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NOMENCLATURE

Constant appearing in Eq. 35
Empirical constant in Eq. 54
Characteristic width of velocity
ficld in free shear flow (for plane
jet, bu = half-width; for mixing
layer distance between locations
where normalized velocity is 0.1
and 0.9)

Characteristic width of tempera-
ture ficld defined analagously to by,

Specific heat at constant pressure
Specific heat at constant volyme
Empirical cocfficients appearing in
turbulence model. A complete list
of coefficients and their recom-

mended values appears in Table I,

Constant in ncar-wall "universal®
veloeity profile

Function of Pe, (sce Eq. 35)
Wall-cffect function

Generation rate of turbulence en-
crgy due to buoyant cffects

Kinemaiic production rate of ujuj by
buoyant forces

Kinematic production rate of Wy by
buoyant interactions !

Scalar cnergy, ?/Z

Component of gravitational accel.
eration in dircctlon x|

Enthalpy of fluid per unit mags
Fluctuating component of enthalpy

Internal encrgy of fluid per unit
mase

Mean kinetiec ene rgy
Turbulence kinetic energy, Tf/z

Kinctle onergy at edge of viscosity.
dopendent rogion

Dissipation length scale {¢ = kM/e)
Mixing longth

Ry

v}

Pe

Unit vector normal to a rigid
surface

Function of Prandtl number, char-
acterizing extra reaistance of vig-
cous layer to heat transport
compared with momentum transport

Mean static pressure (as far as
Eq. 19 only)

Generation rate of turbulence cn-
ergy duc to mean velocity gradients
(beyond Eq. 19}

Instantancous static pressure
Peclet number

Turbulent Peclet number

Generation rate of g by mean tem-
perature gradients

Kinematic production rate of uj; by
mean velocity gradicnts

Kinematic production rate °f$
by mean velocity gradicnts

Fluctuation in static preasure

Heat-gencration rate per unit
volume

Local heat-transfer rate per unit
arca from wall

Ratio of time scalecs of turbulent
temperature and velocity ficlds

Reynolds number of cdge of
viscoaity-dependent
region y*k*1 72/,

Time period used for averaging
mean quantities

Net transport rate {i.e., convection
minus diffusion) of u;

Net transport rate ot?ﬁ
Nct transport rato of &
Time

instantanecus velocity in
direction x;
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UIUjuk

u;y

Ye

Yp

b

y

u'

NOMENCLATURE

Mecan componcnt of velocity in
x; direction

Fluctuating (or turbulent compo-
nent of velocity in x; direction

Kinematic Reynolds stress
Triple velocity corrclation repre-
senting the diffusion rate of

Reynolds stress uju; in x; direction

Turbulent flux of enthalpy (divided
by ncp)

Streamwiac direction

Cartesian-epace coordinate {tensor
suffix notation)

Distance from wall

Thickacss of viscosity-affected
region next to a wall

Height of control volume above wall

Helght of node next to wall ahove
the surface

Instantancous temperature

Mean temperature

Fluctuating (turbulent) tempe rature
Kroneecker delta

Kincmatic dissipation rate of turbu-
lence encrgy

Mean valuc of ¢ over cel) adjacent
to a wall

Kinematic dissipation rate of scalar
onergy

Dissipation rate of'uj_v'

Constant in near-wall universal ve.
locity profile

Thormal conductivity
Molecular (dynamic) viscosity
Turbulent viscosity

Kinomatic viscoslty

¢1j

Pij,

?ij,»

?jy

Piva1e Pjy,20 Phy,

SuEn rscripta

»

Subacripte

NP

Density

Fluctuations in density about mean
{included in buoyant terms only)

Shear stress

General mean value of dependent
variable

Instantancous valuc of dependent
variable

Pressure-atrain correlat ion
{(general)

First part of 9ij (associated with
turbulence -velocity interactions)

Sccond part of 1) {associated with
mean strain)

Third part of vi; (associated with
buoyancy)

Pressurc-temperature -gradient
correlation {general)

Denote turbulence, Mmean-strain,

and buoyant parts of Py
respectively

Denotes instantancous (mean plus
turbulent) value of quantity

Values at edge of viscosity.
affected reglon

Value at edge of finlte-difforonce
contro! volume next to wall

Value at sccand node removed from
wall

Value on axis

Value at node noxt to wall
Turbulent value

Wall value

Value outelde boundary layer



A GENERAL MODEL FOR TURBULENT MOMENTUM
AND HEAT TRANSPORT IN LIQUID METALS

by

William T. Sha and Brian E. Launder

ABSTRACT

This report develops a general single-point closure
scheme for calculating the local levels of turbulent fluxes of
momentum and heat in liquid-metal flows, Transport effects
are accounted for by way of the three scalar quantities: tur-
bulence kinetic energy, k; turbulence-energy dissipation rate,
¢; and scalar energy (or half the mean temperature variance), g.
Their values at any point in the flow are obtained from the so-
lution of conservation equations of transport type for each of
the three quantities. The turbulent momentum fluxes (Reynolds
stresses) and heat-transport rates are then obtained from al-
gebraic formulas containing the above scalar quantitics and the
mean velocity and temperature fields.

Various applications of the modelare discussed; the pro-
posed model has a wide range of applicability,

I. INTRODUCTION

A, Class of Flows under Study

Despite their high cost and the precautions needed to handle them
safely, liquid metals represent an attractive choice of fluid for certain heat-
exchange processes because of their very high thermal conductivities. Cir.
cumstances that tend to favor liquid metals over less exotic coolants are
those in which high heat-flux densities occur, particularly where flow rates
are limited.

Two features of liquid-metal flow make the problem of estimating heat-
transfer rates in, say, a prototype design much more difficult than where the
working fluid is air or water. The first is the relative absence of detailod
experimental data, due in part to the high cost of fabricating suitable apparatus
and partly to the experimental difficulties of obtaining accurate statistical
temperature-fluctuation data, The second feature is that, though the flow will
nearly always be turbulent at design conditions, turbulent Peclet numbers are
usually insufficiently high for molecular transport of heat to be negligible,
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Thie has far-reaching implications in developing a theoretical model for such
flows, for it means that we cannot invoke the usual high-Peclet-number con-
cept of the large-scale temperature fluctuations being independent of the
molecular transport properties of the fluid,

The present report provides state-of-the-art recommendations for
modeling momentum and heat transport in liquid metals in a form suitable for
use in finite-difference schemes for solving the three-dimensional momentum-
and heat-transport cquations. To make numerical simulations of three-
dimensional flows will generally press hard on the available computer storage,
There is thus a strong incentive to keep the turbulence model as simple as
possible. This desire, however, is directly opposcd by the shecr complexity
and diversity of the flow structures that may .risc in three-dimensional flow;
only a highly sophisticated treatment could hope to predict results with suf-
ficient accuracy over a wide range of conditions. In fact, a compromise
treatment has been evolved; certain scalar propertics of turbulence are ob-
tained from solutions of transport cquations (nccessitating storage of these
quantities over the field) while the turbulent momentum and heat fluxes are
obtained point-by-point from a set of nonlinear algebraic cquations,

Section 11 of this report develops the proposed form of the model and
details the experimental results from which the proposals spring, Boundary
conditions, particularly the near-wall treatment, are discussed in Sec. I1I;

Sec. IV examines in somewhat greater detail a selection of convective transport
problems, which may be successfully predicted with the model,

Although the rcport has been written with liquid-metal flows especially
in mind, nearly all of what follows is applicable to flows of other single-phase

fluids as well.

B. Class of Turbulence Models Selected

At present and, it appears, for at least the next decade, practical
methods of calculating the behavior of turbulent flow muet be based on the
averaged form of the Navier-Stokes equations proposed by Reynolds at the
end of the 19th century. In this scheme, all statistically random fluctuations
in flow variables are averaged out, producing a set of transport equations for
the mean properties. Through the nonlinearity of the convective transport
processes, however, time-averaged correlations between pairs of velocity
fluctuations or between enthalpy and velocity fluctuations remain in the mean
flow equations. These correlations, representing additional transport rates
of momentum and heat associated with the inherent unsteadiness of turbulent
flow appear as unknowns to the equation set, and & theory or "turbulence
model” is needed for their determination.

The earliest recognizable turbulence model was the mixing-length
hypothesis (mih) proposed by Taylor (1915) but, nowadays, usually associated



with the work of Prandtl (1925). According to this scheme, the transport rates
due to turbulent agitation are determinable by introducing an equivalent tur-
bulent viscosity by whose magnitude is obtained from

oU. /3U. au
by = pti (L L), (1)
t axL ax,t’ axi

where p is the fluid density, U's denote mean velocities, x's are Cartesian
coordinates, and the usual convention is adopted, whercin repeated suffixes
implies summation over the three Cartesian components. The distribution of
mixing length 4., must be prescribed; implicit in the use of Eq. 1 is the idea
that £, is & well-behaved function and that a few simple rules will suffice for
its prescription over a range of flows.

The satisfactoriness of the mth could not be scriously tested until the
1960's when numerical-solution schemes became widely available for solving
the fluid-flow equations for arbitrary two-dimensional flows. From this period
of testing it emerged that the meh achieved significant success in predicting
boundary layers developing along walls, that it was less successful at cal-
culating the behavior of free shear flows, and that it was totally inadequate
for predicting flows with recirculation such as may occur in the flow down-
stream from a sudden cnlargement in Pipe diameter. More recent explorations
of three-dimensional flows have exposed further shortcomings in the model.

The deficiencies of the mdh, which make it unsuitabie for use in a
gencral computational scheme, may be attributed to two distinct causes. First,
it links the local turbulent transport rate to local properties of the mean flow
field. (In practice, the turbulent field, though ultimately owing its source of
sustenance to the mean flow, will respond at different rates to any external
changes.) Second, although in simple strain fields the idea of an isotropic
turbulent viscosity has proved adequate, this is by no means the case when
fluid undergoes more complex distortions,

Various workers have attempted to remove the former defect by
devising transport equations for turbulence quantities that would be solved
simultaneously with those for the mean fléw; by this means the need to use
mean-flow time and length scales to approximate turbulence scales was
removed. Here we may mention the early work of Prandtl and Wieghardt (1945)
which provided a transport equation for the turbulence kinetic energy, k. The
turbulent viscosity was then evaluated from

g = pLk!’Z, (2)

where 4 is an algebraically prescribed length scale displaying a variation
similar to the mixing length, .

Although conceptually the Prandtl-Wieghardt (1945) model represented
& major advance over the mih, in practical terms it achieved rather little,
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Its achievements in free shear flows were modest (see, for example, com-
parative predictions of 23 free shear flows in Launder et al., 1972}, and in
recirculating flows, it was not at all satisfactory due to the largely "unguessable"”
distribution of length scale that arises in such flows. What was needed was a
transport equation for the jength scale--or for some related quantity from
which the 4 distribution could be calculated, Kolmogorov (1942) had, in fact,
proposed such a "two-cquation" model somewhat before the Prandtl- Wieghardt
(1945) one-equation model, Kolmogorov's equation could not be tested for a
further 25 years when compuler programs had become available for obtaining
numerical solutions of sequences of coupled, nonlinear partial differential
cquations. When it was tested, it was deficient in some respects,

Nevertheless, Kolmogorov's ideas stimulated the development of
several other modcls in the late 1960's. Although these still feli somewhat
short of providing universally valid models of turbulence, they at least provided
a framework by means of which many turbulent recirculating flows * .ve been
successfully computed. The most widely used and probably the most suc-
cessful of the two-cquation modcls is that based on the transport equations
for kinetic energy k and its dissipation rate e. This model was cvolved largely
independently by workers at the Los Alamos Scientific Laboratories and the
Imperial College, London [Daly and Harlow (1970); Hanjalic and Launder (1972);
Jones and Launder (1972)].

The models mentioned so far all adopted the concept, due originally to
St. Venant (though more usually attributed to Boussinesq), of an effective
(isotropic) turbulent viscosity, There is no necessity to adopt this notion,
however. As early as the mid 1940's, Chou (1945) had given the framework of
an elaborate closure in which the Reynolds stresses (i.e., the correlations
between two fluctuating velocities at a point) werc themselves the subjects of
a set of transport equations. In fact, Chou suggested that the triple velocity
correlations, uju;ug, would also be retained in transport form; thus, if his
model were to be used for a general three-dimensional flow, 20 transport
equations for turbulence quantities would need to be solved. Even with today's
computers, this represents an impractically large number.

Some years later, Rotta (1951), taking a more down-to-earth approach,
attempted to fill in the details around Chou's proposal and, at the same time,
to cut the model down to manageable pProportions. He made an algebraic rather
than a differential approximation for the triple correlations, a level of model-
ing that has become known as a "second-order" or "Reynolds -stress" closure,
Rotta's pioneering work in a sense appeared too early, for it was a further
15 years before the ideas he put forward could be tested, adapted, or borrowed
by other workers in models of the same basic type.

There is an extensive literature, which we shall not atfempt to cover
in this short review. Mention is made, however, of the early contributions of
Donaldson (1968) and Daly and Harlow (1970). Although their models did not
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Provide particularly good desc riptions of turbulence, the appearance of these
Papers did a great deal to remove the hesitancy of solving so many strongly
coupled transport equations. More recently, Launder, Reece, and Rodi (1975)
published a model that has been applied by its originators to the prediction of
a range of thin shear flows both close: to and remote from walls.

What features make the differentjal Reynolds-stress model an attrac-
tive level of closure? There is not the fixed interrelationship between the
local stresses and strain rate that the effective viscosity hypothesis enforces.
In simple strain fields, where transport of the Reynolds stresses small, a
Reynolds-stress model reduces to the cffective viscosity hypothesis. But in
flow over a curved surface, it leads to the prediciion (in line with experiments)
that the local shear stress is about 10 times as scnsitive to the secondary
Strain associated with streamline curvature as to the primary strain. Likewise,
for flow in a straight, noncircular duct, the model predicts that stresses in the
plane of the duct cross section may be generated by strains in planes at right
angles to these stresses, This characteristic, which is quite at odds with the
concept of an cffective viscosity, enables the phenomenon of turbulence-driven
sccondary flows to be correctly predicted.

A further advantage of a differential Reynolds-stress closure is that
the influence of body forces on the turbulence structure appears quite naturally
in the model without the need for ad hoc modifications. This is particularly
important in buoyant flows, because the stratification affects both the tur-
bulent stresses and the heat fluxes while the latter are coupled to the former
through the gravitational term.

These considerations make it highly unlikely that one could devise
gencrally adequate correlations of buoyant effects working within the frame-
work of effective viscosity and (for heat transport) effective Prandtl number,
With a second-order closure, however, the gross effects of buoyancy are well
represented, even when rather primitive approximations are used for the
unknown corrclations [e.g., Donaldson, Sullivan, and Rosenbaum (1972);
Mellor (1973)].

There is one respect, however, in which a second-order closure is not
preferable to those based on the notion of an effective viscosity; this is the
additional computer time required, With a differential stress model using a
single length scale equation, seven transport equations must, in general, be
solved for the hydrodynamic field and three more for the heat-flux correlations.
The amount of computcer core absorbed by holding the values of these cor-
relations in store over the flow domain is sufficiently large to make one
consider whether there are ways in which the benefits of the second-order
closure can be retained while reducing the computing requirements to those
akin to the two-equation effective viscos ity models,

There has, in fact, emerged over the last few years a class of closure
that can reasonably lay claim to possessing these dual qualities, Known as an
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algebraic stress closure, it is arrived at by simplifying the transport stress

in the Reynolds-stress transport equation so that the equation is reduced to

algebraic form. Details of the simplification are presented in Sec. I1.D.
Application of this approach has been reported, inter alia, by Launder {1971)
and Launder and Ying (1973) on the prediction of flow and heat transfer in
square-sectioned ducts, Rodi (1972) on the normal-stress profiles in free
jets, and Gibson and Launder (1976) on the prediction of horizontal free shear
flows affected by buvyancy. A model of this kind is proposed for use in the
present work.

The specific topic of heat transport in liquid metals has not previously
received much attention within the framework of second-order transport
models (or the simpler algebraic versions derived therefrom). The thesis of
Owen (1973) appears to be the only work to have considered flows in which
the Prandtl number was much less than unity. In fact, his modeling of the
heat-flux equations was not particularly successful, the predicted distribution
of turbulent Prandtl number showing (in contrast to experiments) an insig-
nificant dependence on the Peclet number of the flow, J.awn (1977) made the
interesting suggestion that the reduction of the heat fluxes at low Peclet
number is due simply to the reduction of turbulent temperature fluctuations;
that is, the correlation between velocity and temperature fluctuations is un-
affected. There is not yet a sufficiently precise set of experimental data to
allow the accuracy of this suggestion to be assessed. The current model,
while permitting more subtle interactions than lawn's suggestion allows,
does take the view that the main effects of Peclet number arise from mod-
ifications to the time scale of the temperature-fluctuation field.



I, DEVELOPMENT OF MATHEMATICAL MODEL OF TURBULENCE

A. Mecan Flow Enuations

The Navier-Stokes cquations governing the motion of a turbulent
compressible fluid may be expressed, using Cartesian tensor notation, as

. aiJ. -
i - Py 3P a ., .
°( el Ujax.) Tk s i) e (3)
J 1 ]
5e 3 .
=0 20 = o, (4)
ot Uxi 1
and
Tij “(axj * axi)- ?5ij“axk ’ (5)

In the above cquations, the U's indicate instantancous values of velocity,

¢ and P arc the instantancous density and static pressure, respectively, the
x's arc Cartesian space coordinates, gj is the gravitational acceleration vector,
and u is the molecular viscosity. We note that the instantancous density is
rctained only in thie buoyant term of the momentumn equation. Elsewhere, the
"mean” density, p, defined below is used; the implications of this assumption
are discusscd shortly,

The time scale in which significant ordered variations of the flow take
place is assumed to be more than an order of magnitude greater than the
statistically random fluctuations associated with turbulence. We may thus
distinguish mean and fluctuating flow components. Mean values of the depen-
dent variables arc defined as

00 = g [ B a, (6)

where § stands for any of the dependent variables. The integration time T ia
chosen so that it is long compared with the turbulent time scales, but shortcompared
with that needed for appreciable ordered variations to occur. We define ¢, the tur-
bulent componentof %, as the difference between the instantaneous and meanvalues

cpsa-i. - (7)

Evidently, from Eq, 6,

1 T
7w ea=o @)

i.e., the mean value of the fluctuating component is zero.

15
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The decision to retain only the mean density on the left-hand sides of
Eqs. 3 and 4 strictly implies that attention should be limited to situations in
which the percentage fluctuations in density associated with turbulence are
small compared with the percentage velocity fluctuations, The advantagce of
making this assumption is a grecat simplification in the task of characterizing
the effects of turbulence in the later sections of this report. The assumption
of negligible density fluctuations has commonly been made, even for calculat-
ing flows in which such an assumption is inapplicable; frequently (but not
always), satisfactory predictions have been reported. {The intercsted reader
may refer to the Proceedings of the Free Shear Flow Conference [NASA (1973}]
in which more than a dozcn computational schemes have been used to predict
free shear flows involving substantial density gradients,)

Let us now replace the instantancous properties in Eqs. 3 and 4 by the
sum of the mecan and fluctuating componcnts, and then ave rage the cquations
over the interval 2T, The ¢quations for the transport of mean momentum may
be written

U, oU; aT::  dpujug
-1 i) oP i ivj .
"( ot +UJax.)“ S T Sme T e P (9)
J 1 J J
and
opU:
%% ¥ ax-1 =0 (10)
J

Equation 9, generally known as the Reynolds cquation, provides the basis for
all practical computations of turbulent flow. Duc to the nonlinearity of the
convective terms on the left of Eq. 3, the process of time averaging brings

into prominence the correlation involving the turbulent velocities, puju;. These
correlations represent additional momentum fluxcs or apparent stresses in the
fluid (Reynolds stresses) over and above those associated with the mean mo-
tion. The magnitude of these correlations is unknown; thus the momentum and
continuity equations no longer provide a closed set. Section II.C below develops
a general theory for approximating these Reynolds stresses,

In analyzing heat transport by turbulence, we adopted an approach pre-
cisely analogous to that used above for the momentum equations. The first
law of thermodynamics may be expressed in transport form as

p[a(fu‘c) +ﬁ_a(f+f<)] a( al‘")+&,,. OPY; 2ty

ot J axj =axj axj axj axj + pU;g;s (11)

where T, f, and R denote the instantaneous values of temperature, internal
energy, and kinetic energy of the fluid element, respectively, A is its thermal



conductivity, and g" represents the local heat generation rate per unit volume
from sources other than the flow field (e.g., radiation or radioactive heat
release). It is convenient to take the term containing static pressure to the
left sidc of the equation. Then, on subtracting Eq. 3 multiplied by fI;_, we obtain

i s a2, 38 ., 30 (613 A aﬁ)
= — (pU.A) = =, =L i = + 022 (1
n (oH) + o, (pUJH) axj(A axj) +qm + -rJlaxj 5t * Ui S, (12)

As a result of this manipulation, the direct appearance of the reversible
work terms and the kinetic energy has been climinated through the introduc-
tion of the cnthalpy H, defined as (1+P/e).

On expressing the instantancous values of temperature, velocity, en-
thalpy, 2ud pressure in terms of mean and fluctuating components and averag-
ing the cquation over an interval 2T, we obtain the mean enthalpy transport
cquation,

N . - al.
aH 3H _ 3 ( 3T\ . .. i -
SAF e pUj axi B ij(A axi) gt "'jia e - axj (pujh)
+(a_p +U -?E) + —a.P_ (13)
ot ! ax; ulaxi’

where h denotes the instantaneous value of enthalpy fluctuation, ¢ is the mean
value of the turbulence-kinetic -energy dissipation rate per unit mass, and the
overbars imply, as usual, an averaging over an interval 2T. The correlation
v 3p/ax; principally represents a diffusive transport of turbulence energy by
pressure fluctuations. Its influence, even in the turbulence -energy balance, is
commonly negligible; therefore its retention in the mean enthalpy equation is
unwarranted,

Alternatively, by way of the definition of the specific heat at constant
prcssure,

we may, by assuming that the enthalpy is a function of temperature alone,
reexpress Eq. 13 in the form

ar ary_ 3 f,dr\ ., 3, — dU;
Pcp('a' ¥ Ujaxj) - axj\" axj) *q" - 3] (pcpuyy) + Tjiaxj

oP oP
‘tpe +(—a? + Ui"s;-i)- (14)
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The correlation WY on the right side of Eq. 14 is, like the Reynolds stresses
in the mean momé‘ntum ¢quation, an unknown to our system of equations; it

is proportional to the extra rate of enthalpy transnort due to the turbulent
fluctuations. Section II.C below presents proposals for modeling this quantity;
first, however, we will develop an exact ¢quation describing the transport of

Uj'Y.

The turbulence-encrgy dissipation rate is also an unknown quantity
for whose determination a scheme is proposed in Sec, 111,

B. Exact Transport Equations Gove rning the Level of Uju; and u;y

We note first that, on subtracting Eq. 10 from Eq. 4, we obtain the
continuity cquation governing the turbulent motion:

0
'g;(ﬂuj) = 0. (15)
J

Moreover, subtraction of Eq. 9 from Eq. 3 produces, with the help of Eq. 15,
the following transport cquation governing the level of fluctuating velocity ug:

a—ui' + U a—u}- = 0 an i( Tu)
P ot kaxk -7 Bxi T PUk X h axk puuy - pu Y
3 | fPui | duy ,
' axk[“(axk + axi)] +o'g;, (16)

where p' denotes the turbulent density fluctuation and, for rcasons that will
become apparent below, the subscript j has been replaced by k. (This re-
placement has no cffect on the equation, since the subscript appcars twice in
each term and summation for the three Cartesian directions is thus indicated.)
In Eq. 16, the compressible part of Stokes! stress-strain law has been
neglected,

Now let us multiply Eq. 15 by uj and add it to its complementary equa-
tion in which subscripts i and j have been interchanged. On time-averaging
and regrouping, we now have an equation for the transport of the correlation
uu;:

17

duju; dujuy __3Uj ___ay; duj fou; By du; fauy  odu
p( ;] +U j) = .p(uluk-sx—k + ujukw':-) + (p'uigj tp ujgl) - [u'sx—:‘(&%‘ + a]t) + ua—x;(-a—x%‘ +-S‘J£)]

ot k3x),
. g o J A +/
A B c
Sui  Bwiy 8 [foumy Ay WMy =
+p(ﬁ*a,.. o b B oy )"'“l“i“k"P“i‘ik**’“i‘lk’]-
W L_

D E ’ (17)
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This equation expresses the fact that the total rate of increase ofu_iug
for an elemental fluid packet is equal to th. excess of the generation rate due
to mean shear (A) and buoyant interactions (B), over the loss through viscous
dissipation (C), through the randomizing action of the pressurc-strain cor-
relation (D), and through diffusive transport (E). Section II.C considers the
simplification and closurc of this equation,

An cquation for the transport of turbulent temperature fluctuations may
be obtained by subtracting Eq. 14 from Eq. 12 (th- latter having been expressed

in terms of temperature rather than enthalpy). The resultant cquation may be
written

- =~

Iy oY oT o —_—
— tU,=— )= - — - ¢ — -
DCP(ot dexk) pPCpIy Sy Cpaxk (pukY puk'Y)

- oU. ou; au
+_3_(A_31) p o lifoui k)

[ 3./ du du; /3 d
A u: } ou- u. u
+,-Ii~ 1f Y49 ; 1\)_“\ 1( L, k)

cxk\axk axi 0%y 5xk axi

op oP ap _op dp
+a—t- +uka—x]<- + Ukan +(ulaxi - uia-; . (18)

On multiplying through by u; and adding to the resultant equation that is ob-
tained by multiplying Eq. 16 (with the subscript j replacing i) by CPY, we

produce an cquation describing the transport of the correlation u; Y along a
streamline:

~
—_ du:y ar —0ou —_—
.....3_’ T —— _ . i
"(at u.lY ¥ Uk Bxk puJuk Bxk puk'Y ox te ng
\ v 7 O\ v 2 H__J
A B C
Ry axk axk ax‘i Cp _x; xk J
N v / \W—J
D E

d | —— — L e
- — + - o— —— —
axk pukqu PY 6jk cpuj axk “'(aaxk * axj

| f_ -
ayfy v L (19)
*PYlER ( cp) (Contd,)
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aU. ou; du
+2& 3 L uj(axl + 3 k) > (Contd,)
By aui Bui BUk
cp Jaxk Bxk axi

Yiap, WUk 3P Uk 3p | UKkY5 3p
+—3t— * c ox * c uj ox ¥ c ox, |
°p p %k k  Sp %k

’,

The processes on the right-hand side of Eq. 19 causing the correlation UJ_'Y-
to change along a streamline may be interpreted as generative agencies arising
frommean temperature and velocity gradients (A and B) and gravitational action (C);
molecular smearing in the fine - scale motion (D); destruction due to the randomizing
action of the fluctuating pressure field (E); diffusive transport due to bothmolecular
and turbulentmixing (F); and to an effect, in nonstationary gaseous flows, associated
withthe nonequality of the specific heats at constant pressure and constant volume (G).
There are, in addition, the correlations appearing below the broken line arising from
viscousheating and pressure gradients. Their influence will be insignificant unless
the Eckertnumber is of order unity. These conditions will occur only when heat
transportthrough the flow boundaries is small compared with that generatedinter-
nally by friction or compression. Sucha situation is sofar removed from those en-
countered in the heat- :xchanger area that the terms are hereaft.: discarded in the
main text. The question of approximating the unknown correlations appearing above
the broken line is discussed further in Secs. I11.C.3-I1.C.8.

Before leaving consideration of the exact equations, we_shall obtain
transport equations for the scalar quantities k(= uf/2) and g(= ¥?/2). These are
readily derived by multiplying Eq. 15 by uj and Eq. 17 by Y. The resulting
equations may be written

dk dk) . —_9U; —= aui(aui Suge
p(&- + Uk-a?k-) = - PuivkgL T e'uiBi - = g
D i e & v
oP pG e
+ axk[”'(axk + 3% )- P53 = Pujdix (20)

and

-0 TR
% ) - oy AL Y L 2 (, 3 | UV
p(cvat ¥ CPU:k oy PepUKY X} A Oxy 0% ¥ ox). b 3%y e/ (21)

As remarked above, viscous and compressive terms are dropped from Egq, 21,
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These equations are evidently simpler in character than the Reynolds-
stress and velocity-temperature-correlation equations derived earlier. We
shall take advantage of this simplicity in Sec. II.D.1 to devise a convenient,
economical form of our model for practical computations.

C. Closure Proposals for ujuj and u;y Equations

1. The High-Reynolds-number Approximation

We shall assume that, except in the immediate vicinity of rigid
boundaries (for which, in any event, special provision is made later), viscous
transport effects are negligible in comparison with turbulent transport. This
is equivalent to saying that the large-scale turbulent motions that carry the
turbulent encrgy and Reynolds stress are unaffected by fine-scale motions.
Reciprocally, the fine-scale motions, which are directly influenced by viscosity,
are assumed to be unaware of the character of the large-scale turbulence or of
the mean flow.

This assumption greatly simplifies the task of devising a closed
form of Eq. 17. First, the viscous dissipation of ujuj can be represented in
the form appropriate to isotropic turbulence:

! e A W T ¢ e = $6;:¢, (22)
axk\axk axj Bxk Ox 3x; 3T

where ¢ is the dissipation rate of turbulence energy, which, at high Reynolds
numbers reduces to

aui aul

€= ug—k axk'

(23)

We may also neglect the viscous contributions to the diffusion term (E) in
Eq, 17, Further, in seeking approximations for the remaining unknowns in
this equation, we consider forms that are independent of viscosity.

2. Diffusive Transport of Stress

Hanjali¢ and Launder (1972) devised the following approximation
for the triple-velocity correlation ujuju:

suu dupyy aujuk) (24)

—— Kfo—
-ujujup = c:'s ?(“ku{. ax,, +uju‘b ax& +ujuy 3::&
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where the empirical coefficient ¢! was later optimized by Launder, Reece,
and Rodi (1975) as 0.11. The latter work found, however, that the simpler

form propoaed by Daly and Harlow (1970) appeared to give just as satisfactory
results:

auiuj

)
BxL

— k

'uinuk = C:8 Euku{,

(25)

where the coefficient cg was taken as 0.22. In retrospect, although Eq. 24 is

a better model of Gyuw) than Eq. 25, it seems likely that the latter is equally
good as a model of the total turbulent transport of ruJ (Launder, Reece, and
Rodi had omitted any modeling of the pressure-transport term,)

3. Pressure-Strain Correlation

The pressure-strain correlation in Eq. 16 represents arguably
the most crucial term to model in the Reynolds-stress equation. In fact, three
distinct agencies contribute to the fluctuating pressure field, each of which
will need separate modeling, This becomes apparent by taking the x; deriva-
tive of the equation for the turbulent velocity fluctuation (Eq. 16). After re-
arrangement, we obtain

1 3%p 3t —_— ouy 3V; 3p'
P axi T amdx, (ujuge - Tyo) - 2o om, T 8i3x;" (26)
g v w N v J H_;
(A) (B) ()

From E¢. 26 it may be inferred that the pressure fluctuations are induced by
purely turbulence interactions (A), effects involving the mean rate of strain (B),
and buoyant contributions (C). Although some workers still include an approxi-
mation of only the first of these contributions, there is a gradually emerging

awareness of the important contribution played by mean strain and buoyant
effects,

The present recommendations spring from the work of Launder,
Reece, and Rodi (1975), Launder (1975B), and Gibson and Launder (1976, 1978).
The basic idea is that, due to process (A), the pressure fluctuations will tend
to produce a return to isotropy [a proposal due originally to Rotta (1951)] while
processes (B) and (C) will diminish the rate of stress creation by shear and
buoyancy, respectively,

Thus, for free shear flows we recommend that the pressure-
strain correlation be approximated as

Y
.E(;:_;' + a—::-:-) = -clé(ﬁ'l—uj - ébuk) - c;(Pij - §GUP) - Cs(Gij --ieijG). (27)

¢ivjll ¢’Jﬂ vljr,l



23

where P;; and Gij denote the kinematic generation rate of Ujuj by mean
shear anti buoyant action, respectively:

n

an U,

and

G

m

o'u, p'yy
7\ &)

and P and G are the corresponding rates of kinetic -encrgy generation. Note

that, under contraction of indices, the left side of Eq. 27 vanishes in a strictly
incompressible turbulent field due to continuity; this characteristic is retained
by the approximation on the right, since uju; = 2k, P;; = 2P, and Gi; = 2G.

In the present work we retain Eq. 27, though in a compressible
flow, the contraction of the pressurc-strain correlation will not exactly be
zero. The quantity k/e, whose reciprocal appears in the first term on the
right of Eq. 27, provides a characteristic time scale for changes to the tur-
bulent velocity field, Its reciprocal (e/k) thus gives the characteristic rate
at which the process in question proceeds; the term as a whole thus tends to
drive the turbulent stresses to their isotropic state [(2/3)6i-k] at a rate pro-
portional to the level of anisotropy and to the characteristic turbulent change
ratc. Optimization of c; over a range of free shear flows suggests the optimum
value to be about 1.8. The coefficients ¢, and ¢, are selected as 0.6 and 0.5
by refercence to data of stress ratios in horizontal simple shear layers,

In considering confined flows or external flows along a rigid
surface, we must, unfortunately, account for a further aspect of the pressure-
strain correlation. The difficulty arises because a wall modifies the fluctuat-
ing pressure ficld; it will reflect pressure fluctuations rather as a mirror
reflects light. Most groups working with second-order closures still neglect
this effect. Provided one restricts attention to a narrow class of flows (and
cxamines only the predicted mean flow field), this neglect seems acceptable.
There is, however, a growing awareness that any general turbulence-model
formulation does need to include the wall effects on the pressure-containing
correlations.

At present, extensive testing has considered only a simple shear
flow past a single plane wall with no gravitational contribution [Launder,
Reece, and Rodi (1975); Irwin (1974); Gibson and Launder (1978)), The present
recommendations are taken, with but minor modifications, from the last of
these contributions. We denote by p(3uj dx§ + duj/dxi),, the modification of
the pressure-strain correlation due to the wall. This is to be added to the
free-flow form, Eq. 27. That ls,
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Here x, is normal distance above the wall and the n's are unit vectors normal
to the surface. We propose that the coefficients c{, ¢}, and c} should take the
values, 0.3, 0.4, and 0.4, respcctively. The wall-effect function fy(k*2/exy) is
in fact taken as linear and equal to unity close to the wall, where K} /e
increases linearly with x,. Thus,

K32 K32
fl(;ﬁ) = Cwm, (29)

where cy, takes thc value 0.38 so that the function satisfics the above
requirement.

The work of Reece (1977) appears to be the only one so far that
has attempted to include the effect of more than onc wall. As shown in Fig. 1,
he assumed thait for two walls at right angles, the effccts of the two walls
could be added linearly without any sross-coupling. For example, if the unit
vectors normal to the adjacent surfaces point in the positive x, and x, direc-
tions, the total wall effect at a point P is the sum of two contributions: one
arising from wall 1 with a wall-effect function of cyk*’2/ ¢x; and the other,
due to wall 2, in which the corresponding wall-effect function is cwk'?/ex,.
Of course, for positions that are much closer to one wall than ancther, the
effect of the nearby surface predominates, since k! ’z/"‘n will be so much
larger for the closer wall.

n|‘°:|.°’ ® Ph" '2' .
ig. 1

Two Walls atRi 1
ll.ll.0.0l L1 0 Walls at Right Angles

_11”411:;:“
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In gencral circumstances, i.e., for an arbitrarily contoured
boundary, the wall effect should Properly be expressed in terms of an integral
around the circumfercnce. The details of such a scheme do not, however,
scem to have been worked out,

The most important nonplanar case is the circular sectioned pipe
or containcr., At present, for this geometry, the best practice would appear
to be to use the formula for the plane-wall correction. Such a practice should
lead to a moduvst overestimate of the circumferential velocity fluctuations at
the expensce of axial ones; it is, Lowever, rather doubtful that the model for a
plane flow is sufficiently accurate for any definite conclusion to be reached
about the cause of any discrepancics between data and prediction for, say,
fully developed flow in a pipe.

4. Strategy for Closing the Equations for u;Y

Scction 11.C.1 presented the main ideas behind the high-Reynolds
number modeling of the turbulence velocity field; i.c., the fine-scale viscosity-
dependent part of the motion was unaffected by the nature of the large-scale
motions and was thus isotropic, Correspondingly, the large-scale motions
were unaffected by the fine scale and thus were independent of Reynolds
number,

The same state of affairs will also pertain to heat transport,
provided the Prandtl number of the fluid is of orderofunity greater, For
liquid metals, however, because Prandtl numbers are then of order 102,
there will commonly be no truly fine-scale thermal turbulence and the large-
scalc temperature fluctuations will be affected by molecular transport. Put
ancther way, the high thermal conductivities mean that heat will leak away
from an cddy in transit from onc region of flow to another. It is therefore
evident that turbulence agitations will be less effective in augmenting heat
transport in liquid-metal flows than in other fluids.

Our strategy in closing the heat-flux equation will be to assume
that only the most important turbulent correlations are affected and that these
are functions only of the local turbulent Peclet number. This approach is
almost certainly an oversimplification. When venturing into a nearly unex-
plored ficld, however, we find it best to start with a simple model so that the
cause of any crrors can be easily traced and cured. Moreover, by keeping
the model simple, we have much less risk of making a major error,

5. Molecular Dissipation of the Heat~flux Correlation

When the Prandtl number is of order unity or greater, the correla-
tion between derivatives of velocity and temperature, given by term D in Eq. 19,
is negligible outside the viscous sublayer and buffer region. Under conditions
of low turbulent Peclet number, however, it seems plausible to correlate the
process as follows:

25



¢y = fy(Pey )T vee /kg, (30)
where ¢jy 8tands for term D in Eq. 19 divided by p. The turbulent Peclet
number Pe; is defined as pcpk"/el. The functional, fjy, should approach zero
as Pey becomes large (i.c., greater than about 300) and will approach some
canatant value, of order unity, when the Peclet number becomes very small.

We make no proposals for approximating the function fyy because,
as we shall sec in the next section, a directly similar term also appears. We
shall model the two processes together, thus keeping to 2 minimum the number
of empirical functions to be optimized.

6. Pressure-temperaturc-gradient Correlation

Process E in Eq. 19 is approximated broadly along the lincs pro-
posed by Gibson and Launder (1978), but generalized to include low-Peclet -
number effects,

The basic form for flows remote from walls is taken as

Y Ty
T T o Tg 5V * €¥Piy - eGiy. (31)
J —, 7 R R R
Pj¥,t ij,z PjY,s

The quantities P;y and Gjy, respectivcly, stand for the rate of generation of
the correlation ﬁ%‘? by mean shear and buoyancy:

— 9Uj;
PjY = -ukYS;; (32)
and
Gyy = WEj/D- (33)

The coefficients C:y and cyy arc taken as independent of Peclet number.

For isotropic turbulence, we may show [Launder (19754), Lum!iey
(1975)] that the coefficient cyy should equal exactly 1/3; experiments seem to
suggest that, for shear flows, however, a rather larger fraction of the buoyant
generation may be obliterated by pressure. Accordingly, we take cyy = 0.4
and, noting the basic similarity of the processes, we let c,y take the same
value, The coefficient c,y takes a value of about 2.0 at high Peclet numbers,
that is, & value similar to that of c, for the corresponding part of the pressure-
strain correlation.
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The cumbersome group ., /e eg/kg is just the geometric mean of
the velocity and thermal turbulent rates of change. It is convenient to rewrite
this as (e/k)/R'"?, where R is the time-scale ratio ge/key,. The quantity R
is not strictly constant, even at high Peclet numbers; the review by Launder
(1976), for cxample, shows a roughly threefold variation in its magnitude over
the relatively small span of flows in which the requisite experimental data are
available. Nevertheless, in simple shear, whether close to or remote from a
wall, a value close to 0.6 seems to be indicated (Bcguicr et al., 1978); that is
the value we adopt. In the present work we take the view--which is broadly
consistent with Lawn's (1977) hypothesis discusced earlier--that the effect of
Peclet number on R represents the main source of molecular activity on the
turbulent-hcat-transport mechanism.

Let us note also that, on adding the molecular-dissipation process
(Eq. 30) 10 ®jy,1» We obtain

R ¢
—-’—") (34)

: . -] FT R T
€y ! iy, = ClquJY(R + Y
- J

W
Fi(Pey)

The quantity F,(Pe,) takes the value unity as the local turbulent Peclet number
attains large values and takes on very large values as Pe approaches zero
{provided the turbulent Reynolds number is high).

The analyzes of Deissler (1963) and Corrsin (1952), as well as
sceveral empirical correlations, suggest that the turbulent Prandil number is
inversely proportional to the laminar Prandtl number in this limit, It is
readily demonstrated that, by neglecting convection and diffusive transport,
Eq. 18 does give this inverse relation between molecular and turbulent con-
ductivitics, provided F, varies as Pet'l in the limit as the turbulent Peclet
number approaches zero.

It has usually been found, from the work of Van Driest (1956)
onward, that exponential functions allow one to fit the dramatic changes in
cffective transport coefficients across the viscosity-affected region more
compactly than do polynomial forms., A disadvantage of using exponentials ig
that their evaluation tares a significant portion of the total computing time,
Once a suitable exponeatial form has been devised, however, it is easy to make
a piecewise linear fit to it--and such piecewise linear functions take only a
few percent of the computer time required for the exponentials. Noting the
required limiting behavior, we therefore choose

Fy = [1 - exp(-Pey/a)]™, (35)

where the erﬁpirical coefficient a should take a value of about 70 to ensure
that F, differs little from unity when Pe; is about 300, It may prove necessary
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to introduce a more elaborate functional form to give a satisfactory dependence
of Fy on Pe, at intermediate values of the turbulent Peclet number; this ques-
tion can only be resolved by computational tests.

7. Near-wall Effects on Pressurce-temperature-gradient Correlation

Just as for the pressurc-strain correlation discussed above, a
general model of heat transport needs to include the way the wall, through re-
flecting pressure fluctuations, modifics the pressurec-temperature~gradient
formulation given above, We adopt preciscly parallel modeling concepts as
used for p(du;/ax; + du;/2x;),. We take

w
BY I] — kSIZ
Pa—x-i . = p[ -F{E(c{y uk'Ynknj) - cﬁ_ycpjy'z - c;chj-Y.;]fz(El- . (36}

Only Gibson and Launder (1978) appear to have given detailed attention to
near-wall effects on pdy/ox:. In their work, the cocfficient cjy took the value
0.5, which is rctained here.” In the flows considered by Gibson and Launder
(1978), since the process @y , did not appear, the coefficient c; was immaterial,
Moreover, in the absence of further evidence to the contrary, c;y was set to
zero. In view of the similarities found so far between the coefficients in the
Pressurc-strain and pressurc-temperature-gradicnt models, we now take the
view that it is morc consistent to put c3y equal to c} and ¢y equal to cj.

We note that the first term on the right of Eq. 36 is much simpler
in appearance than the corresponding part of Eq. 28. The reason for this is
partly that here we are modcling a tensor of first rank (i.e., a vector), wherecas
Eq. 28 is a second-rank symmetric tensor. A further reason is that much less
is known experimentally about the characteristics required of the model for
ipa'ﬁaxj)w than that for p(3du;j/3x; + 9u;j/¥xi)y,. The form proposed in Eq. 36
does ensure the basic requirement that the wall shou'd tend to raisc the turbu-
lent Prandtl number (for heat fluxes normal to the wall). Perhaps, however,
as it becomes clearer what the corresponding effects are on the heat fluxes
parallel to the surface, additional nonlinear terms will be needed corresponding
to those already retained in the near-wall pressurec-strain model,

Following Gibson and Launder (1978), we take the function
f,(k’%/ exp) equal to f(k’"*/ex,,) and recommend the same linear-superposition

approach used for p(aui/axj + du;/3x;) when more than one wall is present.

8. Diffusive Transport

At high levels of turbulent Peclet and Reynolds numbers, it has

been customary [see Launder (1976)] to approximate the turbulent diffusion of
heat flux as

—_— k du;y
..(p uk'l.‘le + pY ij) = p(CjY:'uk\I& -%')- (37)



More elaborate and physically more realistic versions have been proposed
[e.g., André et al, (1976) and Kolovandin (1977)], but these forms add con-
siderably to the computational task without, for the most part, producing a
commensurate advance in the accuracy of predictions. The coefficient Cjy
should take a value close to 0.2.

In all other turbulence-transport equations appearing in this
report, molecular-transport terms may be included without furthe - approxima-
tion, because the molecular-transport rate is dircctly pr¢ rtional Lo the gra-
dicnt of the correlation in question. This state of affairs is unfortunately not
the case in the turbulent heat-flux equation, as reference to Eq. 19 will show.
In the region of high-Reynolds -number turbulence, the term as a whole is of
significance only if Pr << 1, that is, if 3 > Cph. Morcover, uja"{/axk will be
~f the same order as 'Yauj/'c‘axk. Thus, from Eq. 19 we may write that

e —

Net molecular diffusion rate of u,y =~ IS u: A4 . (38)
J X, ph J Oxy

Current practices in turbulence-model closure would suggest that
2 uj'r)Y/axk bc modeled in either of the following ways:

oY

k. T

P\uj-a—q( o -} EujuLm (393-)
or
DUt ) OuY/ ay. (39b)

The former of these leads to third derivatives of mean temperature, and these
require a fine mesh to resolve them with accuracy, for this reason, at least
the second alternative looks preferable. The constant of proportionality should
be about 0.5,

In fact, as discussed in the following section, by taking a rather
different approach to modeling transport effects in the stress and heat-flux
equations, we can greatly reduce the complexity of our model. For this
reason, we do not make definite recommendations for the values of the
empirical coefficients appearing in the diffusive terms,

9. Nonstationary Source

The final teym in Eq. 19 requiring approximation is term G, which,
on division by p, becomes

v oy
( - -E;)ujéT- (40)
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The term will be zero, except in gaseous flows, for only there will ¢p and Cy

differ. Following the discussion in the previous section, we should approxi-
mate the group as

¢, \ou; ¥
C‘(l --C— _BT: (41)

where the constant of Proportionality should be about 0.5. In the final form of
the turbulence model we shall, however, regard tetm 40 as part of the convec-

tive transport of u;¥ and will approximate it in terms of the convective trans-
port of k and g as discussed next.

D. Algebraic Stress Modeling

l. Stress and Scalar Flux Formulas

"Algebraic Stress Modeling" (ASM) is the name given to closures
derived from stress-transport models in which all the transport cffects arc
held to be characterizable in terms of scalar propertics of the turbulence
field, Because gradients of stresscs and heat fluxes appcar (according to
present clequre ideas) only in the transport terms, the resultant equations for
the Reynolds-stress and heat-flux cquations are algebraic ones. Transport
equations are nceded just for the scalar quantities; the great saving in com-

puter memorv required has alrcady becen discussed. Following Rodi (1972),
we take

uiuj
Tl_] = —k-Tk, (42)
where T denotes net transport rate (i.e., convection minus diffusion) and the

subscripts ij and k denotc that the transports of Uiy and of k, respectively,
are in question.

Now the turbulence-kinetic-energy equation may, in symbolic
notation, be written

T =P +G-e. (43)

Thus, Eq. 42 may be rewritten

u:u;
Ty = —L(P +G - ¢).

ij k (44)

In considering heat-transport processes, Gibson and Launder (1978) have
similarly assumed that
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u:y
I J
TJ'Y - kuzgl/zT NV (45)
Now, formally,
T VRV * z(;,‘f?z" Te T T “e)

Thus, Eq. 45 may be rewritten

1 —f1 1 qu/Pg-—eg P+G-¢

iy = =Y~ + - = = 4 .

Ty = 3 uJY(g Tg ka) 2\ T (47
Finally, we eliminate ¢/ in favor of the time-scale ratio

R(= (gc/egk)]. The following final expression is thus obtained for Tjy

u;y (P P+G 1
o2 |-E T TE _eff 1
T Z[g X k0'+R)' (48)

The production terms in Eqs. 44 and 48 may be regarded as known.

The stress and heat-flux transport approximations thus depend on
four scalar properties of turbulence. The values of three of these (k, ¢, and g)
are obtained from transport equations given below; the time-scale ratio R is
prescribed as a function of the turbulent Peclet number, as discussed in
Sec, 11,C.6 above and specifically as given by Eq. 54 below.

With Eqs. 44 and 48 used to approximate the transport of uju; and
u;Y, the closure proposals presented in Sec. I1I.C may be manipulated to give
the following algebraic formulas for the turbulent stress and heat-flux fields:

— K P+ G| 2 2
uin = :[(Cl - 1) + e ] [Plj + G.i.j - cZ(Pij - 361JP) - C3(Gij -TsijG)

+ Pij,w +-§-(c1 - 1l)e 615], (49)

where ¢;; w stands for the wall effect on the pressure-strain correlation ex-
pressed by Eqs. 28 and 29, and

+(1 - o)y + gy,w]- (50)

The quantity 9j¥,w i8 the wall effect on the pressure~temperature-gradient
correlation modeled by Eq. 36.
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The above equations provide the central constitutive relations for
calculating the stresses and heat fluxes from a knowledge of the scalar prop-

erties k, ¢, and g, quantities that are obtained from the transport equation for
these variables given below.

2. Modeling the Transport of the Scalar Properties of Turbulence

The ASM closure of Sec. II.D.1 contains as unknowns the kinetic
and scalar energies of turbulence (k and g) and their respective dissipation
rates (¢ and eg).

Exact equations for the transport of k and g were presented in
Sec. IL.B (Eqs. 20 and 21). If we adopt the gradient-transport notion for
modeling the diffusion of turbulence energy, Eq. 20 may be written as

ok ok 3 { ——k 3k
P + pUk’a'}_; = pP 4+ pG - pe + ¢4 axk(puku{,z 31'{—5), (51)

where the coefficient cg is the same as in Eq. 25; the recommended value is
0.22. Generation rates P and G contain only (1) mecan field variables and the
Reynolds stresses and (2) heat fluxes, respectively, and may be regarded as
known; the local level of ¢ is to be obtained from Eq. 53 below. Equation 51
may thus be regarded as cloced,

Correspondingly, the scalar energy-transport equation may be
written

3t ¥ pUkﬁ - pPg " PkR ¥ Cgm p;R “k“&axL +axk <. axy /’ (52)

where P_ is the creation rate of temperature fluctuations, --u_k'Y'BI"/axk, and,
in place of the molecular dissipation rate of temperaturce fluctuations, €g) we
have, as in Sec, 1I.C,5, introduced the time-scale ratio R. We have also in-
cluded this dimensionless time scale in the model for the turbulent diffusive
transport of g (the third term on the right-hand side of Eq. 52) to reflect the
fact that temperature fluctuations are being diffused. There scems about as
much justification for an exponent of R of 2/3 as 1/2, but the question is
unlikely to be of much practical significance. Only at low turbulent Peclet
numbers will R become sufficiently small for there to be a substantial dif-
ference between R!''? and R?”, and, in this case, turbulent diffusion will prob-
ably be outweighed by molecular diffusion, represented exactly by the fourth
term on the right of Eq. 52,

3. Modeling the Transport of Energy-dissipation Rate

An exact equation for the turbulence -energy dissipation rate ¢
may be obtained by taking the derivative of the fluctuating velocity equation,
Eq. 15, with respect to x; and multiplying through by 2v(ou; /ax), + duy. /0x;).
The resultant equation has been presented by Daly and Harlow (1970) and
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discussed by the same workers, by Hanjali¢ and Launder (1972), by Lumley
and Khajeh Nouri (1974), and by several others. Tennekes and Lumley (1972)
brought out the difficulty of devising a closed form for the e transport equa-
tion in their discussion of the closely related turbulent-vorticity equation. It
turns out that none of the terms in the equation are accessible to measurement.
In these circumstances, the only feasible approach toward devising 2 modeled
€ equation is to apply a mixture of intuition and intelligent dimensional analy-
sis, The conjectured form of the cquation should contain a number of empiri-
cal coefficients that may be tuned by reference to the behavior of widely
different shear flows, The form proposed here is essentially that of Launder,
Reecce, and Rodi (1975):

de de € eG e 3 [ ke e
P35t TPk PR P Yo T - capt + %g;;(p;llk%gx—é)- (53)

Following Launder, Reece, and Rodi (1975), the coefficients Cels
Cezs and cp are assigned the values 1.44, 1.90, and 0.15, respectively., The
term containing c¢; did not appear in that work, since its authors were con-
cerncd cxclusively with unstratified flows. Gibson and Launder (1978) ob-
tained good results by making cg, zero; Ideriah (1976) and Hossain and Rodj
(1977) found it necessary to make cg; nonzero to correctly predict the size of
the round buoyant plume. However, while Hossain and Rodi took the value of
Cg; the same as cg,, Ideriah deduced its magnitude to be only about half that
value. We can provide argunionts in favor of cither choice, but neither is
especially convincing., On the grounds of simplicity, Cgs = Cgq is preferable
since this says that it is the total generation of turbulence energy that matters,
irrespective of whether it is due to shear or buoyant action. This is the
practicc we recommend at present.

For a number of years, Lumley and his colleagues [e.g., Lumley
(1972), Siess {1975), and Zeman and Lumley (1977)] have been making propos-
als for a corresponding transport equation for ¢,. The exact equation is
similar in structure to that for ¢, and, not surprisingly therefore, the modeled
forms likewisc show close kinship., Launder (1976) pointed out that the task of
closing the e, equation appears rather more difficult than for the ¢ equation,
because theré are now two turbulent times scales (k/e and g/e } and two length
scales available for devising dimensionally correct forms. As Launder (1976)
remarks, "All the published modeled forms of the €, equation .., are at best
tentative." Though recognizing the desirabilitz of getermining €g from its
own transport equation, it appears to us at present to involve greater un-
certainty and empiricism than the alternative of prescribing the time-scale
ratio R. (This state of affairs will probably change in the next year or two,)

As discussed in Sec, II.C, values of R deduced from turbulence
studies suggest values ranging from about 1/3 to unity, with a preponderance
of values in the range 0.5-0.7. We chose an asymptotic value for R of 0.7
because, as reported by Launder (1976), a value as low as 0.5 produces ap-
parently quite the wrong effect of buoyancy on the effective turbulent Prandtl
number,
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Of course the effect of molecular heat transport on R is subsetan-
tial. We have already considered modeling the Peclet-number dependence of
a function in which R appears (Eq. 24). The tentative modeled form of that
equation suggests that R itself should be approximated as

R = 0.7(1 - exp(-Pe,/a')]?, (54)

where the empirical coefficient a' should be of about the same magnitude as
the constant a appearing in Eq. 35 (but not nece ssarily exactly the same due
to the presence of f,.y in Eq. 34, for which Eq. 35 is also supposed to account).

4. Closure

Sections I1.D.1-11.D.3 have presented the algebraic stress model
currently recommended for computing three ~-dimensional recirculating flows.
For internal flows, the stress and heat-flux correlations must be used in con-
Junction with the near-wall corrections, Eqs. 28 and 36.

The recommended values of the empirical coefficients have mostly
been stated as the coefficients appeared in the equations; for convenience,
however, they are restated in Table I, The greatest uncertainty concerns the
Peclet-number dependence of the time-scale ratio and the associated function
F)(Pey} in the heat-flux cquation. Additional work is nceded to refine and
validate the present proposals.

TABLE |. Values of Various CoeMticients

Coellicienl Value {or Formt Equation of

or Funclion Proposed First Appsarance Basis for Choice
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iy 0.20 n Compuler optimization

FyiPep I - eapl-Paynit’L, b7 Tenlative form
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cly 05 » Prandll number In near wat!
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cﬁ, 04 ) Equality with c}

cly 04 ¥ Equality wilh cj
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el L4 E) Computer oplimization (LRR)

g2 1.90 3 Computer optimirstion (LRR)
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lII. BOUNDARY CONDITIONS FOR TURBULENCE PARAMETERS

A. Preliminary Remarks

We consider here the prescription of boundary values for the three
scalar quantities whose magnitudes are found from the transport equations
presented in Sec, II.D. Three boundary conditions are considered: a plane
(or axis) of Symmetry, a free boundary, and a wall. The first two are easily
dealt with and are presented first; most of the section is concerned with how
to apply boundary conditions at a wall,

B. Flow Inlet and Outlet Boundaries and Axes or Planes of Symmetry

At an inlet section, the level of the turbulence quantities depends upon
what has happened to the flow at positions upstream of the inlet plane., For
this reason, no generally valid prescriptions can be given. Ideally, we would
like to have experimental data to turn to; in practice, however, detailed tur-,
bulence measurements are limited to rather simple configurations- -
considerably simpler than usually found in practical situations.

In the absence of more definite information, the levels of k, e, and g
may be obtained from one of the following schemes:

1.  When mean profiles of velocity and temperature at inlet are
known or can be guessed

Let us suppose that the inlet Plane is a surface of constant x and
that velocities are significant only in the direction normal to this surface. The
inlet turbulence energy may be estimated from

<kl (54 (32)] (59

and the turbulence-energy dissipation rate from

6 = K230, (56)

where 4{m (essentially Prandtl's mixing length) is equal to the smaller of 0.42x,
or 0.18, where X; denotes the distance to the nearest wall and § denotes the
width of the shear flow (perhaps half the width of the inlet duct if turbulent
mixing extends throughout the duct). The corresponding value for g ie given

by
A sncﬁn[(gg)z+(%£)z]. (57)
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2, When uniform inlet values of velocity and temperature are

prescribed

In this case, Eq. 55 indicates that the level of turbulence energy
is zero. In practice, however, there will always be some residual level of
turbulent-velocity fluctuations. How much will depend on the upstream flow
configuration. A fairly safe middle-of-the-road estimate would be

k = 107°Uf et (58)

The dissipation rate ¢ may then be computed from Eq. 56.

If all the upstream surfaces arc in thermal equilibrium with the
fluid, it will be appropriate to make 8 equal to zero. At outlet planes, we
recommend that zero gradient of turbulence quantities in the flow direction
be assumed. Ata plane or axis of symmetry, the gradients of k, g, and ¢
normal to the plane (or axis) should be set to zero.

C. Near-wall Boundary Conditions

1. The Basic Model

In the immediate vicinity of a rigid boundary, the levels of all
three scalar parameters are strongly modified by molecular effects. The
nature of these low-Reynolds-number interactions is, however, very in-
completely understood. Moreover, it would be quite beyond the core capability
of present-day computers to make three-dimensional finite-difference com-
putations in which the grid extended all the way to the wall. The rcason is
that the turbulence propertics change so rapidly in the region that an extremely
fine grid would be needed.

Instead, boundary conditions are devised in terms of the values of
the scalar parameters outside the viscosity-dependent region. Our model of
the near-wall region can be explained by reference to Fig. 2. This shows a

region immediately adjacent to a wall. The

’PT node of the finite-difference grid adjacent
e to the wall is labeled P, and the one next
y to that NP. We imagine that the level of
—_—— e g kinetic energy, velocity, and scalar energy
¢ will be found by satisfying their respective
..,'."ﬂ“ » transport equation, in the mean, over some
Poe—r
l'g"" % designated control volume as shown. We
Viscosity-affecied » assume that the control-volume boundary
e, I . between nodes P and NP bisects the line

connecting them. Note that within the
Fig. 2. Mudel of Near-wall Region control volume enclosing node P, two flow
regionsare present: a fully turbulent region
anda sublayer affected by viscosity, For convenience, weshallas sume that, for
all wall-adjacent control volumes, the node itself lies in the fully turbulent region.



The following simple physical model of this region is envisioned,
In the fully turbulent zone, viscous transport effects are negligible (but
molecular heat transport may be assumed significant). The thickness of the
viscosity-affected region, y*, is such that the turbulent Reynolds number at
the edge of the region is a constant:

y*k*l/l *
I =R}
AY

We take the value of R* to be 20, which cor responds with a "laminar sublayer
thickness" of about llvf /-rw/p in local-equilibrium turbulence.

2, Energy-dissipation Rate

The value of ¢ in the near-wall region will be found by expressing
it in terms of the kinetic energy and certain other parameters. Unlike the
other variables, therefore, the ¢ equation will not be solved for node P.

We make the basic conjecture that, in the fully turbulent region,
the length scale near the wall increases linearly with distance from the sur-
face; that is,

4 = CLy; (59)

where ¢y is assumed to be a universal constant equal to 2.5. The dissipation
is then obtained as

€ = k‘”z/{.. (60)

In fact, the energy-dissipation rate is needed in the P control volume for two
different purposes. First, it is needed in order to make a finite-difference
approximation of the diffusion rate of ¢ into the NP control volume (which
according to our model, will be proportional to ep - "NP)' In this case, ePis,
from Eq. 60, replaced by 0.4ki§z/yp. A second and more important role

for ¢ is as a negative source term in the turbulence-energy equation.

Now, as explained in the next section, the levél of kp is to be
obtained by integrating the turbulence-energy equation over the P control
volume. Thus we shall need & value of the mean level of ¢ over the cell,

Since ¢ varies so nonlinearly, the use of the point value ¢p may lead to serious
errors. Instead, in the kinetic-energy equation for the near-wall region, we
take the mean dissipation rate over the control volume to be

-1 (Y
.-y—ej;%dy. (61)

where y, is the value of y at the edge of the cell. [Note, since the cell edge
bisecta the line connecting P and NP, Ye * (yp + pr)/z.]
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To evaluate €, we first assume that in the viscosity-affected sub-
layer, the level of ¢ is constant and equal to 2v(dk!’?/dy)?, a result derived
first by Jones and Launder (1972). We assume that k!’Z varjes linearly in the
viscous region from zero at the wall to k**2 at the edge of the sublayer, It
therefore follows that

%
¢ = iy‘;,-’;- (62)

We further assume that, in the fully turbulent region, k varies much more
slowly over the P control volume than does ¢ and that we may thus take the
level of k at Yp 28 a representative value from which to find ¢; i.e.,

e = ki—f,"/c&y.

The mean value of ¢ may thus be evaluated as

S e
- _ 1 Y7 2vk* y ,
€ 8- '——\:-z dy + [7° (kp’/c,y)dy
Ye y {;
v o0 y
P

*
/2
1 k*JIZ k?-P
E Y_e 2 .R—F- + ?; ‘Ll‘l(ye/y*) . (63)

The relative importance of the two contributors to & depends on
how thick the viscous sublayer is relative to the cell dimension. In the limit,
where node P is only just outside the viscous region, Ln(yc/y"') willbe about 0. 7;
thus, for the recommended values of R¥ and c; (20 and 2.5, respeclively), the
first term contributes a little more than one-quarter of the total. As y* be-
comes progressively smaller than y.,, the relative contribution of the dis-
sipation in the viscous sublayer slowly decreases.

3. Turbulent Kinetic Enelgz

The level of turbulence kinetic energy at node P is obtained from
an integration of the transport equation for k over the near-wall cell, neglecting
convective transport. (Convective-tramport terms may be retained at the
expense of algebraic simplicity. Then the left-hand side of Eq. 64 should
contain a finite-difference form of the convective flux of kinetic energy per
unit mass. For stability, upwind differencing should be used.) To keep the
formulation simple, we assume that

a. The velocity parallel tothe surface U is planar over the
control volume,

b. For evaluating the rate of shear Production of turbulence energy,
the turbulent shear stress is taken equal to the wall stress in the fully turbulent
region and zero in the viscous sublayer,



¢. Gravitational contributions to turbulence-energy creation or
destruction are negligible,

The last assumption, while perhaps appearing to be too sweeping,
will usually be valid because the shear creation terms will generally be
largest at the wall, masking the effects of the gravitational contribution. It
also follows that, since we have taken

k = k*yZ/Y*Z
across the viscous sublayer, the diffusion rate of k into the wall (proportional

to dk/dy aty = 0) is zero. The kinetic-energy balance for the near-wall cell
thus becomes

. ) T kyp - k
0 = ,—W(Ue - U*)I - ey + ca(v k) NP P. (64)
P ¢E/YNP-YP

In the above equation, ¥ is given by Eq. 63 and the group v’k/e
is to be cvaluated at the boundary between the NP and P control volumes;
v is the Reynolds normal stress acting in the y direction. The evaluation
of U* is discussed in Sec. 1II,C.5 below. It will be convenient to eliminate k*

in favor of kp and knyp- The procedure to be followed is suggested in Fig. 3; k*

is the level of kinetic energy obtained by extrapolating the line through kp
and kyptoy = y*.

Thus
k* = k +JE:3:4k knyp) (65)
" P ynp-yp P NP
where
y* = VRE/k#V2,
e
Model of Near~wall
Kinetic-cnergy Profile
&
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4, Scalar Energy. g

The scalar energy is obtained by following a similar path to that
for the turbulence kinetic energy. The problem is somewhat complicated by
the importance of molecular heat transport throughout the near-wall cell if
we are dealing with liquid metals. Indeed, with the present simple near-wall
treatment, we rnust adopt two distinct near-wall models according to whether
the fluid's Prandtl number ies of nrder one or greater or of order 102 or less.
Since the former case parallels almost exactly the treatment for kinetic energy,
this is presented first.

a. For Prandtl Numbers of Order 1 or Greater. We assume that
molecular effects on g are negligible beyond y = y* and that, in the fully
turbulent region, the normal heat flux, -pcpvy, is equal to the wall heat flux.
We assume also that the level of 'e'g may be approximated as

€g = E'gp/(kPR). (66)

The above approximation is not strictly consistent with the
concept presented in Scc. 11.D, for Eq. 54 indicates ¢/¢  is a function of
Prandtl number in the viscous sublayer. Consequently, €,/% snould also be
dependent on Prandtl number. Nevertheless, we retain Eq. 66 in the belief
that the level of error thercby introduced is not serious for gases or fluids
with Prandtl numbers below about 10.

The g-balance equation (ag~in neglecting convective transport)
thus takes the form

Q4 - kviR!/2 ENP - &p.
0+ - (ry - T%) - Egpye/(kpR) + (c VIO Lol i
Pcp e pie/"P B e Fynp - vp

(67)

where q}, represents the local heat flux from the wall into the fluid. As in the
kinetic-energy equation, k;r/e is evaluated at the interface between the P and
NP control volumes and R may be taken as its high-Reynolds-number
asymptote, 0.7. The evaluation of I'*, the temperature at the edge of the viscous
sublayer, is considercd in Sec. II.C.6 below,

b. For Prandtl Numbers of Order 10°% or Less, In this case, we
again approximate the mean value of ¢, by Eq. 66. Only now it will be important
to evaluate R from its constitutive equation (Eq. 54). The turbulent heat flux
is now by no means equal to the wall flux. We thus take the total creation rate
of g over the cell equal to (I'y - '*) times the value of V¥p produced by the
master heat-flux equation (Eq.50). 7Thus,
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(68)

— €Y. .8 wipl/2 B - g
0 = -vyp(T —1"*).-_‘.2_24. c kv'R + A NP P.
Pl'e kpRp 4 3 PCR/YNP - YP

Notice that the molecular thermal diffusivity may now be of substantial im-
portance in calculating the rate of diffusion of g into or out to celi P,

5. Near-wall Velocity Profile and a Drag Law

In applying the momentum equation(s) for directions parallel to
the wall to the control volumes adjacent to the surface, we need an expression
for the wall shear stress produced for a given velocity Up at a height Yp-

For this purpose, we use a modified version of the "law of the wall" presented
by Launder and Spalding (1974), though certain adaptations will be made in the
present work,

In the fully turbulent region of flow, where node P is located, we
assume the velocity profile to be given by

12
U e I_Ln(vk E*), (69)
Tw/p n* v

where u* is assumed to be a universal constant equal to about 0.23. (This
corresponds with a value of the Von Karman constant x of 0.42.) The constant
E* is obtained as described below. Equation 69 may obviously be arranged

to provide the following expression for the wall friction in terms of the value
at P:

Twip * u*UPk‘P/,z'/Ln(E*yPki;a/v). (70}

We assume further that the velocity profile across the viscous sublayer is
linear and given by

1/2 kl/z
Uk RIS (71)

Twip

The dimensionless quantity E* is fixed by requiring that the
velocities given by Eqs. 71 and 69 should be the same at the edge of the viscous
layer, i.e., aty = y*, That is,

% n(RAE¥) = RY, (72)

which, for x* = 0,23 and R* = 20, gives E* = 4,9, We note, moreover, that U*
appearing in Eq. 64 is given by

Ut = Rilrwph/iH5%, (73)
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6. Temperature Profile and Wall Heat- flux Relationships

Again different practices are developed, according to whether the
Prandtl number is large or small.

a. Prandtl Number of Order | or Greater. In this situation, the
so-called "universal temperature profile" is used in a form similar to that
presented by Jayatilleke (1967)

1/2 1/2
pkp'c (T - Ty) U,k
P pl'w P = 0.9 PP + Bl

(74)
Ay Tw/p
which, on cross-multiplying produces the heat-flux relation
112
- _ kaCp(rw - rP)
9y = 172 . (75)
0.9 + P
Tw/p
where P = 16.8[1 - (0.9/Pr)>'4]. (76)

On evaluating Eq. 74 at the edge of the viscous sublayer, we
obtain

T* = Ty, - 0.947,(R¥ + v)/pk*”’cp. (77)

This expression may be used to eliminate I'* in Eq. 67.

b. Prandtl Number of Order 10°2 or Less. In this case, we
assume that the true temperature profile between the wall and node P departs
only slightly from linear, i.e., that turbulent transport of heat makes only a
minor contribution in the wall-adjacent control volumes. The heat flux may
be expressed by either

Q = -AMT* - T )/y* (78)
or

Wy = -MTe - T9/lyg - y*) + pe V. (79)

The latter is conveniently used in Eq. 69 to eliminate I'e - T'*, while by com-
bining Eqe. 78 and 79, I'* may be eliminated to give

dy, = [T - Tw) + peg¥¥p(ye - Y91/ye. (80)

This provides the wall heat-flux relationship required in the
mean-flow enthalpy equation,



IV. SOME APPLICATIONS OF THE PROPOSED TURBULENCE CLOSURE

A. Preliminary Remarks

Strictly, no computer solutions using the model of turbulence described
in Sec, II have yet been reported. The model presented here can, however, be
regarded as an extension and refinement of the widely used two-equation clo-
sure schemes. Except for liquid-metal flows (for which, in any event, no
computations have been made), the model bears close similarity with those re-
ported by Launder (1975), Gibson and Launder (1976, 1978), Hossain and Redi
(1977), and Tamanini (1975). The main difference between the present scheme
and those models (apart from the provisions for low Peclet numbers) is the in-
clusion of a transport equation for the scalar energy. (In all the cited papers
except that of Hossain and Rodi, g was obtained by assuming local equilibrium;
i.e.,, g = Pg(k/'e JR. Hossain and Rodi, however, took transport effects on the
Reynolds stresses and heat fluxes to be entirely zero.) This scheme should
never lead to worse agreement than when the more rudimentary treatment of
the scalar energy used in other schemes is used,

It is therefore legitimate to form an impression of the kinds of flow
that may be successfully tacklied with the present scheme by reference to a
selection of the flows studied with these closely similar models. Such a com-
parison is made in the following sections.

B. Velocity and Temperature Fields in Neutral, Thin Shear Flows

Gibson and Launder (1976) report the application of the model to the
prediction of the plane jet and the plane mixing layer. Table II, taken from

TABLE 1I, Comparison of Calculated Reaults and Experimental
Data for Spread of Free Shear Flows

Growth
Flow Rate Caleulated Data Data Sources

db,

Plane jet :";'

0.112 0.096, 0,120, 0.096 Data from sources quoted by
Jenkins and Goldechmidt (1973)

dbp

—_ 0.138 0.137, 0.170, 0.141
dx

Plane mixing layer
Velocity ratio 0 —— 0.147 0.130, 0.150, 0.160, Data from sources quoted
0.20, 0.165 by Rodi (1972)

Velocity ratio 0,51 —_ 0.044 0.046

Watt (1967)
—_— 0.047 0.051
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1.0 their paper, shows the measured and predicted
o 1/0=35 rates of spread of ne velocity and temperature
e /0245 field. There is generally close agreement be-
08 @ 1/D=355 tween the predicted and measured behavior,
(P-Te)/(Ty-To) except that experiments chow a greater differ-
0.6 & .~ (Nondimensional ence between the spreading rate of the thermal
o lemperatee) and velocity layers than do the predictions.
U/l This emerges clearly in Fig. 4, which shows
0'4_(Dinensionless 3 temperature and velocity profiles for the plane
velocity) 4% turbulent jet, the experiments being those of
0.2 a Tenkins and Goldschmidt {1973). The present
Predictions ctosure will, in fact, produce closer agreement
[ I | with the temperature field than in the Gibson-
0 05 1.0 1.5 20 Launder predictions, due to a reduction of the
y/b, coefficient c1y from 3.2 (used by Gibson and

L.aunder) to 2.5.
Fig. 4. Mean Velocity and Temperature
Profiles in a Self-preserving Plane Samarawecera (1978) appliced the
Jetin Stagnant Surroundings (by present model to thermal boundary layers and
hali-width of the velocity profiley o pipe flows. Figure 5 is an example of his
predictions for a thin thermal boundary layer
developing within a thick velocity boundary layer, A generally satisfactory
agreement with experiment is displayed,

0.06— - . .
® & o Experiment
0.05} Prediction {Somaraweera, 1978)
_Edage of temperature
0.04r

boundary layer
Edge of velocity

0.03r boundory layer

0.02

0.0t Start of
Heating

0 H b

™
i —
£

Fig. i, Development of Thermal Turbulent Boundary Layer on Flat Plate

C. Buoyant Shear Layers

Figure 6 [Gibson and Launder (1976)] shows the predicted development
of a plane jet of warm water discharged onto the surface of still cool water
(for example, a lake). Initially, the jet grows linearly at the same rate as an
isothermal jet. Dynamic forces in the jet, however, die out much faster than
buoyant forces. After some distance, the latter (while not exceeding about
25% of the former) greatly reduce the spreading rate, due to a substantial re-
duction in turbulent agitation,
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4Y MAGNIFICATION VERTICALLY

Fig. 6

Calculated Development
of Mean Velocity Profiles
in a Plane Surface Jet

An alternative way of viewing the effects of this stable stratification
is through the reduction in the rate of entrainment of cool fluid into the jet,
Ellison and Turner (1959) report experiments on the
reduction in entrainment rates associated with a stable LO—T—+—1T11+r
stratification. Figurc 7 {Gibson and Launder (197¢)] osl\  Sulace ielcolculah&
shows predictions of the fractional reduction in entrain- L% dota from Eitison -
ment rate (relative to neutral flow) as a function of the _ o6} o\, and Turner (1959)
degrec of stratification; the quantity Rj,, defined hy &

Ellison and Turner (1959), provides a dimension]ess 0'4; i
measure of the strength of the stratificatjon, Evidently 0.2 * .
the cxperimentally measured entrainment rate is very i °3°3 .
sensitive to the level of Ry,, a sensitivity that is gener- 0 02 04 06 08
ally well reproduced by experiment. Ri,

The above example related to a horizontal flow, Fig. 7. Entrainment in
Hossain and Rodi (1977) have applied essentially the Plane Surface Jet

same model tocalculate the rise of a vertical hot plume,

Their work showed the need for a nonzero value of cg3 in Eq. 53. (Gibson and
Launder had found their predictions to be only weakly dependent on C¢3. There-
fore, the inclusion of a nonzero €g3, Which we now favor, would only slightly
modify the Gibson-Launder results.)

Buoyant effects may also be of great importance in flows near walls;
the earth's boundary layer is perhaps the mnst important example of a flow of
this type. Experiments show, however, that there are striking differences in
the nature of these effects, as compared to free flows. The differences have
hitherto gone unnoticed or, at least, unreported, Presumably because meteo-
rologists are concerned only with the atmosphere, and civil engineers {(whom
local authorities traditionally turn to for solving problems of lake and river
pollution) never get involved with "dry" fluids,

In terms of the present model, we can say that the cause of the differ-
ence may be traced to the near-wall correction to the pressure-strain and
pressure-temperature gradient terms. Buoyancy greatly alters the distribu-
tion of length scale with distance from the wall (a stable stratification reducing
the length scale at a given height above the surface), Now, the strength of the
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wall correction is found to be roughly linearly dependent or} the ratio of length
scale to distance from the wall. (See Eq. 29, noting that k’ Z/e is an effective
length scale of the energy-containing motions.) Thus, when 4 decreases (as
it does in a stable flow), the wall exerts a weaker effect than in neutral con-
ditions. This is why, above a horizontal wall, there is apparently a slight
increase in the fraction of turbulence energy contained in the vertical fluctu-
ations as the stable stratification becomes progressivly stronger,

This behavior, which is contrary to that displayed in a free shear flow
(and to what one's intuitions suggest), is well predicted by the model of Gibson
and Launder (1978). Figure 8 shows predicted and measured variations of the
ratio of vertical to strcamwise velocity fluctuations under stable conditions.
There is a good deal of scatter in the experimental data, which testifies tosthe
difficulty of obtaining dcfinitive turbulence data in the atmospheric boundary
layer. The consensus of the experimental data suggests a rise of about 20%

in ./ E/u_f as the flux Richardson number, Ry, rises from zero to 0.1, (Rf rep-

resents the rate at which turbulence energy is destroyed by gravitational ef-
fects, divided by the rate at which it is created by mean shear; i.e., Ry =
-G/P.)

08
or- T S ———
“‘1:---..0____
0 < °o u 8" & o m“‘-—-g-..
3 06 n
i
C5
o
04 ' ‘ |
0 005 0l 0.5 02
Ry
— —\1/2
Fig. 8, Dependence of u{f/uf on Flux Richardsen Number in Stably Strati-
fied Flow. Atmospheric boundary=layer data from tlaugan et al, (1971,

Predictions; wall flow; e — o free shear flow,

The model predictions actually indicate that, for Ry greater than 0.18,
the wall has no detectable effect in modifying the Reynolds stresses (because

the effective length scale has become so small), That is why ./ ui/uf starts
to fall with further increase of Rf. In view of the scatter, it is hard to say
from the data whether this feature is actually displayed; the predicted result
is at least not inconsistent with the available measurements.

D. Three-dimensional Flows

Nearly all currently reported computations of three-dimensional heat
transport have assumed the effective thermal diffusivity to be isotropic in the



plane normal to the mean velocity vector. Such isotropy, however, is by no
means observed in practice. In an unsymmetrically heated pipe it is found
that, near the wall, circumferential thermal Adiffusivities will be several
times greater than radial ones. [See, for example, Black and Sparrow (1967)
or Quarmby and Quirk {1972).] The present model does indeed produce a
nonisotropic diffusion coefficient similar to what has been measured, The
main cause of the higher circumferential diffusivity is (according to the pres-
ent model) the greater intensity of velocity fluctuations in that direction.

As an illustration of the importance of this phenomenon, Fig. 9 relates
to the spread of a jet of cool fluid discharged through a plate past which an
external stream is flowing. It is part

F%:'ioni&f‘b;i;ﬂ:)m B o ' of an extensive film-cooling study by
——— Isotropic (k-€) Bergeles et al, (1978). The figure
xx Experiment shows the variation with distance
2 Porallel to wall and perpendicular 1o downstream of the cooling effective-
03 flow direclion ness at the surface [ = (I‘m - Fw)/
F~ (I‘m - '), where the subscripts =, w,
0.2 ""Q—;-_.___ﬁ___z_m:o and h denote external-stream, wall,
- Tx. T T ==| and hole-exit values, respectively].
0.1+ %" Values are shown along the line pass-
B e . g . e —— ¥—| ing through the hole center and at a
R S S HY Y RS N R R representative off-centerline position,
3 10 %/D 15 Two predicted curves are shown, one
using a nonisotropic model similar to
Fig, o Fffeet of Nonisotropic Transport Coeffi- (though simpler than) that developed
cients on Film-cooling Lffeetiveness in the present work, and one in which

the diffusivities were made isotropic,
With the Iatter version, values of T along the centerline decay too slowly;
off-center, the values remain too low. Using the nonisotropic model, however,
entirely removes these shortcomings,

The final example considered is that of developing flow in noncircular
ducts. The basic phenomenon of interest here is that, due to the inhomogeneity
of the turbulence, weak mean-flow currents are established normal to the axis
of the duct. These motions rarely exceed 1% of the mean flow, yet they may
significantly modify the mean level of shear stress and heat-transfer coeffi-
cient and (more dramatically) the distribution of the local values of these quan-
tities around the duct surface. Reece (1977) has computed the flow-field
behavior for developing flow in a square-sectioned duct. His closure entailed
the solution of transport equations for each of the stresses, Since, however,
the flow develops only slowly in the streamwise direction, the use of the al-
gebraic stress approximation, introduced in Sec, II.D, should not lead to sig-
nificantly different results,
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In fact, the most important aspect of the model for securing accurate
predictions to this flow is the near-wall correction, Reece (1977) introduced
the "linear-superposition" principle in treating the effects of the various walls
of his duct, an idea that the present proposals have retained. Figure 10 com-
pares the predicted mean flow contours with Melling's (1975) experiments at
different positions from the duct entrance. Clearly cvident is the progressive
buildup of secondary motions along the duct, evidenced by the bulging of the
axial velocity contours toward the corners. Agreement of the predictions with
measurements is generally most satisfactory,

Fig, 10

f.ontours of Axial Mcan Velocity
in a Square Duct, at 29.0 Diameters
4 %y/D from the Enrance, Pata of Melling
(1975 . oo o 2 7 predictions of
Recee 1977y

V., CONCLUDING REMARKS

The present report has proposed a general closure for momentum and
heat transport in turbulent flow for arbitrary Prandtl number. The aim has
been to strike a balance between the competing requirements of complexity
(to allow proper account to be taken of different processes affecting Ujuj and
UjY) and economy (to keep the computer-core requirement as small as possi-
ble). In several respects, the detailed mathematical modeling of the physical
processes needs further refinement or validation. Nevertheless, as the pre-
dictions of Sec. IV may have conveyed, the closure allows satisfactory pre-

diction of several basic turbulence phenomena that would defeat simpler
treatments,



49

APPENDIX A

The Turbulence-model Equations in Cartesian Coordinates

This appendix writes out, for a general three-dimensional flow using
Cartesian coordinates, the turbulence-model equations developed in Sec. II.
What follows presumes that the x, direction is vertically downward. Should the
reader wish to treat the x, direction vertically upward, it merely requires a
reversal of sign of the gravitational acceleration, denoted in this appendix as g,.

The turbulence transport equations are presented first, followed by the
algebraic Reynolds-stress and heat-flux equations.

The Turbulence- energy Equation

%-—Dkuuc-e. (A.1)

The Energy-dissipation-rate Equation

2
E:D + cC (_P+_GE_C (A.Z)

€
Dt € €l Kk € -

The Scalar Energy-transport Equation

B ¢ Dyt Py - = o:,(p:p obf,) * biz(p:p ;f)* bl(;}p :,i)- (A.3)
In the above,
o0 = col (ot TS e
' Ft}[l: T ufp +u_3ﬁ-b%)]
(e T Efﬁ)]} (a-4)

where ¢ stands for k, g, or e.

1Y) dU U e w— 010 U
-Ju —L —_—1 g =2 2L 32X
PsE [ul ox, + u'uz(bx; + 3%, )+ ulug(bx3 + 531)

+ ok + T+ ), 5 (a.5)
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— "  ___ T
E = v e rvs +
P, (uly et T+ T bx,)' (A.6)
'T— —
G = +££.l..gl = .aﬁlgl, (A?)
P r
where « is the dimensionless volumetric expansion coefficient:
o = _I.g_% (A.8)
Po%lp

The Reynolds Stress Equations

The following formulas do not provide detailed forms of the wall-
correction term because these depend on the topography of the flow to be

calculated.
-1
- kiP+ G
U.lz = —‘-( e + c, - 1) {(1 - Ca)P“ + 2(1 - %C;)G
- -i-[e(l - ¢)) - c;P] + ‘Pu,w}' (A.9)

where

_ dU du —_ U
P, = 'Z(u_f_tix_ll + uluzsﬁ + u.u,-ﬁsl) (A.10)
and
— —— k{P+G -1
qu; = g, = -G-(—C_. + Cl - l) [(l - CZ)PIZ+ (l - CJ)GIZ + Cpu'w]: (A.ll)

where

U —_— - —_ —_
P,mn -(ua,m 1 +-TbUl + “z‘-ls"bEL + “lzg—}:l""' ul“ag_:::"" 1au, E.‘-L’.)' (A.12)

Dxl uz bx; bX; Ox,
ou,y
G, ™ . r &v (A.13)

and

-l -
Wyus = uyy; = "‘-(-—‘— + ¢ - l) [(1 - C;)P” + (1 - C;)Gu + (P”.w]: (A.l4)



where

U, U

P,; = -(ﬁ?ﬁ; :3‘ + W4, gi + gm +?f'gxl’ + uluz% + m;gg—:) (A.15)

Gy = '_;'“—ﬁgh (A.16)
and
o = %(f_:_c fe - 1)"{(1 -cdPu+ {lesG+ eP-(1-c)e]+ 0,1 (A.17)
where

P, = -z(E,?I gu + "g'g + ﬁ;;-?#) (A.18)
and

i - TE - _:;_(P +G . - 1)-l [(1 - c)Pus + 9, s (A.19)
where
P,y = '(“_a‘rfguj'*-‘gg:: +fi}_u_,-?#’ +Ts'ﬁi?#+m§l +:‘§'3Ura) (A.20)
and
o = %(P—:E ‘- 1)-1{(1 -cdPy + {leaP t esG-(l-e)ef+ o, )i (a.21)
where

P,; = -Z(u,u, r-! + u,u;-?ru:--l- u} b}:}) (A.22)

The ValociH-Temgerature Correlations

Note that the enthalpy fluxes are obtained from the velocity-temperature
correlations by formulas of the type -ush = -cpuw.

As with the Reynolds stress equations,
for the wall correction.

no explicit forms can be given
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-1
P_-¢ c, .t
— P+G-e¢ g 1Y
Ty = z( —— 4 gg + m) [Tiy+ (1 - c)Pyy

+ (l - c3'Y)GlY + cplY,W]’

where

—d, U, |, ¥,
Py = '(ul'Y'r— + “zY's—' + usYr)

g
GIY = -ZQ‘ng

and

=1
—_— +G-¢ P, -¢ Cy€ '
Y z(-P—k—_' ¥ _g-s—-& ' kRm) [Tay + (1 - cp)Ppy + O2y,wl;

where
— O oI or ’
ralv 8 -(u,u b + bez + Ui, T)
— WU — U — U
Pay = "(ulY—-ox:‘ + upy _bx: + usy —Ox:)'
and
-1
_ S P+G-¢ Pg'eg € y¢
uyy = z( T + P + T [l"w+ (1 - cW)PW+ q’w.w]'
where
A — O =3 T
l"w a -(u,u_», d + Uzl > + ug—’"';)
and
. . ol
PJY ('l.l| X +u; Xz +u, bx;

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)

(A.32)



APPENDIX B

The Turbulence-model Equations in Cylindrical Polar Coordinates (r, 8, x)

The coordinates r and 6 define horizontal planes, and the x coordi-
nate is directly vertically downwards. Accordingly the gravitational acceler-
ation is denoted as g,.

1. Turbulence- energy Equation

U
Eli U.b_k -_b%.}UOk

t rar T T 26 Xpx ° P +G - ¢ + Dy(k} (B.1)

where

Generation rate due to mean shear,

U u.ug dU bdU u s14) U4 oU
_ =2 YVr r6 0%y OV ) 8, 8% %
P =1, aT + Y +uuy % - U,up - + U ug 5F + T 36
OUB —-z-Ur on ugu, OUx '—z-OUx
tuguy —— + ug— + uu, 3T I Y (B.2)
Generation rate due to buoyant interaction,
—_—
p'u
= xgx (B-S)
with the temperature-density relationship
G = -Eyuxgx, (8.4)

r

Turbulent diffusion of turbulent kinetic energy,

‘z
_ 1 o frkup i 1 (k ok 1 0 { ke——2k
Dy (k) = °'?ﬁ( ¢ or) oerar\Felri g/t ST ar T iria gy

S .li—.bi) .°_(E-l .°_k_) -°_(.‘.‘. 2.‘5.)
¥ Co rae(c Urleyr) * CaToa\ ¢ Y06/ * SsToa \e 8% px

d k——2k ® [ k— Ok d (kg dk
* cs S':'c'(?“f“*'é?) * s b—,,(;'“e“x,.—a) ' °'H(?E§‘—£) (8.5)
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2. The Energy-dissipation-rate Equation

de de De de € €
>t + Urbr + Uem + Ux-é—x = c“-EP + Ce3§G - Cez T + D{e) (B.6)

The generation rates P and G were given earlier,

Diffusion rate of dissipation,

ek (bundt) e b (chamge ) 12 ()
D(e)—cerbr(r rar +cerbr ~ U Ug—— Y tees r=u.u

d [k de i(k—z_bi) d (k be)
MR (e urueﬁ) T CeTa\T" Tos/ T e Bl ¢ "o xox

d (k de d [k bg O fk_; d¢
+ ¢ bx(e oy ) + ces—(-e—ueux—ro ) + ceb—xl(-;ux—x). (B.7)
3. The Scalar-energy-transport Equation

bg dg 0g dg €g
ot * Uryr * Uorgg * Uxgy = Pp - gg * De(®) + Dple) (B.8)
Generation rate of temperature fluctuation,

e OT o= ——or
Pg = OrYgy - eV rog - iy (B.9)

Turbulent diffusion rate of g,

1 d( k =0z 1 8/ k dg
Dy(g) = cg?-s-;(r-;-Rl/zui.o-—:’) +c ;——(r;Rl/zurue—)

D (k m—z.Qi) _o_(kR‘“—-ag)
+Cgrbe(eR ue “|’Cg >

(B.10)



Molecular diffusion rate of g,

AL (o) La(nae) 1 (o)
Dm(eg) _p[rbr(cp dr +r0r +r c

p rdo dr p dx
+_.°_(_’t._°_§)+ _Q_(_" .°_g) +_°(_’*. °_g)
rio cp dr rd0 cp roo rod cp Ox
& f X bg) o (l bg)
| — == —_ == .
D% (cp rd6/ T ox \c, Bx (B.11)

The Reynolds stress equations and velocity-temperature correlations
used above are defined below.

4. The Reynolds Stress Equations

-1 U —_— U 18]
— k P+G 2 OUr oUp r

rd6 TOX dx

- C3(-—§G) t Qrp,w +-§(cl - l)e].

(B,12)
-1 [§) dU dU
- _ k P+G 0Ug __, dUg )
ug = - (c; - 1) 4+ . - Zugur-b—r + Zue;—b—e— + Zueux—o-;
U dU dU U
...z_l‘_ 3] —2 0 0
+ 2ug r)' cz[- (Zueur >F + Zue——rbe + Zueux——-bx
-2 Ur 2 2 2
+ Zue—r- -3P - c;(-?G) + (pee’w +?(C| - 1)5 N (B-l3)
—2 _k P +G]! U oU
ui = ?[(cl - 1)+ ] [-(Zuxur-b—‘:’-‘-+ uxue—g + 2u.u,, xx
'('F Yuxgx) - CZ[‘ (Zuxur dr t z“xue 26 + “x“x__x"' = 3P
- C3(- -r—?'-ﬁxgx -‘;G) + Pxx,w + 'i‘(cl l)e]’ (B-l4)
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dU dU U dU
=-§[(c,-1)+P+G [( e+urue-—e+uru9—1:+urux68

Urip ) 20 X
dU, dU, , U dU
-I-'u.eu X +uerbe e x)(l - Cz) + (pre’w]. (B.IS)
k P+G — mb OU 5U ouU
urux = -B"[(Cl - l) + ] [—(ur T + ruew-f-u u °_+ u,u "-T
du - oU Ue o
+ u,ug rber + ui bxr - uxue"?)(l - cz) -(?Y“rgx)(l - c3) 4+ Wrx,w] '
(B.16)
and
-1
k P+GC OUx - mb - OUx OUG
T = gl - 1)+ 229 ['(“B“r 57t Bomn Tk Sy
oUg _, dUg U o
+ uxl.IGrb_e + ux—o; + UXUG—rI:)(l - Cz} (Fyuegx)(l - C3) + (&ex'w .
(B.17)

5. The Velocity-Temperature Correlations

-1
_,[Ps.P+G e_( 1 ) ( 2 8T | —— T or
urY = Z[P'g— + K K 1 + R - CIYFI(Pe) - br + uruem + uruxs;

U, _"___oUr _dU,. __ Uy
(ury-b_r PUOYTRE F Uy T (1 - eay) + oy (B-18)

ryo bx

—

UI‘
+ugr o + uxy—b—x— + GgY T)(l - c"-Y) + ogysw|, (B.19)

“1
or (=]} =2 O
—g— +—-k—- - -E 1 +-R- - clYFl(Pe))] [ (urux°— + Uqu — + ux° )

_— ———— Q-
u,y 5t + ugy T50 + uxy—b;—)(l - Czy) -(?Y gx)(l - Csy) + Px,v,wl-
(B.20)
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APPENDIX C

Systematic Simplifications of Proposed Turbulence Model

The simplifications proposed in this appendix are arranged so that
they may be applied sequentially, That is, the first proposal implies that least

modification; the second proposal used in conjunction with the first represents
a further simplification, and so on.

Simplification 1: Elimination of Transport Equation for Mean-square Temper-
ature Variance, g

The transport equation for g is replaced by the simple algebraic for-
mula that results from equating generation and production agencies in Eq, 52
of the main text,

& "kR
or
g = ngR/s, (C.1)
where

Pg = ‘ukyhr/ka
and R may be obtained from Eq. 54:

R = 0.7[1 - exp(-Pet/a')]z. (c.2)

To save computational time, Eq. C.2 could be replaced by its high-Peclet-
number asymptote R = 0.7,

In connection with this simplification, consistent assumptions need to
be introduced into the heat-flux formula, Eq. 50, since g appears there in the
denomirator and could thus cause instabilities when P, becomes very small,
The {first group of terms in braces of Eq. 50 should thus read

-1
Wy = z{(_E.’.:_G) +%[2clYF1(Pet) - 1]} [uj—ukgxik + ] (C.3)

Correspondingly, the group (Pg - eg)/g in Eqs. A.23 and A.27 should be
dropped, as should likewise the same terms in Eqs. B.18-B.20. (Due to a
slightly different algebraic presentation, the terms Pg/g and -e¢/Rk in the
first brackets on the right need to be suppressed,)



58

Experience gained by Professor Launder's group and that of Dr. W,

Rodi of the SFB80 of the University of Karlsruhe suggests that the above
simplifications will usually not produce significantly different calculated be-
havior from that given by the complete model.

Simplification 2: Replacement of Algebraic Stress Closure by Isotropic-

turbulent-viscosity Approach Based on Solution of the k and ¢ Equations

This approach eliminates most of the auxiliary algebra coupling the

stresses and heat fluxes to one another. Buoyant influences can be included
in only very rough ways, but this may suffice for initial testing.

and

where

or

and

In place of Eqs. 49 and 50, the following equations should be inserted:

, k?—(cui on)
W = =kbi: - g —L 2]
ujy;y Tk ij = Sv d%] | oxg {C.4)
—. St or
qu - ct be ] (C-5)
cy = 0.09(1 - 3.0G/P)
whichever is greater (C.6)
cy =0
oy = 0.9/[1 - exp(-Pet/a')]. (C.7)

Equation C.6 eliminates turbulent shear stresses whenever the local

flux Richardson number exceeds 1/3; Eq. C.7 puts in the dependence of tur-
bulent Prandtl number on turbulent Peclet number that is indicated by Eq. 54
of the main text under local-equilibrium conditions.

When buoyant effects are negligible, this approach has proved to be

competitive in accuracy with the more complete formulation proposed in the
main report,



Simplification 3: Elimination of Transport Equation for Dissipation Rate

The following rather drastic simplification may be justified for inter-
nal flows if recirculation is absent or of very limited extent and turbulent
flow extends over the whole region, for example, in flow through a pipe not
too close to the entrance,

The transport equation for ¢ is replaced by the formula

e = k¥%/4, (C.8)
where the length scale 4 is taken as the smaller of

£ = 2.5x,, %, being the distance to the nearest wall,‘
or

1 = 0.6dy, dy, being the hydraulic diameter of the containing vessel,

For flow through pipe-like containers the hydraulic diameter should
be obtained from the conventional definition (i.e., dh = 4 x cross-section area/
wetted perimeter). For motions in a tank, it may be more appropriate to take

dp = 6 x volume/surface area.

The above preportion.iity constant was chosen so that, for a spherical con-
tainer, the hydraulic diameter exactly equals the actual diameter of the
sphere,

It needs to be emphasized that in complex recirculating flows the
above suggestions will provide only a very rough guide to the level of the tur-

bulent stresses.

Simplification 4; Elimination of Transport Equation for Turbulence Energy

For local equilibrium in a simple shear flow, the equality of turbulence
energy generation and dissipation rates implies

— U ~ k?l/Z
wves = o (C.9)

and
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Hence by eliminating GV, we obtain
k2 - 0,328, (C.10)
oy

The use of this formula eliminates the need to solve Eq. 51. The resultant
turbulence model is essentially Prandtl's mixing-length hypothesis {m4{h). To
generalize Eq. C.10 to situations in which there are several nouzero compo-
nents of the velocity gradient or, equally, to regions in which all mean strain
is zero or very small, we propose the following form:

2

dU;
k = 0.0942(—‘-)
Oxj
or (C.11)
k = 5x 107402,

whichever is larger, where U represents some characteristic average veloc-
ity through the vessel,

The above scheme is probably of nearly the same width of validity as

Simplification 3, i.e., it is useful for near-equilibrium external flows without
recirculation,
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