.

The rest of the paper is organized as follows. In Sec. II, the

system model is presented and a tree-search detection scheme

is reviewed. Our proposed method is described in Sec. III with

its performance demonstrated in Sec. IV. Finally, concluding

remarks are given in Sec. V.

II. SYSTEM MODEL AND TREE-SEARCH DETECTION

A. System Model and Problem Description

We consider an uncoded MIMO transmission system with

NT transmit antennas and NR receive antennas (NR ≥ NT ).

The baseband signal model is given by

yc = Hcx̃c + vc, (1)

where yc is the NR × 1 received signal composed of the

NT×1 transmitted signal x̃c passed through the NR×NT flat-

fading channel Hc plus the NR×1 perturbing noise vector vc.

The transmitted symbol vector x̃c contains uncorrelated entries

drawn equally probably from the squared quadrature amplitude

modulation (QAM) alphabet S = {a + ib | a, b ∈ Q},

where Q is the pulse amplitude modulation (PAM) alphabet,

and has zero mean and covariance matrix σ2
xINT

, where

INT
is the NT × NT identity matrix. The complex-valued

channel matrix Hc has independent and identically distributed

(i.i.d.) Gaussian entries with zero mean and covariance matrix

σ2
HINR

, where σ2
H = 1. The channel information Hc is

assumed perfectly known to the receiver. The noise vc is

additive white Gaussian noise (AWGN) with i.i.d. complex

elements and has zero mean and covariance matrix σ2
vINR

.

For the discussion in the subsequent sections, it is con-

venient to consider an equivalent real signal model to the

978-1-4244-9268-8/11/$26.00 ©2011 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE Globecom 2011 proceedings.



complex signal model in (1). Denote ℜ(·) and ℑ(·) as the real

and imaginary parts of its argument, respectively, and define

y =

[

ℜ(yc)
ℑ(yc)

]

, x̃ =

[

ℜ(x̃c)
ℑ(x̃c)

]

,v =

[

ℜ(vc)
ℑ(vc)

]

,

H =

[

ℜ(Hc) −ℑ(Hc)
ℑ(Hc) ℜ(Hc)

]

.

Then, the real signal model is given by

y = Hx̃+ v, (2)

where y ∈ Rn, H ∈ Rn×m, x̃ ∈ Qm, v ∈ Rn with n = 2NR

and m = 2NT . Given the signal model in (2), the optimal ML

detection is equivalent to solving a constrained least-square

problem, i.e.,

x̃ML = arg min
x∈Qm

‖y −Hx‖2, (3)

where ‖·‖ denotes the l2-norm of a vector.

B. Dijkstra’s Search (DS) Algorithm for Tree-Search Detec-

tion

The detection problem in (3) has a tree representation [1].

(For the simplicity of presentation, we hereafter assume m =
n.) This can be seen by first performing QR decomposition

on H such that H = QR, where Q is an orthogonal

matrix and R is an upper-triangular matrix with positive-

valued diagonal entries (assuming H has full rank), and then

formulating ML detection into an equivalent expression x̃ML =
argminx∈Qm ‖y′ −Rx‖2, where y′ = QTy and (·)T denotes

the matrix transpose. Due to the upper-triangular nature of R,

‖y′ −Rx‖2 can be expanded in the following form:

(y′m − rm,mxm)2 +
(

y′m−1 −
m
∑

i=m−1

rm−1,ixi

)2

+ · · ·

+
(

y′1 −
m
∑

i=1

r1,ixi

)2

, (4)

where y′i is the ith element of y′, xi is the ith element of x,

and ri,j is the (i, j)-entry of R. Denote the (m−k+1)th term

in (4) by Bk(x
m
k ) and the summation of the first m − k + 1

terms by Dk(x
m
k ), where xm

k , (xk, . . . , xm)T ∈ Qm−k+1

represents the partial symbol vector, i.e.,

Bk(x
m
k ) =

(

y′k −
m
∑

i=k

rk,ixi

)2

, k = 1, 2, . . . ,m, (5)

Dk(x
m
k ) =

m
∑

j=k

Bj(x
m
j ), k = 1, 2, . . . ,m. (6)

Then, the upper-triangular structure of R creates the detection

tree, which consists of a virtual root node and m layers of

nodes where each non-leaf node has |Q| child nodes, | · |
denoting the cardinality of a set. Each node in layer m−k+1
(k = 1, 2, . . . ,m) uniquely represents an xm

k and has an

associated path metric Dk(x
m
k ) and branch metric Bk(x

m
k ).

In particular, D1(x
m
1 ) of a leaf node in layer m equals

‖y′ −Rx‖2 evaluated for the particular x = xm
1 represented

Fig. 1. An example of MIMO detection based on the DS algorithm for a
2 × 2 system with 4-QAM modulation (m = 4 and |Q| = 2). The number
labeled next to a node is its path metric, and the number in the brackets is
the order in which the node is selected as the best node and thus expanded.
Colored nodes represent the total visited nodes. The circled leaf node is the
optimal (ML) solution.

by the node. Hence, the objective of optimal detection is to

find the leaf node with the smallest path metric among all leaf

nodes.

Dijkstra’s algorithm for finding the shortest path in a graph

can be applied to solving the MIMO detection problem [7]. It

maintains a list of nodes sorted in ascending order of their path

metric and explores the nodes in such order. The algorithm is

described as follows.

Algorithm: DS

Initially, the node list contains only the root node.

1) (Selecting the best node) Select the first node (the best

node in this iteration) from the node list. If this node

is in layer m (i.e., a leaf node), stop the algorithm and

output it as the solution.

2) (Expanding the best node) Expand the best node by

adding all its children nodes to the node list and

removing itself from it.

3) (Sorting the node list) Order the nodes in the node list

in ascending order of their path metric.1 Go to step 1.

An illustrative example of applying the DS algorithm to

solving the detection problem is shown in Fig. 1, where the

algorithm iterations are depicted. Visited nodes are defined by

those that ever occupy a position in the node list.

III. THE PROPOSED GENERALIZED DIJKSTRA’S SEARCH

(GDS) ALGORITHM

The GDS algorithm generalizes the DS algorithm by in-

troducing three configurable input parameters through which

the memory usage, expansion complexity, and sorting dynamic

associated with the algorithm can be customized. As a result,

the GDS algorithm includes some existing schemes as special

cases. In the following, the algorithm is first presented and

then its properties are discussed.

A. Algorithm Description

Before we present the proposed algorithm, we first introduce

two relevant results.

1Ties are broken by ordering nodes in higher layers (closer to the bottom
of the tree) before nodes in lower layers, but otherwise arbitrarily.



1) Statistics of the path metric: In the tree representation,

in each layer k there is exactly one node that corresponds

to the actually transmitted x̃m
m−k+1. The path metric for this

particular node, Dm−k+1(x̃
m
m−k+1), is the summation of the

square of k random variables that are i.i.d. N (0, σ2
v/2) and

is distributed according to the chi-square distribution with k
degrees of freedom. Its cumulative distribution function (cdf)

is given by

F (x; k) =
γ(k/2, x/σ2

v)

Γ(k/2)
, x ≥ 0, k = 1, 2, . . . ,m, (7)

where Γ(·) is the Gamma function and γ(·) is the incomplete

Gamma function [12]. Let F−1 be the inverse function of F ,

such that x = F−1(y; k) if y = F (x; k).

2) Proposed generalized path metric: As a best-first tree-

search method, the GDS algorithm maintains an ordered node

list during the tree-search process. In the DS algorithm, order-

ing is conducted according to nodes’ path metric, oblivious

of the layer information of nodes. The Dijkstra’s search with

probabilistic sorting (DSPS) algorithm recently developed in

[11] consults the statistics of the path metric to order nodes of

different layers on a fairer basis to enhance the DS algorithm.

More specifically, nodes are ordered by their normalized path

metric, defined as GN (xm
m−k+1) , F (Dm−k+1(x

m
m−k+1); k)

for a node xm
m−k+1 in layer k.2 One problem with this

sorting scheme is that, albeit achieving reduced complexity,

the detection algorithm that employs this sorting scheme does

not always find the ML solution. We are therefore motivated

to develop a new generalized path metric which will be shown

to remove such a limitation. The generalized path metric for

a node xm
m−k+1 in layer k is defined as

G(T )(xm
m−k+1) , F−1

(

F
(

Dm−k+1(x
m
m−k+1); k

)

; k + T
)

,

(8)

where T ∈ {0,Z+} is a parameter and Z+ is the set of positive

integers. The special case of T = 0 returns the path metric

Dm−k+1(x
m
m−k+1).

The proposed GDS algorithm introduces three parameters

L ∈ Z+, K ∈ Z+, and T through which the memory usage,

expansion complexity, and sorting dynamic associated with the

algorithm are configured, respectively. The GDS algorithm is

described as follows.

Algorithm: GDS(L, K , T )

Initially, the node list C = {N(1), N(2), . . .} contains

only the root node, as N(1).

1) (Selecting the leading nodes) Select the leading nodes

N(1), N(2), . . . , N(min(|C|,K)) from C. If N(1) is in

layer m (i.e., a leaf node), stop the algorithm and

output it as the solution.

2) (Expanding the leading nodes) Expand each of the

leading nodes N(i), i = 1, 2, . . . ,min(|C|,K), by

adding its children nodes to C and removing itself

2It is termed normalized because a node’s path metric relative to the
distribution of the path metric of the transmitted partial symbol vector in
the same layer is considered. See [11] for more details.
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Fig. 2. Plot of F (x; k) in (7) for k = 1, 2, . . . , 19 (σ2
v = 2), with the

generalized path metric aT and bT of two example nodes shown for T =
0, 1, 2, 4, 7, 11, and 17.

from C. If any of the min(|C|,K) leading nodes is

in layer m, leave it in C and do not expand it.

3) (Maintaining and sorting the node list) Sort the nodes

in C in ascending order of their generalized path metric

G(T ). Retain N(1), N(2), . . . , N(min(|C|,L)) and discard

others. Go to step 1.

B. Properties

The GDS algorithm takes in the parameter triplet (L,K, T )
and thereby offers rich configurability. Its properties are dis-

cussed as follows.

1) Memory usage: The traditional challenge of the exten-

sive memory usage in Dijkstra’s algorithm is addressed by

the introduction of L, similar to [8]. In fact, given some L
and K , the GDS algorithm requires a fixed memory size of

L + K(|Q| − 1), each unit for storing the (partial) symbol

vector and the path metric. Compared to the SD algorithm

that requires a fixed memory size of (m− 1)|Q|+ 1 [9], the

GDS algorithm is comparably memory-efficient, as moderate

L and K = 1 are sufficient to yield near-optimal performance,

as presented in Sec. IV.

2) Fixing the complexity: The parameter K determines

the expansion complexity. The original Dijkstra’s algorithm

employs K = 1. Increasing K will increase the expansion

complexity, yet may or may not increase the performance (see

Sec. IV). The main purpose of introducing this parameter is

to fix the complexity of GDS. In fact, by setting L = K with

an arbitrary T , GDS becomes equivalent to a K-best detector.

In this setting, the detection proceeds uniformly towards the

bottom of the tree and the GDS algorithm stops after a fixed

number of m = 2NT iterations for an NT ×NT system, thus

producing fixed throughput and facilitating efficient pipelined

implementation.

3) Sorting dynamic: The parameter T controls the sorting

dynamic, through the generalized path metric in (8). The effect

that different values of T produce in sorting is illustrated in

Fig. 2. Consider two exemplary nodes, xm
m in layer 1 and

xm
m−1 in layer 2, with generalized path metric denoted by

aT = G(T )(xm
m) and bT = G(T )(xm

m−1), respectively. It



is seen in Fig. 2 that the relative magnitude of these two

nodes’ generalized path metric depends on T : for small T
(e.g., T = 0, 1, 2), aT < bT , with diminishing differences

as T increases; for some intermediate T (e.g., T = 4), they

are nearly identical; and for larger T (e.g., T = 7, 11, 17),

aT > bT . In fact, it is straightforward to see that sorting by

G(T ) reduces to sorting by the path metric when T = 0, and it

is empirically shown that sorting by G(T ) becomes equivalent

to sorting by the normalized path metric as T → ∞. An

intermediate value of T , as can be inferred from Fig. 2, will

produce a sorting dynamic in between the two extreme cases

of T = 0 and T = ∞. Thus, it is reasonable to expect that

choosing an intermediate-valued T will give a performance-

complexity tradeoff between what can be attained by T = 0
and T = ∞ when other parameters are fixed. This conjecture

is verified by simulation in the next section.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we study the performance of the proposed

GDS algorithm by computer simulation. The real signal model

in (2) is implemented for uncoded MIMO systems. First, we

plot the symbol error rate (SER) and complexity (in terms

of the average number of nodes visited) results for different

signal-to-noise ratios (SNRs) for a 4×4 system with 16-QAM

modulation, in Fig. 3. It is seen that by fixing K and varying

L and T we can strike flexible performance and complexity

tradeoffs. Specifically, from the ML-achieving GDS(∞, 1, 0),

which corresponds to the DS algorithm, increasing T from

0 to ∞ and further decreasing L from ∞ to 1 increasingly

trades the performance for lower complexity in the resulting

scheme.

To demonstrate the performance-complexity tradeoffs more

explicitly and examine the effect of different parameter com-

binations, we plot the SER against the complexity at fixed

SNR for two scenarios: 4 × 4 system with 16-QAM modu-

lation (Fig. 4(a)) and 8 × 8 system with 4-QAM modulation

(Fig. 4(b)). The modified Dijkstra’s algorithm [8], the DSPS

algorithm [11], and the probabilistic tree pruning SD (PTP-SD)

scheme [3] as a configurable SD algorithm (with the Schnorr-

Euchner (SE) enumeration [3] and an infinite initial sphere

radius) are considered in our comparison. In both figures, the

numbers labeled next to a line represent its parameter. It is seen

in both figures that, while the modified Dijkstra’s algorithm

(the GDS(L, 1, 0) line) can produce different points, it is

unable to produce points in the lower-left region of the plot,

which are however attainable by the GDS algorithm through

a joint configuration of memory usage (L) and sorting (T ), as

seen by the GDS(L, 1, ∞) and GDS(∞, 1, T ) lines. In fact,

interestingly, while both the GDS algorithm and the modified

Dijkstra’s algorithm attain the same end-points (zero-forcing

decision-feedback-equalization (ZF-DFE) point at one end and

the optimal point at the other), the GDS algorithm produces

different intermediate points. Specifically, as the modified

Dijkstra’s algorithm goes from GDS(1, 1, 0) to GDS(∞, 1,

0), the GDS algorithm goes from GDS(1, 1, ∞) to GDS(∞,

1, ∞) to GDS(∞, 1, 0) in the lower-left region. Note that the
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Fig. 3. Performance and complexity of MIMO detection schemes for a 4×4
system with 16-QAM modulation. (a) SER. (b) Complexity.

line section between GDS(∞, 1, ∞) and GDS(∞, 1, 0) is not

achievable by DSPS but by GDS. By jointly designing L and

T in the GDS algorithm, various desired tradeoff points can

be produced.

In the heuristic performance regime, the GDS algorithm can

potentially achieve lower complexity and higher performance

than the modified Dijkstra’s algorithm for the same L, e.g.,

GDS(5, 1, ∞) vs. GDS(5, 1, 0). Similar results are also

observed in the near-optimal performance regime, e.g., along

the line GDS(10, 1, T ). Furthermore, in the heuristic regime,

GDS(L, 1, ∞) exhibits a steeper slope than the modified

Dijkstra’s algorithm (and PTP-SD, too), indicating that the

number of nodes visited increases more moderately as the

performance improves as far as an order of magnitude.

By setting L = K with an arbitrary T (say, zero), the GDS

algorithm becomes the K-best scheme as indicated by the

GDS(K , K , ·) line. It is seen that such a configuration gener-

ally searches more nodes than needed to attain a certain SER

performance, a price paid for the benefit of fixed complexity.



The effect of K on the performance is revealed by comparing

GDS(K , 1, 0) and GDS(K , K , 0). As seen in Fig. 4(b), for

small values of L, increasing K improves the performance at

some cost of complexity (comparing GDS(3, 1, 0) and GDS(3,

3, 0), for example). As L increases, the performance gain

from a greater K diminishes, and even parishes in the case of

L = ∞, as both GDS(∞, 1, 0) and GDS(∞, ∞, 0) achieve

the optimal performance.

It should be emphasized that some computational costs

(such as evaluating F and F−1) are not accounted for in

the comparison in Figs. 4(a)–4(b). However, we believe the

number of searched nodes is a meaningful and important

abstraction of the actual complexity involved to distinguish

between different schemes which would otherwise be difficult

to compare side-by-side. Besides, the results present a theoret-

ical interest, showing that a more desired tradeoff region can

be achieved. To reduce the computational cost of evaluating

the cdf function and its inverse, closed-form approximations

[13] and implementation of table lookups [14] are suggested

for an online operation of the proposed algorithm.

V. CONCLUSION

A general Dijkstra’s algorithm-based detection scheme for

MIMO systems has been presented. The proposed theoreti-

cal framework enhances the original Dijkstra’s algorithm by

incorporating a configurable memory size, expansion com-

plexity, and statistical information-based sorting mechanism.

Computer simulation demonstrated that the proposed scheme

presents noticeable advantages in terms of performance-

complexity tradeoff as compared with the conventional Di-

jkstra’s search scheme and the SD algorithm.
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