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A GENERAL MODEL FOR TURBULENT MOMENTUM
AND HEAT TRANSPORT IN LIQUID METALS

by

William T. Sha and Brian E. Launder

ABSTRACT

This report develops a general single-point closure
scheme for calculating the local levels of turbulent fluxes of
momentum and heat in liquid-metal flows. Transport effects
are accounted for by way of the three scalar quantities: tur-
bulence kinetic energy, k; turbulence-energy dissipation rate,
e; and scalar energy (or half the mean temperature variance), g.
Their values at any point in the flow are obtained from the so-
lution of conservation equations of transport type for each of
the three quantities. The turbulent momentum fluxes (Reynolds
stresses) and heat-transport rates are then obtained from al-
gebraic formulas containing the above scalar quantities and the
mean velocity and temperature fields.

Various applications of the model are discussed; the pro-
posed model has a wide range of applicability.

I. INTRODUCTION

A. Class of Flows under Study

Despite their high cost and the precautions needed to handle them
safely, liquid metals represent an attractive choice of fluid for certain heat-
exchange processes because of their very high thermal conductivities. Cir-
cumstances that tend to favor liquid metals over less exotic coolants are
those in which high heat-flux densities occur, particularly where flow rates
are limited.

Two features of liquid-metal flow make the problem of estimating heat-
transfer rates in, say, a prototype design much more difficult than where the
working fluid is air or water. The first is the relative absence of detailed
experimental data, due in part to the high cost of fabricating suitable apparatus
and partly to the experimental difficulties of obtaining accurate statistical
temperature-fluctuation data. The second feature is that, though the flow will
nearly always be turbulent at design conditions, turbulent Peclet numbers are
usually insufficiently high for molecular transport of heat to be negligible.
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This has far-reaching implications in developing a theoretical model for such
flows, for it means that we cannot invoke the usual high-Peclet-number con-
cept of the large- scale temperature fluctuations being independent of the
molecular transport properties of the fluid.

The present report provides state-of-the-art recommendations for
modeling momentum and heat transport in liquid metals in a form suitable for
use in finite-difference schemes for solving the three-dimensional momentum-
and heat-transport equations. To make numerical simulations of three-
dimensional flows will generally press hard on the available computer storage.
There is thus a strong incentive to keep the turbulence model as simple as
possible. This desire, however, is directly opposed by the sheer complexity
and diversity of the flow structures that may rise in three-dimensional flow;
only a highly sophisticated treatment could hope to predict results with suf-
ficient accuracy over a wide range of conditions. In fact, a compromise
treatment has been evolved; certain scalar properties of turbulence are ob-
tained from solutions of transport equations (necessitating storage of these
quantities over the field) while the turbulent momentum and heat fluxes are
obtained point-by-point from a set of nonlinear algebraic equations.

Section II of this report develops the proposed form of the model and
details the experimental results from which the proposals spring. Boundary
conditions, particularly the near-wall treatment, are discussed in Sec. III;
Sec. IV examines in somewhat greater detail a selection of convective transport
problems, which may be successfully predicted with the model.

Although the report has been written with liquid-metal flows especially
in mind, nearly all of what follows is applicable to flows of other single-phase
fluids as well.

B. Class of Turbulence Models Selected

At present and, it appears, for at least the next decade, practical
methods of calculating the behavior of turbulent flow must be based on the
averaged form of the Navier-Stokes equations proposed by Reynolds at the
end of the 19th century. In this scheme, all statistically random fluctuations
in flow variables are averaged out, producing a set of transport equations for
the mean properties. Through the nonlinearity of the convective transport
processes, however, time-averaged correlations between pairs of velocity
fluctuations or between enthalpy and velocity fluctuations remain in the mean
flow equations. These correlations, representing additional transport rates
of momentum and heat associated with the inherent unsteadiness of turbulent
flow appear as unknowns to the equation set, and a theory or "turbulence
model" is needed for their determination.

The earliest recognizable turbulence model was the mixing-length
hypothesis (m h) proposed by Taylor (1915) but, nowadays, usually associated
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with the work of Prandtl (1925). According to this scheme, the transport rates
due to turbulent agitation are determinable by introducing an equivalent tur-
bulent viscosity t whose magnitude is obtained from

z ui(aUi Ui
_ m --- x---+ ---

where p is the fluid density, U's denote mean velocities, x's are Cartesian
coordinates, and the usual convention is adopted, wherein repeated suffixes
implies summation over the three Cartesian components. The distribution of
mixing length tm must be prescribed; implicit in the use of Eq. 1 is the idea
that tm is a well-behaved function and that a few simple rules will suffice for
its prescription over a range of flows.

The satisfactoriness of the inh could not be seriously tested until the
1960's when numerical-solution schemes became widely available for solving
the fluid-flow equations for arbitrary two-dimensional flows. From this period
of testing it emerged that the mth achieved significant success in predicting
boundary layers developing along walls, that it was less successful at cal-culating the behavior of free shear flows, and that it was totally inadequate
for predicting flows with recirculation such as may occur in the flow down-stream from a sudden enlargement in pipe diameter. More recent explorations
of three-dimensional flows have exposed further shortcomings in the model.

The deficiencies of the mth, which make it unsuitable for use in a
general computational scheme, may be attributed to two distinct causes. First,it links the local turbulent transport rate to local properties of the mean flowfield. (In practice, the turbulent field, though ultimately owing its source ofsustenance to the mean flow, will respond at different rates to any external
changes.) Second, although in simple strain fields the idea of an isotropic
turbulent viscosity has proved adequate, this is by no means the case whenfluid undergoes more complex distortions.

Various workers have attempted to remove the former defect bydevising transport equations for turbulence quantities that would be solvedsimultaneously with those for the mean flow; by this means the need to usemean-flow time and length scales to approximate turbulence scales wasremoved. Here we may mention the early work of Prandtl and Wieghardt (1945)which provided a transport equation for the turbulence kinetic energy, k. Theturbulent viscosity was then evaluated from

t = pekl, 
(Z)

where 4 is an algebraically prescribed length scale displaying a variationsimilar to the mixing length.

Although conceptually the Prandtl-Wieghardt (1945) model representeda major advance over the mth, in practical terms it achieved rather little.
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Its achievements in free shear flows were modest (see, for example, com-
parative predictions of 23 free shear flows in Launder et al., 1972), and in
recirculating flows, it was not at all satisfactory due to the largely "unguessable"
distribution of length scale that arises in such flows. What was needed was a
transport equation for the length scale--or for some related quantity from
which the t, distribution could be calculated. Kolmogorov (1942) had, in fact,
proposed such a "two-equation" model somewhat before the Prandtl-Wieghardt
(1945) one-equation model. Kolmogorov's equation could not he tested for a
further 25 years when computer programs had become available for obtaining
numerical solutions of sequences of coupled, nonlinear partial differential
equations. When it was tested, it was deficient in some respects.

Nevertheless, Kolmogorov's ideas stimulated the development of
several other models in the late 1960's. Although these still fell somewhat
short of providing universally valid models of turbulence, they at least provided
a framework by means of which many turbulent recirculating flows ' ve been
successfully computed. The most widely used and probably the most suc-
cessful of the two-equation models is that based on the transport equations
for kinetic energy k and its dissipation rate e. This model was evolved largely
independently by workers at the Los Alamos Scientific Laboratories and the
Imperial College, London [Daly and Harlow (1970); Hanjalic and Launder (1972);
Jones and Launder (1972)].

The models mentioned so far all adopted the concept, due originally to
St. Venant (though more usually attributed to Boussinesq), of an effective
(isotropic) turbulent viscosity. There is no necessity to adopt this notion,
however. As early as the mid 1940's, Chou (1945) had given the framework of
an elaborate closure in which the Reynolds stresses (i.e., the correlations
between two fluctuating velocities at a point) were themselves the subjects of
a set of transport equations. In fact, Chou suggested that the triple velocity
correlations, uiujuk, would also be retained in transport form; thus, if his
model were to be used for a general three-dimensional flow, 20 transport
equations for turbulence quantities would need to be solved. Even with today's
computers, this represents an impractically large number.

Some years later, Rotta (1951), taking a more down-to-earth approach,
attempted to fill in the details around Chou's proposal and, at the same time,
to cut the model down to manageable proportions. He made an algebraic rather
than a differential approximation for the triple correlations, a level of model-
ing that has become known as a "second-order" or "Reynolds -stress" closure.
Rotta's pioneering work in a sense appeared too early, for it was a further
15 years before the ideas he put forward could be tested, adapted, or borrowed
by other workers in models of the same basic type.

There is an extensive literature, which we shall not attempt to cover
in this short review. Mention is made, however, of the early contributions of
Donaldson (1968) and Daly and Harlow (1970). Although their models did not
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provide particularly good descriptions of turbulence, the appearance of these
papers did a great deal to remove the hesitancy of solving so many strongly
coupled transport equations. More recently, Launder, Reece, and Rodi(i975)
published a model that has been applied by its originators to the prediction ofa range of thin shear flows both close: to and remote from walls.

What features make the differential Reynolds-stress model an attrac-
tive level of closure? There is not the fixed interrelationship between the
local stresses and strain rate that the effective viscosity hypothesis enforces.
In simple strain fields, where transport of the Reynolds stresses small, a
Reynolds-strtss model reduces to the effective viscosity hypothesis. But inflow over a curved surface, it leads to the prediction (in line with experiments)
that the local shear stress is about 10 times as sensitive to the secondary
strain associated with streamline curvature as to the primary strain. Likewise,
for flow in a straight, noncircular duct, the model predict: that stresses in the
plane of the duct cross section may be generated by strains in planes at rightangles to these stresses. This characteristic, which is quite at odds with theconcept of an effective viscosity, enables the phenomenon of turbulence-driven
secondary flows to be correctly predicted.

A further advantage of a differential Reynolds-stress closure is thatthe influence of body forces on the turbulence structure appears quite naturallyin the model without the need for ad hoc modifications. This is particularly
important in buoyant flows, because the stratification affects both the tur-
bulent stresses and the heat fluxes while the latter are coupled to the former
through the gravitational term.

These considerations make it highly unlikely that one could devise
generally adequate correlations of buoyant effects working within the frame-
work of effective viscosity and (for heat transport) effective Prandtl number.
With a second-order closure, however, the gross effects of-buoyancy are wellrepresented, even when rather primitive approximations are used for theunknown correlations [e.g., Donaldson, Sullivan, and Rosenbaum (1972);
Mellor (1973)].

There is one respect, however, in which a second-order closure is notpreferable to those based on the notion of an effective viscosity; this is theadditional computer time required. With a differential stress model using asingle length scale equation, seven transport equations must, in general, besolved for the hydrodynamic field and three more for the heat-flux correlations.The amount of computer core absorbed by holding the values of these cor-
relations in store over the flow domain is sufficiently large to make one
consider whether there are ways in which the beefits of the second-order
closure can be retained while reducing the computing requirements to thoseakin to the two-equation effective viscosity models.

There has, in fact, emerged over the last few years a class of closure
that can reasonably lay claim to possessing these dual qualities. Known as an
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algebraic stress closure, it is arrived at by simplifying the transport stress
in the Reynolds-stress transport equation so that the equation is reduced to
algebraic form. Details of the simplification are presented in Sec. II.D.
Application of this approach has been reported, inter alia, by Launder (1971)
and Launder and Ying (1973) on the prediction of flow and heat transfer in
square-sectioned ducts, Rodi (1972) on the normal-stress profiles in free
jets, and Gibson and Launder (1976) on the prediction of horizontal free shear
flows affected by buoyancy. A model of this kind is proposed for use in the
present work.

The specific topic of heat transport in liquid metals has not previously
received much attention within the framework of second-order transport
models (or the simpler algebraic versions derived therefrom). The thesis of
Owen (1973) appears to be the only work to have considered flows in which
the Prandtl number was much less than unity. In fact, his modeling of the
heat-flux equations was not particularly successful, the predicted distribution
of turbulent Prandtl number showing (in contrast to experiments) an insig-
nificant dependence on the Peclet number of the flow. Lawn (1977) made the
interesting suggestion that the reduction of the heat fluxes at low Peclet
number is due simply to the reduction of turbulent temperature fluctuations-
that is, the correlation between velocity and temperature fluctuations is un-affected. There is not yet a sufficiently precise set of experimental data to
allow the accuracy of this suggestion to be assessed. The current model,
while permitting more subtle interactions than Lawn's suggestion allows,
does take the view that the main effects of Peclet number arise from mod-
ifications to the time scale of the temperature-fluctuation field.
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II. DEVELOPMENT OF MATHEMATICAL MODEL OF TURBULENCE

A. Mean Flow Equations

The Navie r -Stokes equations governing the motion of a turbulent
compressible fluid may be expressed, using Cartesian tensor notation, as

[30. ,5u.
+ U I) - .xi + (-'.r) +jpg, (3)

o t a xot ( 4 

)

and

'r~l axe + x 3_i__x "(5)

In the above equations, the 's indicate instantaneous values of velocity,
p and P are the instantaneous density and static pressure, respectively, the
x s are Cartesian space coordinates, gi is the gravitational acceleration vector,
and . is the molecular viscosity. We note that the instantaneous density is
retained only in the buoyant term of the momentum equation. Elsewhere, the
"mean" density, p, defined below is used; the implications of this assumption
are discussed shortly.

The time scale in which significant ordered variations of the flow take
place is assumed to be more than an order of magnitude' greater than the
statistically random fluctuations associated with turbulence. We may thus
distinguish mean and fluctuating flow components. Mean values of the depen-
dent variables are defined as

S T
9 T(t) -I.ik f-T ' (6)

where 9 stands for any of the dependent variables. The integration time T is
chosen so that it is long compared with the turbulent time scales, but short compared
with that needed for appreciable ordered variations to occur. We define cp, the tur-bulent component of , as the difference between the instantaneous and mean values

cp * - .
. (7)

Evidently, from Eq. 6,

1 T
-- dt = 0-

2T-T ' 8)

i.e., the mean value of the fluctuating component is zero.
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The decision to retain only the mean density on the left-hand sides of
Eqs. 3 and 4 strictly implies that attention should be limited to situations in
which the percentage fluctuations in density associated with turbulence are
small compared with the percentage velocity fluctuations. The advantage ofmaking this assumption is a great simplification in the task of characterizing
the effects of turbulence in the later sections of this report. The assumption
of negligible density fluctuations has commonly been made, even for calculat-
ing flows in which such an assumption is inapplicable; frequently (but notalways), satisfactory predictions have been reported. {The interested reader
may refer to the Proceedings of the Free Shear Flow Conference [NASA (1973)}in which more than a dozen computational schemes have been used to predict
free shear flows involving substantial density gradients.)

Let us now replace the instantaneous properties in Eqs. 3 and 4 by thesum of the mean and fluctuating components, and then average the equations
over the interval ZT. The equations for the transport of mean momentum may
be written

p7 + jUP-uj-
\at J axe/ oxi axe x + p gi (9 

)

and

op p Ui
- + - = 0

ot 3x. '(10)

Equation 9, generally known as the Reynolds equation, provides the basis forall practical computations of turbulent flow. Due to the nonlinearity of the
convective terms on the left of Eq. 3, the process of time averaging brings
into prominence the correlation involving the turbulent velocities, pu iu~. These
correlations represent additional momentum fluxes or apparent stresses in thefluid (Reynolds stresses) over and above those associated with the mean mo-
tion. The magnitude of these correlations is unknown; thus the momentum andcontinuity equations no longer provide a closed set. Section II.C below develops
a general theory for approximating these Reynolds stresses.

In analyzing heat transport by turbulence, we adopted an approach pre-cisely analogous to that used above for the momentum equations. The first
law of thermodynamics may be expressed in transport form as

a(_+ ) (I+ 1 K)/_ PU . ({ 

)

p +__ _ _ a = ) --- x -q_
+ 

xjJ x xI+x ++-Uigi, (11)

where r, f, and A denote the instantaneous values of temperature, internal
energy, and kinetic energy of the fluid element, respectively, X is its thermal
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conductivity, and q"' represents the local heat generation rate per unit volumefrom sources other than the flow field (e.g., radiation or radioactive heat
release). It is convenient to take the term containing static pressure to theleft side of the equation. Then, on subtracting Eq. 3 multiplied by U, we obtain

o (pIH) + - (pU.h) =r + q"' + rT,.- --- + + U1-x . (12)

As a result of this manipulation, the direct appearance of the reversible
work terms and the kinetic energy has been eliminated through the introduc-
tion of the 'nihalpy H, defined as (I + P/1)0

On expressing the instantaneous values of temperature, velocity, en-thalpy, and pressure in terms of mean and fluctuating components and averag-ing the equation over an interval 2T, we obtain the mean enthalpy transport
equation,

OH lHa H\ aU.
p o pU 1x = x" xj+ q j +T - pe-x"(u

(ZBt lx uiax-,'(13)

where h denotes the instantaneous value of enthalpy fluctuation, e is the meanvalue of the turbulence-kinetic -energy dissipation rate per unit mass, and theoverbars imply, as usual, an averaging over an interval 2T. The correlation
ui ap/axi principally represents a diffusive transport of turbulence energy bypressure fluctuations. Its influence, even in the turbulence-energy balance, iscommonly negligible; therefore its retention in the mean enthalpy equation is
unwarranted.

Alternatively, by way of the definition of the specific heat at constant
pressure,

aHc~ =T--

we may, by assuming that the enthalpy is a function of temperature alone,
reexpress Eq. 13 in the form

PC +u L, r + jui
Ppy -- + U--- = -- A- +q -m . (.P --JYpt J axj axjaxx, p c pujy+T

+ p'( + ) (14)
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The correlation i77on the right side of Eq. 14 is, like the Reynolds stresses
in the mean momentum equation, an unknown to our system of equations; it
is proportional to the extra rate of enthalpy transport due to the turbulent
fluctuations. Section II.C below presents proposals for modeling this quantity;
first, however, we will develop an exact equation describing the transport of
u y.

The turbulence-energy dissipation rate is also an unknown quantity
for whose determination a scheme is proposed in Sec. III.

B. Exact Transport Equations Governing the Level of TT!andT

We note first that, on subtracting Eq. 10 from Eq. 4, we obtain the
continuity equation governing the turbulent motion:

x.(Puj) = 0. (15)

Moreover, subtraction of Eq. 9 from Eq. 3 produces, with the help of Eq. 1 5,
the following transport equation governing the level of fluctuating velocity u;:

P(at + Uka)k a-xi-pu -k -- - ak(puiuk - Puiuk)

a aoui auk\++xi + p'gi, (16)

where p' denotes the turbulent density fluctuation and, for reasons that will
become apparent below, the subscript j has been replaced by k. (This re-
placement has no effect on the equation, since the subscript appears twice in
each term and summation for the three Cartesian directions is thus indicated.)
In Eq. 16, the compressible part of Stokes' stress-strain law has been
neglected.

Now let us multiply Eq. 15 by uj and add it to its complementary equa-
tion in which subscripts i and j have been interchanged. On time -averaging
and regrouping, we now have an equation for the transport of the correlation
uiu":

au a 6UJ 
d

AkB

__ k Uixk + "UJ + Lk- PU+UJUk - Jk + lk

L E (17)
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This equation expresses the fact that the total rate of increase of uiufor an elemental fluid packet is equal to t.: excess of the generation rate due
to mean shear (A) and buoyant interactions (B), over the loss through viscous
dissipation (C), through the randomizing action of the pressure-strain cor-relation (D), and through diffusive transport (E). Section II.C considers the
simplification and closure of this equation.

An equation for the transport of turbulent temperature fluctuations maybe obtained by subtracting Eq. 14 from Eq. 12 (the latter having been expressed
in terms of temperature rather than. enthalpy). The resultant equation may be
written

p ct + Uk "k

- Pcpuk - c (pukY - pukY)
aJxk P xk

a a Y Uioui uk

ax xk k xk x ai

Fou" u. u uk

k oxk\ x.

Ouk oui uk

Oxk oxk axi

ap _ / Ip ~
+ k + U k \x+ - uj (18)

On multiplying through by uj and adding to the resultant equation that is ob-
tained by multiplying Eq. 16 (with the subscript j replacing i) bycY, we
produce an equation describing the transport of the correlation uiY along a
streamline:

a(%-UJY Uk"I'
PU "uk p u Y-- +p tYg

A B C

I by U uk\ Yy - 1 P
4x Ek \xk Uj /c pxkxJ 3

D E

a .--.- -Y u-uk
- puku Y + pY b k - uj -a 

+

C

+cP
pu a

(19)
(Contd.)
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cP x5k Jk axi/

p aui aui auk
+--u.-- -- +--

c, J p xk axk axi

(Contd.)
(19)

uj p pujuk Uk p
c, pt c p xk cp Jaxk

ukuj ap

cp xk

The processes on the right-hand side of Eq. 19 causing the correlation ujy
to change along a streamline may be inte rpreted as generative agencies arising
from mean temperature and velocity gradients (A and B) and gravitational action (C);
molecular smearing in the fine - scale motion (D); destruction due to the randomizing
action of the fluctuating pressure field (E); diffusive transport due to both molecular
and turbulent mixing (F); and to an effect, in nonstationary gaseous flows, associated
with the nonequality of the specific heats at constant pressure and constant volume (G).
There are, in addition, the correlations appearing below the broken line arising from
viscous heating and pres sure gradients. Their influence will be insignificant unless
the Eckert number is of order unity. These conditions will occur only when heat
transport through the flow boundaries is small compared with that generated inter 

-

nally by friction or compression. Such a situation is so far removed from those en-
countered in the heat-exchanger area that the terms are hereafte- discarded in the
main text. The question of approximating the unknown correlations appearing above
the broken line is discussed further in Secs. II.C.3-II.C.8.

Before leaving consideration of the exact equations, we shall obtain
transport equations for the scalar quantities k(= u?/2) and g(= /2). These are
readily derived by multiplying Eq. 15 by ui and Eq. 17 by Y. The resulting
equations may be written

(ak ak \ +pu PUi i ui aukp --- +Uk p) -Puiuk + igi
at pxGkp kxk ax/
PPG Pc

+k + uuk- U - 1+ID-)x ax ax. P " Ui8ikJ (zo)

and

( li.1 . -- B by BY a

Pc + c Uk - p cpukY - - --- -

+

xkxk k Xk k k
(21)

As remarked above, viscous and compressive terms are dropped from Eq. 21.

20
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These equations are evidently simpler in character than the Reynolds-
stress and velocity-temperature-correlation equations derived earlier. We
shall take advantage of this simplicity in Sec. II.D.1 to devise a convenient,
economical form of our model for practical computations.

C. Closure Proposals for uiuj and 7 g Equations

1. The High-Reynolds -number Approximation

We shall assume that, except in the immediate vicinity of rigid
boundaries (for which, in any event, special provision is made later), viscoustransport effects are negligible in comparison with turbulent transport. Thisis equivalent to saying that the large-scale turbulent motions that carry theturbulent energy and Reynolds stress are unaffected by fine-scale motions.
Reciprocally, the fine-scale motions, which are directly influenced by viscosity,
are assumed to be unaware of the character of the large-scale turbulence or of
the mean flow.

This assumption greatly simplifies the task of devising a closedform of Eq. 17. First, the viscous dissipation of can be represented inthe form appropriate to isotropic turbulence:

+ ++ _ =_.3dije, (22)a k a k + axj + a k axk iJ

where e is the dissipation rate of turbulence energy, which, at high Reynolds
numbers reduces to

aui aui
e= xk 

(23)

We may also neglect the viscous contributions to the diffusion term (E) inEq. 17. Further, in seeking approximations for the remaining unknowns inthis equation, we consider forms that are independent of viscosity.

2. Diffusive Transport of Stress

Hanjalid and Launder (1972) devised the following approximation
for the triple-velocity correlationuiju:

-luii6uk = c k u fu+ a + au (24)j e Nuta +k jutak+ i.ax(4



22

where the empirical coefficient c9 was later optimized by Launder, Reece,
and Rodi (1975) as 0.11. The latter work found, however, that the simpler
form proposed by Daly and Harlow (1970) appeared to give just as satisfactory
results:

k u25
-uiujuk = cs e-_4a P(25)

where the coefficient cs was taken as 0.22. In retrospect, although Eq. 24 is
a better model of uiiuik than Eq. 25, it seems likely that the latter is equally
good as a model of the total turbulent transport of iiuj. (Launder, Reece, and
Rodi had omitted any modeling of the pressure-transport term.)

3. Pressure -Strain Correlation

The pressure-strain correlation in Eq. 16 represents arguably
the most crucial term to model in the Reynolds-stress equation. In fact, three
distinct agencies contribute to the fluctuating pressure field, each of which
will need separate modeling. This becomes apparent by taking the xi deriva-
tive of the equation for the turbulent velocity fluctuation (Eq. 16). After re-
arrangement, we obtain

1 p Z__ uk Ui

P jx xkaxuiuk-uiuk) - 2x xk + gi (26)

(A) (B) (C)

From Eq. 26 it may be inferred that the pressure fluctuations are induced by
purely turbulence interactions (A), effects involving the mean rate of strain (B),
and buoyant contributions (C). Although some workers still include an approxi-
mation of only the first of these contributions, there is a gradually emerging
awareness of the important contribution played by mean strain and buoyant
effects.

The present recommendations spring from the work of Launder,
Reece, and Rodi (1975), Launder (1975B), and Gibson and Launder (1976, 1978).
The basic idea is that, due to process (A), the pressure fluctuations will tend
to produce a return to isotropy [a proposal due originally to Rotta (1951)] while
processes (B) and (C) will diminish the rate of stress creation by shear and
buoyancy, respectively.

Thus, for free shear flows we recommend that the pressure-
strain correlation be approximated as

+( ax 1 / - caj kujuj y 8ijk) - zP B ~ijP)- c3(Gjj -3eio). (27)
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where Pi. and Gij denote the kinematic generation rate of "iuij by mean
shear and buoyant action, respectively:

r - u.- -- u

3 - i-kuxk + kxj

and

Gi --- gi + -- g.J,
p p 3,

and P and G are the corresponding rates of kinetic-energy generation. Notethat, under contraction of indices, the left side of Eq. 27 vanishes in a strictly
incompressible turbulent field due to continuity; this characteristic is retained
by the approximation on the right, since u u = 2k, Pii = 2P, and Gii = 2G.

In the present work we retain Eq. 27, though in a compressible
flow, thr contraction of the pressure-strain correlation will not exactly be
zero. The quantity k/e, whose reciprocal appears in the first term on the
right of Eq. 27, provides a characteristic time scale for changes to the tur-
bulent velocity field. Its reciprocal (c/k) thus gives the characteristic rate
at which the process in question proceeds; the term as a whole thus tends to
drive the turbulent stresses to their isotropic state [(2/3)86 k] at a rate pro-
portional to the level of anisotropy and to the characteristic turbulent change
rate. Optimization of c1 over a range of free shear flows suggests the optimum
value to be about 1.8. The coefficients c2 and c3 are selected as 0.6 and 0.5
by reference to data of stress ratios in horizontal simple shear layers.

In considering confined flows or external flows along a rigid
surface, we must, unfortunately, account for a further aspect of the pressure-
strain correlation. The difficulty arises because a wall modifies the fluctuat-
ing pressure field; it will reflect pressure fluctuations rather as a mirror
reflects light. Most groups working with second-order closures still neglect
this effect. Provided one restricts attention to a narrow class of flows (and
examines only the predicted mean flow field), this neglect seems acceptable.
There is, however, a growing awareness that any general turbulence-model
formulation does need to include the wall effects on the pressure-containing
correlations.

At present, extensive testing has considered only a simple shear
flow past a single plane wall with no gravitational contribution [Launder,
Reece, and Rodi (1975); Irwin (1974); Gibson and Launder (1978)]. The present
recommendations are taken, with but minor modifications, from the last of
these contributions. We denote by p auifaxj + aujfaxi w the modification of
the pressure -strain correlation due to the wall. This is to be added to the
free-flow form, Eq. 27. That is,
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( u + e 
- Ujtc + 

xj xi {ck4( nknG 7 -ij Umuk umut nkn8ij/k

wij~w

(uk njnk + ink - 8ij imuiinmnk)

- c(cpik,2njnk + ePjk,nink - 3 8 ijPmk,anknm)

c;(eik,3njnk + jk,3nink - 8ijcmk,3nknfm kf ). (28)

Here xn is normal distance above the wall and the n's are unit vectors normal
to the surface. We propose that the coefficients cj, ci, and c; should take the
values, 0.3, 0.4, and 0.4, respectively. The wall-effect function fi(k//exn) is
in fact taken as linear and equal to unity close to the wall, where k"" /e
increases linearly with xn. Thus,

(k3 /k/2
fx =-= c (29)

where cw takes the value 0.38 so that the function satisfies the above
requirement.

The work of Reece (1977) appears to be the only one so far that
has attempted to include the effect of more than one wall. As shown in Fig. 1,
he assumed thIL for two walls at right angles, the effects of the two walls
could be added linearly without any :ross-coupling. For example, if the unit
vectors normal to the adjacent surfaces point in the positive x1 and xa direc-
tions, the total wall effect at a point P is the sum of two contributions: one
arising from wall I with a wall-effect function of cwk3IZ/exi and the other,
due to wall 2, in which the corresponding wall-effect function is cwk1/ex 

.

Of course, for positions that are much closer to one wall than another, the
effect of the nearby surface predominates, since klIZ/exn will be so much
larger for the closer wall.

MLL 2

((0,1,0) *"pN

Fig. 1

(,1, Mli Two Walls at Right Angles
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In general circumstances, i.e., for an arbitrarily contoured
boundary, the wall effect should properly be expressed in terms of an integral
around the circumference. The details of such a scheme do not, however,
seem to have been worked out.

The most important nonplanar case is the circular sectioned pipe
or container. At present, for this geometry, the best practice would appear
to be to use the formula for the plane -wall correction. Such a practice should
lead to a modest overestimate of the circumferential velocity fluctuations at
the expense of axial ones; it is, Lowever, rather doubtful that the model for a
plane flow is sufficiently accurate for any definite conclusion to be reached
about the cause of any discrepancies between data and prediction for, say,
fully developed flow in a pipe.

4. Strategy for Closing the Equations foriV

Section II.C.1 presented the main ideas behind the high-Reynolds
number modeling of the turbulence velocity field; i.e., the fine-scale viscosity-
dependent part of the motion was unaffected by the nature of the large-scale
motions and was thus isotropic. Correspondingly, the large-scale motions
were unaffected by the fine scale and thus were independent of Reynolds
num be r.

The same state of affairs will also pertain to heat transport,
provided the Prandtl number of the fluid is of orderof unity greater. For
liquid metals, however, because Prandtl numbers are then of order 10-2,
there will commonly be no truly fine-scale thermal turbulence and the large-
scale temperature fluctuations will be affected by molecular transport. Put
anLother way, the high thermal conductivities mean that heat will leak away
from an eddy in transit from one region of flow to another. It is therefore
evident that turbulence agitations will be less effective in augmenting heat
transport in liquid-metal flows than in other fluids.

Our strategy in closing the heat-flux equation will be to assume
that only the most important turbulent correlations are affected and that these
are functions only of the local turbulent Peclet number. This approach is
almost certainly an oversimplification. When venturing into a nearly unex-
plored field, however, we find it best to start with a simple model so that the
cause of any errors can be easily traced and cured. Moreover, by keeping
the model simple, we have much less risk of making a major error.

5. Molecular Dissipation of the Heat-flux Correlation

When the Prandtl number is of order unity or greater, the correla-
tion between derivatives of velocity and temperature, given by term D in Eq. 19
is negligible outside the viscous sublayer and buffer region. Under conditions
of low turbulent Peclet number, however, it seems plausible to correlate the
process as follows:
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e = fiy(Pet)uiY jaeg/kg, (30)

where ejy stands for term D in Eq. 19 divided by p. The turbulent Peclet
number Pet is defined as pcpk2 /eX. The functional, fly, should approach zero
as Pet becomes large (i.e., greater than about 300) and will approach some
constant value, of order unity, when the Peclet number becomes very small.

We make no proposals for approximating the function fiy because,
as we shall see in the next section, a directly similar term also appears. We
shall model the two processes together, thus keeping to a minimum the number
of empirical functions to be optimized.

6. Pressure -temperature -gradient Correlation

Process E in Eq. 19 is approximated broadly along the lines pro-
posed by Gibson and Launder (1978), but generalized to include low-Peclet-
number effects.

The basic form for flows remote from walls is taken as

p aY -g-

-akg-c1y .y Z- YPjY - c3YjY (31)

j Y,1 jY,z 9jY,3

The quantities P.y and GjY, respectively, stand for the rate of generation of
the correlation by mean shear and buoyancy:

aU.
PjY.= - uk(32)

k

and

Gjy E Wgj/p. (33)

The coefficients cay and c 3 y are taken as independent of Peclet number.

For isotropic turbulence, we may show [Launder (1975A), Lumley
(1975)] that the coefficient c 3 y should equal exactly 1/3; experiments seem to
suggest that, for shear flows, however, a rather larger fraction of the buoyant
generation may be obliterated by pressure. Accordingly, we take c3y = 0.4
and, noting the basic similarity of the processes, we let cay take the same
value. The coefficient cjy takes a value of about 2.0 at high Peclet numbers,
that is, a value similar to that of c1 for the corresponding part of the pressure-
strain correlation.
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The cumbersome group /ceg/kg is just the geometric mean of
the velocity and thermal turbulent rates of change. It is convenient to rewrite
this as (e/k)/R1 , where R is the time-scale ratio ge/keg. The quantity Ris not strictly constant, even at high Peclet numbers; the review by Launder
(1976), for example, shows a roughly threefold variation in its magnitude over
the relatively small span of flows in which the requisite experimental data are
available. Nevertheless, in simple shear, whether close to or remote from a
wall, a value close to 0.6 seems to be indicated (Beguier et al., 1978); that isthe value we adopt. In the present work we take the view--which is broadly
consistent with Lawn's (1977) hypothesis discussed earlier--that the effect ofPeclet number on R represents the main source of molecular activity on the
turbulent -heat-transport mechanism.

Let us note also that, on adding the molecular-dissipation process
(Eq. 30) to cpjy,, we obtain

ejY + +jy,1= - cly ju(R1#2 + R~/f - (34)

F, (Pet)

The quantity Fi(Pet) takes the value unity as the local turbulent Peclet number
attains large values and takes on very large values as Pe approaches zero
(provided the turbulent Reynolds number is high).

The analyses of Deissler (1963) and Corrsin (1952), as well as
several empirical correlations, suggest that the turbulent Prandtl number isinversely proportional to the laminar Prandtl number in this limit. It is
readily demonstrated that, by neglecting convection and diffusive transport,
Eq. 18 does give this inverse relation between molecular and turbulent con-
ductivities, provided F1 varies as Pet1 in the limit as the turbulent Peclet
number approaches zero.

It has usually been found, from the work of Van Driest (1956)
onward, that exponential functions allow one to fit the dramatic changes in
effective transport coefficients across the viscosity-affected region more
compactly than do polynomial forms. A disadvantage of using exponentials isthat their evaluation ta-es a significant portion of the total computing time.
Once a suitable exponential form has been devised, however, it is easy to make
a piecewise linear fit to it -- and such piecewise linear functions take only a
few percent of the computer time required for the exponentials. Noting the
required limiting behavior, we therefore choose

F1 = [1 - exp(-Pet/a)]' (35)

where the empirical coefficient a should take a value of about 70 to ensure
that F, differs little from unity when Pet is about 300. It may prove necessary
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to introduce a more elaborate functional form to give a satisfactory dependence
of F 1 on Pet at intermediate values of the turbulent Peclet number; this ques-
tion can only be resolved by computational tests.

7. Near-wall Effects on Pressure -temperature -gradient Correlation

Just as for the pressure-strain correlation discussed above, a
general model of heat transport needs to include the way the wall, through re-
flecting pressure fluctuations, modifies the pressure -temperature -gradient
formulation given above. We adopt precisely parallel modeling concepts as
used for p(aui/axe + auj/axi)w. We take

by w - P -F (ciy ukYnkn) - cy cPjy,z - cY Y, fz(L -) (36)xj w k k J Y , PY3aex (6

Only Gibson and Launder_(1978) appear to have given detailed attention to
near-wall effects on pay/ x. In their work, the coefficient cly took the value
0.5, which is retained here. In the flows considered by Gibson and Launder
(1978), since the process cpjy,z did not appear, the coefficient c was immaterial.
Moreover, in the absence of further evidence to the contrary, cy was set to
zero. In view of the similarities found so far between the coefficients in the
pressure-strain and pressure-temperature-gradient models, we now take the
view that it is more consistent to put cy equal to c3 and ciy equal to ci.

We note that the first term on the right of Eq. 36 is much simpler
in appearance than the corresponding part of Eq. 28. The reason for this is
partly that here we are modeling a tensor of first rank (i.e., a vector), whereas
Eq. 28 is a second-rank symmetric tensor. A further reason is that much less
is known experimentally about the characteristics required of the model for
(pay/ xj)w than that for p(aui/axj + auj/xi)w. The form proposed in Eq. 36
does ensure the basic requirement that the wall should tend to raise the turbu-
lent Prandtl number (for heat fluxes normal to the wall). Perhaps, however,
as it becomes clearer what the corresponding effects are on the heat fluxes
parallel to the surface, additional nonlinear terms will be needed corresponding
to those already retained in the near-wall pressure-strain model.

Following Gibson and Launder (1978), we take the function
fz(k3 1 /cxn) equal to fi(k3 12 /exn) and recommend the same linear-superposition
approach used for p(aui/axj + auj/xi) when more than one wall is present.

8. Diffusive Transport

At high levels of turbulent Peclet and Reynolds numbers, it has
been customary [see Launder (1976)] to approximate the turbulent diffusion of
heat flux as

_(p ukuYj +p8jk) = p(CJYmeuku )(37)
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More elaborate and physically more realistic versions have been proposed
[e.g., Andre et al. (1976) and Kolovandin (1977)], but these forms add con-
siderably to the computational task without, for the most part, producing a
commensurate advance in the accuracy of predictions. The coefficient cjy
should take a value close to 0.2.

In all other turbulence-transport equations appearing in this
report, molecular-transport terms may be included without further approxima-
tion, because the molecular-transport rate is directly pri )rtional to the gra-
dient of the correlation in question. This state of affairs is unfortunately not
the case in the turbulent heat-flux equation, as reference to Eq. 19 will show.In the region of high-Reynolds -number turbulence, the term as a whole is ofsignificance only if Pr << 1, that is, if a >> cp . Moreover, ujby/axk will be,f the same order as Yauj/axk. Thus, from Eq. 19 we may write that

Net molecular diffusion rate ofj y- - (38)

Current practices in turbulence-model closure would suggest that? ujpY/oxk be modeled in either of the following ways:

aY 
k.- 6-r uj

oxk ox~xk(3 9a)

or

xk I(39b)

The former of these leads to third derivatives of mean temperature, and theserequire a fine mesh to resolve them with accuracy, for this reason, at leastthe second alternative looks preferable. The constant of proportionality should
be about 0.5.

In fact, as discussed in the following section, by taking a rather
different approach to modeling transport effects in the stress and heat-flux
equations, we can greatly reduce the complexity of our model. For this
reason, we do not make definite recommendations for the values of the
empirical coefficients appearing in the diffusive terms.

9. Nonstationary Source

The final term in Eq. 19 requiring approximation is term 0, which,
on division by p, becomes

Icv (b4
1 c P 3 8t ' (44)
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The term will be zero, except in gaseous flows, for only there will cp and c
differ. Following the discussion in the previous section, we should approxi-
mate the group as

c$lt ' 
(41)

where the constant of proportionality should be about 0.5. In the final form of
the turbulence model we shall, however, regard teim 40 as part of the convec-
tive transport of u y and will approximate it in terms of the convective trans-
port of k and g as discussed next.

D. Algebraic Stress Modeling

1. Stress and Scalar Flux Formulas

"Algebraic Stress Modeling" (ASM) is the name given to closures
derived from stress-transport models in which all the transport effects are
held to be characterizable in terms of scalar properties of the turbulence
field. Because gradients of stresses and heat fluxes appear (according to
present cle-'ure ideas) only in the transport terms, the resultant equations for
the Reynolds-stress and heat-flux equations are algebraic ones. Transport
equations are needed just for the scalar quantities; the great saving in com-
puter memory required has already been discussed. Following Rodi (1972),
we take

uu

Tij =-kTk, (42)

where T denotes net transport rate (i.e., convection minus diffusion) and the
subscripts ij and k denote that the transports of T, and of k, respectively,
are in question.

Now the turbulence-kinetic-energy equation may, in symbolic
notation, be written

Tk = P + G - e. 
(43)

Thus, Eq. 42 may be rewritten

Tij = k (P + G - E). (44)

In considering heat-transport processes, Gibson and Launder (1978) have
similarly assumed that
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ki / T . (45)

Now, formally,

,I, = 1 /a + gl 

/

T ( 7 Tg + kiTk) '(46)

Thus, Eq. 45 may be rewritten

TjY =4 Y(Tg +jTk) +jgeg P+G- E
k 2 g k 

+

Finally, we eliminate eg in favor of the time-scale ratio
R[= (ge/e k)]. The following final expression is thus obtained for T:

JY

T y = --- +P+G _ l+1
2 g k k\ R/ -(48)

The production terms in Eqs. 44 and 48 may be regarded as known.

The stress and heat-flux transport approximations thus depend onfour scalar properties of turbulence. The values of three of these (k, e, and g)
are obtained from transport equations given below; the time-scale ratio R isprescribed as a function of the turbulent Peclet number, as discussed in
Sec. II.C.6 above and specifically as given by Eq. 54 below.

With Eqs. 44 and 48 used to approximate the transport of u u~ and
u y, the closure proposals presented in Sec. II.C may be manipulated to givet e following algebraic formulas for the turbulent stress and heat-flux fields:

uu =[(ci - 1) + + Gij - c(Pij - 3ijP) - c3(Gij -18--G)

+ Pij,w + 3(c, - 1)e 6iJ,(49)

where cpij,w stands for the wall effect on the pressure-strain correlation ex-
pressed by Eqs. 28 and 29, and

-- g L P + G C 1 S = 2- -k 1 + - clYFl(Pe)j} -r/(xk + (1 - cZy)P

+ (1 - c3 y)Gjy + cjyw]. o50)

The quantity yjYw is the wall effect on the Pressure-temperature-gradient
correlation modeled by Eq. 36.
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The above equations provide the central constitutive relations for
calculating the stresses and heat fluxes from a knowledge of the scalar prop-
erties k, e, and g, quantities that are obtained from the transport equation for
these variables given below.

2. Modeling the Transport of the Scalar Properties of Turbulence

The ASM closure of Sec. II.D.1 contains as unknowns the kinetic
and scalar energies of turbulence (k and g) and their respective dissipation
rates (e and e g).

Exact equations for the transport of k and g were presented in
Sec. II.B (Eqs. 20 and 21). If we adopt the gradient-transport notion for
modeling the diffusion of turbulence energy, Eq. 20 may be written as

p + pUk pP + pG - pe + cs apu k '(51)
at axc 5axk kUJe ak (1

where the coefficient cs is the same as in Eq. 25; the recommended value is
0.22. Generation rates P and G contain only (1) mean field variables and the
Reynolds stresses and (2) heat fluxes, respectively, and may be regarded as
known; the local level of a is to be obtained from Eq. 53 below. Equation 51
may thus be regarded as closed.

Correspondingly, the scalar energy-transport equation may be
written

p +pUk g= Pg-pe + c p + ( (52)
at axk gP kR g ak(g;2uuat x cjxk(2

where Pg is the creation rate of temperature fluctuations, -ukYar/xk, and,
in place of the molecular dissipation rate of temperature fluctuations, eg, we
have, as in Sec. II.C.5, introduced the time-scale ratio R. We have also in-
cluded this dimensionless time scale in the model for the turbulent diffusive
transport of g (the third term on the right-hand side of Eq. 52) to reflect the
fact that temperature fluctuations are being diffused. There seems about as
much justification for an exponent of R of 2/3 as 1/2, but the question is
unlikely to be of much practical significance. Only at low turbulent Peclet
numbers will R become sufficiently small for there to be a substantial dif-
ference between R''2 and R2

/
3 , and, in this case, turbulent diffusion will prob-

ably be outweighed by molecular diffusion, represented exactly by the fourth
term on the right of Eq. 52.

3. Modeling the Transport of Energy-dissipation Rate

An exact equation for the turbulence-energy dissipation rate e
may be obtained by taking the derivative of the fluctuating velocity equation,
Eq. 15, with respect to xk and multiplying through by Zv(aui/axk + auk/ax ).
The resultant equation has been presented by Daly and Harlow (1970) and
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discussed by the same workers, by Hanjalid and Launder (1972), by Lumley
and Khajeh Nouri (1974), and by several others. Tennekes and Lumley (1972)brought out the difficulty of devising a closed form for the e transport equa-
tion in their discussion of the closely related turbulent-vorticity equation. Itturns out that none of the terms in the equation are accessible to measurement.
In these circumstances, the only feasible approach toward devising a modeledc equation is to apply a mixture of intuition and intelligent dimensional analy-sis. The conjectured form of the equation should contain a number of empiri-cal coefficients that may be tuned by reference to the behavior of widely
different shear flows. The form proposed here is essentially that of Launder,
Reece, and Rodi (1975):

p + kcep kP + ceG - ce2pk+ cc k __ (53)

Following Launder, Reece, and Rodi (1975), the coefficients c
cez, and ce are assigned the values 1.44, 1.90, and 0.15, respectively. Theterm containing ce3 did not appear in that work, since its authors were con-cerned exclusively with unstratified flows. Gibson and Launder (1978) ob-tained good results by making ce3 zero; Ideriah (1976) and EFossain and Rodi(1977) found it necessary to make cE3 nonzero to correctly predict the size ofthe round buoyant plume. However, while Hossain and Rodi took the value of
ce3 the same as cci, Ideriah deduced its magnitude to be only about half thatvalue. We can provide argun.Lnts in favor of either choice, but neither isespecially convincing. On the grounds of simplicity, c e3 = c e1 is preferable
since this says that it is the total generation of turbulence energy that matters,irrespective of whether it is due to shear or buoyant action. This is the
practice we recommend at present.

For a number of years, Lumley and his colleagues [e.g., Lumley
(1972), Siess (1975), and Zeman and Lumley (1977)] have been making propos-als for a corresponding transport equation for e. The exact equation is
similar in structure to that for e, and, not surprisingly therefore, the modeledforms likewise show close kinship. Launder (1976) pointed out that the task ofclosing the eg equation appears rather more difficult than for the a equation,
because there are now two turbulent times scales (k/e and g/eg) and two lengthscales available for devising dimensionally correct forms. As Launder (1976)remarks, "All the published modeled forms of the e g equation ... are at besttentative." Though recognizing the desirability of determining g from itsown transport equation, it appears to us at present to involve greater un-certainty and empiricism than the alternative of prescribing the time -scale
ratio R. (This state of affairs will probably change in the next year or two.)

As discussed in Sec. II.C, values of R deduced from turbulence
studies suggest values ranging from about 1/3 to unity, with a preponderance
of values in the range 0.5-0.7. We chose an asymptotic value for R of 07
because, as reported by Launder (1976), a value as low as 0.5 produces ap.parently quite the wrong effect of buoyancy on the effective turbulent Prandtlnumber.
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Of course the effect of molecular heat transport on R is substan-
tial. We have already considered modeling the Peclet-number dependence of
a function in which R appears (Eq. 24). The tentative modeled form of that
equation suggests that R itself should be approximated as

R = O.7[1 - exp(-Pet/a')]z, (54)

where the empirical coefficient a' should be of about the same magnitude as
the constant a appearing in Eq. 35 (but not necessarily exactly the same due
to the presence of fiy in Eq. 34, for which Eq. 35 is also supposed to account).

4. Closure

Sections II.D.1-II.D.3 have presented the algebraic stress model
currently recommended for computing three-dimensional recirculating flows.
For internal flows, the stress and heat-flux correlations must be used in con-
junction with the near-wall corrections, Eqs. 28 and 36.

The recommended values of the empirical coefficients have mostly
been stated as the coefficients appeared in the equations; for convenience,
however, they are restated in Table I. The greatest uncertainty concerns the
Peclet-number dependence of the time-scale ratio and the associated function
Fi(Pet) in the heat-flux equation. Additional work is needed to refine and
validate the present proposals.

TABLE I.

Value for Formi
Proposed

1.8
0.6

0.5

0.22

0.3
0.4

0.4

0.38

2.5
0.4

0.4

0.20

II - exp-PeIall 3
.1

a . 70

0.5

0.4

0.4

0.15

0.15

1'44

1.90

0.711 - expl-Pet/atIt

.

a " 10

Values of Various Coefficients

Equation of
First Appearance

21

21

25

28
28

28

29

31
31

31

37

34

36

36

36

52

53

53

53

54

Basis for Choice

Stress levels in free shear flows

Gravitational effects on horizon-
tal free shear flows

Computer optimization Isee
Launder e1 al. 19151

Normal stress levels in
near wall turbulence

Buoyant effects on stress levels
in atmospheric boundary layer

Near-wall turbulence data

Heat flux in thin shear flows
near local-equilibrium

Heat flux levels in buoyancy-
alfected horizontal shear flows

Computer optimization

Tentative form

Prandtl number In near wall
turbulence

Equality with c}

Equality with cj
Analogy with c.
Computer optimization ILRRI

Computer optimization ItLRRI

Computer optimIzatIon ILRRI
Tentative proposal

Coefficient
or Function

c1

c?

cw
c

Cly

C*,

FilPetI

Cly

cV

Ccl

c?

R

.. __.
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III. BOUNDARY CONDITIONS FOR TURBULENCE PARAMETERS

A. Preliminary Remarks

We consider here the prescription of boundary values for the threescalar quantities whose magnitudes are found from the transport equationspresented in Sec. II.D. Three boundary conditions are considered: a plane(oraaxis) of symmetry, a free boundary, and a v all. The first two are easilydealt with and are presented first; most of the section is concerned with howto apply boundary conditions at a wall.

B. Flow Inlet and Outlet Boundaries and Axes or Planes of Symmetry

At an inlet section, the level of the turbulence quantities depends uponwhat has happened to the flow at positions upstream of the inlet plane. Forthis reason, no generally valid prescriptions can be given. Ideally, we wouldlike to have experimental data to turn to; in practice, however, detailed tur-bulence measurements are limited to rather simple configurations-considerably simpler than usually found in practical situations.

In the absence of more definite information, the levels of k, e, and gmay be obtained from one of the following schemes:

1. When mean profiles of velocity and temperature at inlet are
known or can be guessed

Let us suppose that the inlet plane is a surface of constant x andthat velocities are significant only in the direction normal to this surface. Theinlet turbulence energy may be estimated from

3 t#m -- +*---

J32b+ ( 5 5 

)

and the turbulence-energy dissipation rate from

e = k3/a/3*'5Cm' 
(56)

where 'm (essentially Prandtl's mixing length) is equal to the smaller of 0. 4Zxor 0.16, where xn denotes the distance to the nearest wall and 8 denotes the nwidth of the shear flow (perhaps half the width of the inlet duct if turbulentmixing extends throughout the duct). The corresponding value for g is givenby

g = 3.5R. 1 [(t)+ .r )2j (57)
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2. When uniform inlet values of velocity and temperature are
prescribed

In this case, Eq. 55 indicates that the level of turbulence energy
is zero. In practice, however, there will always be some residual level of
turbulent-velocity fluctuations. How much will depend on the upstream flow
configuration. A fairly safe middle-of-the- road estimate would be

k = 10 3Uinlet- (58)

The dissipation rate e may then be computed from Eq. 56.

If all the upstream surfaces are in thermal equilibrium with the
fluid, it will be appropriate to make g equal to zero. At outlet planes, we
recommend that zero gradient of turbulence quantities in the flow direction
be assumed. At a plane or axis of symmetry, the gradients of k, g, and e
normal to the plane (or axis) should be set to zero.

C. Near-wall Boundary Conditions

1. The Basic Model

In the immediate vicinity of a rigid boundary, the levels of all
three scalar parameters are strongly modified by molecular effects. The
nature of these low-Reynolds-number interactions is, however, very in-
completely understood. Moreover, it would be quite beyond the core capability
of present-day computers to make three-dimensional finite-difference com-
putations in which the grid extended all the way to the wall. The reason is
that the turbulence properties change so rapidly in the region that an extremely
fine grid would be needed.

Instead, boundary conditions are devised in terms of the values of
the scalar parameters outside the viscosity-dependent region. Our model of
the near-wall region can be explained by reference to Fig. 2. This shows a

region immediately adjacent to a wall. The
node of the finite-difference grid adjacent

yip to the wall is labeled P, and the one next
y to that NP. We imagine that the level of

- - - - - - kinetic energy, velocity, and scalar energy
will be found by satisfying their respective

tE ,, N transport equation, in the mean, over some
y designated control volume as shown. We

VimdIrIfecsd_ assume that the control-volume boundary
between nodes P and NP bisects the line
connecting them. Note that within the

Fig. 2. Model of Neur-wall Region control volume enclosing node P, two flow

regions are present: a fully turbulent region
and a sublayer affected by viscosity. For convenience, we shall assume that, for
all wall-adjacent control volumes, the node itself lies in the fully turbulent region.
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The following simple physical model of this region is envisioned.
In the fully turbulent zone, viscous transport effects are negligible (but
molecular heat transport may be assumed significant). The thickness of the
viscosity-affected region, y*, is such that the turbulent Reynolds number at
the edge. of the region is a constant:

y*k*" 2  

*

-- = Rt.

We take the value of Rt* to be 20, which corresponds with a "laminar sublayer
thickness" of about livf /7 in local-equilibrium turbulence.

2. Energy-dissipation Rate

The value of e in the near-wall region will be found by expressing
it in terms of the kinetic energy and certain other parameters. Unlike the
other variables, therefore, the e equation will not be solved for node P.

We make the basic conjecture that, in the fully turbulent region,
the length scale near the wall increases linearly with distance from the sur-
face; that is,

4 = czy, (59)

where ct is assumed to be a universal constant equal to 2.5. The dissipation
is then obtained as

e kJa/1/. 
(60)

In fact, the energy-dissipation rate is needed in the P control volume for two
different purposes. First, it is needed in order to make a finite-difference
approximation of the diffusion rate of a into the NP control volume (which
according to our model, will be proportional to ep - eNPI' In this case, epis,
from Eq. 60, replaced by 0.4kP/yp. A second and more important role
for e is as a negative source term in the turbulence-energy equation.

Now, as explained in the next section, the level of kp is to be
obtained by integrating the turbulence-energy equation over the P control
volume. Thus we shall need a value of the mean level of a over the cell.
Since s varies so nonlinearly, the use of the point value ep may lead to serious
errors. Instead, in the kinetic-energy equation for the near-wall region, we
take the mean dissipation rate over the control volume to be

- f Ye
T u - edy,

Ye (61)

where ye is the value of y at the edge of the cell. [Note, since the cell edge
bisects the line connecting P and NP, ye = (yp + yNP)/2.J
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To evaluate I, we first assume that in the viscosity-affected sub-
layer, the level of e is constant and equal to 2v(dk1 12 /dy) 2 , a result derived
first by Jones and Launder (1972). We assume that k" 2 varies linearly in the
viscous region from zero at the wall to k*1"z at the edge of the sublayer. It
therefore follows that

2vk*
Zvk' (62)
y

We further assume that, in the fully turbulent region, k varies much more
slowly over the P control volume than does e and that we may thus take the
level of k at yp as a representative value from which to find e; i.e.,

e ak Z/cty.

The mean value of e may thus be evaluated as

f.1 y* 2vk* d+ Ye32ye ye(kp /c Y)dY

oy*

1 k*3/z kpzEe 2 +R 4c n(ye/y*)] -(63)

The relative importance of the two contributors to i depends on
how thick the viscous sublayer is relative to the cell dimension. In the limit,
where node P is only just outside the viscous region, Ln(ye/y*) will be about 0.7;
thus, for the recommended values of Rt and ct (20 and 2.5, respectively), the
first term contributes a little more than one-quarter of the total. As y* be-
comes progressively smaller than yp, the relative contribution of the dis-
sipation in the viscous sublayer slowly decreases.

3. Turbulent Kinetic Energy

The level of turbulence kinetic energy at node P is obtained from
an integration of the transport equation for k over the near-wall cell, neglecting
convective transport. (Convective-transport terms may be retained at the
expense of algebraic simplicity. Then the left-hand side of Eq. 64 should
contain a finite-difference form of the convective flux of kinetic energy per
unit mass. For stability, upwind differencing should be used.) To keep the
formulation simple, we assume that

a. The velocity parallel to the surface U is planar over the
control volume.

b. For evaluating the rate of shear production of turbulence energy,
the turbulent shear stress is taken equal to the wall stress in the fully turbulent
region and zero in the viscous sublayer.
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c. Gravitational contributions to turbulence-energy creation ordestruction are negligible.

The last assumption, while perhaps appearing to be too sweeping,
will usually be valid because the shear creation terms will generally be
largest at the wall, masking the effects of the gravitational contribution. Italso follows that, since we have taken

k = k*yZ/y*Z

across the viscous sublayer, the diffusion rate of k into the wall (proportional
to ak/ay at y = 0) is zero. The kinetic-energy balance for the near-wall cell
thus becomes

0 J=2(U - U*) - eye + cs 64)kNP -)
p YNP - Yp

In the above equation, I is given by Eq. 63 and the group vZk/eis to be evaluated at the boundary between the NP and P control volumes;
v is the Reynolds normal stress acting in the y direction. The evaluationof U* is discussed in Sec. III.C.5 below. It will be convenient to eliminate k*
in favor of kp and kNP. The procedure to be followed is suggested in Fig. 3; k*is the level of kinetic energy obtained by extrapolating the line through kp
and kNp toy = y*.

Thus

yp.-y*
k* = kp + yNP - YP(kp - kNp), 

(65)

where

y* = vR */k*"/z

t"

Fig. 3

Model of Nea-wall
KineUc-energy Profile

0 r yP ye rw
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4. Scalar Energy, g

The scalar energy is obtained by following a similar path to that

for the turbulence kinetic energy. The problem is somewhat complicated by

the importance of molecular heat transport throughout the near-wall cell if
we are dealing with liquid metals. Indeed, with the present simple near-wall

treatment, we must adopt two distinct near-wall models according to whether

the fluid's Prandtl number is of order one or greater or of order 10-Z or less.

Since the former case parallels almost exactly the treatment for kinetic energy,

this is presented first.

a. For Prandtl Numbers of Order 1 or Greater. We assume that

molecular effects on g are negligible beyond y = y* and that, in the fully
turbulent region, the normal heat flux, -pcpvy, is equal to the wall heat flux.

We assume also that the level of eg may be approximated as

e gg = egp/(kpR). (66)

The above approximation is not strictly consistent with the

concept presented in Sec. II.D, for Eq. 54 indicates eg is a function of
Prandtl numbe' in the viscous sublayer. Consequently, Eg/? should also be

dependent on Prandtl number. Nevertheless, we retain Eq. 66 in the belief
that the level of error thereby introduced is not serious for gases or fluids

with Prandtl numbers below about 10.

The g-balance equation (again neglecting convective transport)

thus takes the form

0 -.- (re - r*) - igpye/(kpR) + (ck= + X/pcpNP - P

ppg e PyNP ~YP

(67)

where 4'w represents the local heat flux from the wall into the fluid. As in the

kinetic-energy equation, k7/c is evaluated at the interface between the P and
NP control volumes and R may be taken as its high-Reynolds-number
asymptote, 0.7. The evaluation of r*, the temperature at the edge of the viscous

sublayer, is considered in Sec. II.C.6 below.

b. For Prandtl Numbers of Order 10-z or Less. In this case, we

again approximate the mean value of s by Eq. 66. Only now it will be important

to evaluate R from its constitutive equation (Eq. 54). The turbulent heat flux

is now by no means equal to the wall flux. We thus take the total c reation rate

of g over the cell equal to (re - r*) times the value of vyp produced by the

master heat-flux equation (Eq. 50). Thus,
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-eyegp / kv__ m gNP P P
0 =-vyp(F - r*) - -- Cg-kv-R++c+ --. Y(68)

P ekpR p e pep yNP - yP

Notice that the molecular thermal diffusivity may now be of substantial im-
portance in calculating the rate of diffusion of g into or out to cell P.

5. Near-wall Velocity Profile and a Drag Law

In applying the momentum equation(s) for directions parallel to
the wall to the control volumes adjacent to the surface, we need an expression
for the wall shear stress produced for a given velocity Up at a height yp.
For this purpose, we use a modified version of the "law of the wall" presented
by Launder and Spalding (1974), though certain adaptations will be made in the
present work.

In the fully turbulent region of flow, where node P is located, we
assume the velocity profile to be given by

---- k = --tnX - -.. E*),(9
Taw/p K* v ' (69)

where K* is assumed to be a universal constant equal to about 0.23. (This
corresponds with a value of the Von Karman constant i of 0.42.) The constant
E* is obtained as described below. Equation 69 may obviously be arranged
to provide the following expression for the wall friction in terms of the value
at P:

Tw/p = *UPkPZ /Jn(E*ypk4/v). (70)

We assume further that the velocity profile across the viscous sublayer is
linear and given by

UkI/z yk!/Z

Tw/p V '(71)

The dimensionless quantity E* is fixed by requiring that the
velocities given by Eqs. 71 and 69 should be the same at the edge of the viscous
layer, i.e., at y = y*. That is,

- An(R*E*) = R (72x* t t '(72)

which, for K* = 0.23 and Rt= 20, gives E* = 4.9. We note, moreover, that U*
appearing in Eq. 64 is given by

U*=R *('rw)/k*l/o' 
(73)



6. Temperature Profile and Wall Heat-flux Relationships

Again different practices are developed, according to whether the
Prandtl number is large or small.

a. Prandtl Number of Order 1 or Greater. In this situation, the
so-called "universal temperature profile" is used in a form similar to that
presented by Jayatilleke (1967)

pklZc (rw - rp) /Upk.(
,,=0.9 +P, (74)

which, on cross-multiplying produces the heat-flux relation

. _pkpc (rw - rP)
w ~ Uki4 (75)

0.9(PP+ P

where P = 16.8[1 - (0.9/Pr)3 1 4]. (76)

On evaluating Eq. 74 at the edge of the viscous sublayer, we
obtain

= rw - 0.94'w(R* + P)/pk*1/c . (77)

This expression may be used to eliminate f* in Eq. 67.

b. Prandtl Number of Order 10-2 or Less. In this case, we
assume that the true temperature profile between the wall and node P departs
only slightly from linear, i.e., that turbulent transport of heat makes only a
minor contribution in the wall-adjacent control volumes. The heat flux may
be expressed by either

qu = -x(r* - rw)/Y* (78)

or

qw = -A(re - r*)/(ye - y*) +pcyP (79)

The latter is conveniently used in Eq. 69 to eliminate re - r*, while by com-
bining Eqs. 78 and 79, r* may be eliminated to give

41 = [-(e - rw) + Pcpip(ye - y*)]/Ye- (80)

This provides the wall heat-flux relationship required in the
mean-flow enthalpy equation.
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IV. SOME APPLICATIONS OF THE PROPOSED TURBULENCE CLOSURE

A. Preliminary Remarks

Strictly, no computer solutions using the model of turbulence described
in Sec. II have yet been reported. The model presented here can, however, be
regarded as an extension and refinement of the widely used two-equation clo-
sure schemes. Except for liquid-metal flows (for which, in any event, no
computations have been made), the model bears close similarity with those re-
ported by Launder (1975), Gibson and Launder (1976, 1978), Hossain and Rodi
(1977), and Tamanini (1975). The main difference between the present scheme
and those models (apart from the provisions for low Peclet numbers) is the in-
clusion of a transport equation for the scalar energy. (In all the cited papers
except that of Hossain and Rodi, g was obtained by assuming local equilibrium;
i.e., g = Pg(k/e )R. Hossain and Rodi, however, took transport effects on the
Reynolds stresses and heat fluxes to be entirely zero.) This scheme should
never lead to worse agreement than when the more rudimentary treatment of
the scalar energy used in other schemes is used.

It is therefore legitimate to form an impression of the kinds of flow
that may be successfully tackled with the present scheme by reference to a
selection of the flows studied with these closely similar models. Such a com-
parison is made in the following sections.

B. Velocity and Temperature Fields in Neutral, Thin Shear Flows

Gibson and Launder (1976) report the application of the model to the
prediction of the plane jet and the plane mixing layer. Table II, taken from

TABLE II. Comparison of Calculated Results and Experimental
Data for Spread of Free Shear Flows

Growth

Flow Rate Calculated Data Data Sources

dbu
Plane jet dx 0.112 0.096, 0.120, 0.096 Data from sources quoted by

Jenkins and Goldschmidt (1973)

dbT
0.138 0.137, 0.170, 0.141

Plane mixing layer

dbu
Velocity ratio 0 dbu 0.147 0.130, 0.150, 0.160, Data from sources quoted

0.20, 0.165 by Rodi (1972)

Velocity ratio 0.51 -- 0.044 0.046
dx

Watt (1967)
dbT

0.047 0.051
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their paper, shows the measured and predicted

rates of spread of -ne velocity and temperature

field. There is generally close agreement be-
tween the predicted and measured behavior,

except that experiments Show a greater differ-
ence between the spreading rate of the thermal
and velocity layers than do the predictions.
This emerges clearly in Fig. 4, which shows

temperature and velocity profiles for the plane
turbulent jet, the experiments being those of

Jenkins and Goldschmidt (1973). The present

closure will, in fact, produce closer agreement

with the temperature field than in the Gibson-
Launder predictions, due to a reduction of the

coefficient c 1 8 from 3.2 (used by Gibson and
Launder) to 2.5.

Samarawee ra (1978) applied the
present model to thermal boundary layers and

to pipe flows. Figure 5 is an example of his

predictions for a thin thermal boundary layer
developing within a thick velocity boundary layer. A generally satisfactory
agreement with experiment is displayed.

n ,n,

VIA, " '. Experiment

0.05 Prediction (Samaraweera, 1978)

Edge of temperature
0.04 boundary layer

Edge of velocity
0.03 -boundary layer

0.02 

-

0.01- Start of 

"

Heating 

"

0K Fg2 3 4
x

Fig. 5. Development of Thermal Turbulent Boundary Layer on Flat Plate

C. Buoyant Shear Layers

Figure 6 [Gibson and Launder (1976)] shows the predicted development
of a plane jet of warm water discharged onto the surface of still cool water
(for example, a lake). Initially, the jet grows linearly at the same rate as an
isothermal jet. Dynamic forces in the jet, however, die out much faster than
buoyant forces. After some distance, the latter (while not exceeding about
25% of the former) greatly reduce the spreading rate, due to a substantial re-
duction in turbulent agitation.
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An alternative way of viewing the effects of this stable stratificationis through the reduction in the rate of entrainment of cool fluid into the jet.
Ellison and Turner (1959) report experiments on the
reduction in entrainment rates associated with a stable 1.0
stratification. Figure 7 [Gibson and Launder (197&)]
shows predictions of the fractional reduction in entrain- 0.8 Surface jetcalcula

- data from Ellisonment rate (relative to neutral flow) as a function of the 0.6 -o and Turner (1959)
degree of stratification; the quantity Ri, defined by C -+-
Ellison and Turner (1959), provides a dimensionless 0.4~o 

*

measure of the strength of the stratification. Evidently 0.2--
the experimentally measured entrainment rate is very -o
sensitive to the level of R12, a sensitivity that is gener- 0 .2 O. 0.6 08
ally well reproduced by experiment. R 2

z

The above example related to a horizontal flow. Fig. 7. Entrainment in
Hossain and Rodi (1977) have applied essentially the PlaneSurfacejet
same model to calculate the rise of a vertical hot plume.
Their work showed the need for a nonzero value of cc3 in Eq. 53. (Gibson and
Launder had found their predictions to be only weakly dependent on cC3. There-
fore, the inclusion of a nonzero cEc3, which we now favor, would only slightly
modify the Gibson-Launder results.)

Buoyant effects may also be of great importance in flows near walls;
the earth's boundary layer is perhaps the most important example of a flow of
this type. Experiments show, however, that there are striking differences in
the nature of these effects, as compared to free flows. The differences have
hitherto gone unnoticed or, at least, unreported, presumably because meteo-
rologists are concerned only with the atmosphere, and civil engineers (whom
local authorities traditionally turn to for solving problems of lake and river
pollution) never get involved with "dry" fluids.

In terms of the present model, we can say that the cause of the differ-
ence may be traced to the near-wall correction to the pressure-strain and
pressure-temperature gradient terms. Buoyancy greatly alters the distribu-
tion of length scale with distance from the wall (a stable stratification reducing
the length scale at a given height above the surface). Now, the strength of the

45
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wall correction is found to be roughly linearly dependent on the ratio of length
scale to distance from the wall. (See Eq. 29, noting that k3/2/e is an effective
length scale of the energy-containing motions.) Thus, when 1 decreases (as
it does in a stable flow), the wall exerts a weaker effect than in neutral con-
ditions. This is why, above a horizontal wall, there is apparently a slight
increase in the fraction of turbulence energy contained in the vertical fluctu-
ations as the stable stratification becomes progressivly stronger.

This behavior, which is contrary to that displayed in a free shear flow
(and to what one's intuitions suggest), is well predicted by the model of Gibson
and Launder (1978). Figure 8 shows predicted and measured variations of the
ratio of vertical to streamwise velocity fluctuations under stable conditions.
There is a good deal of scatter in the experimental data, which testifies touthe
difficulty of obtaining definitive turbulence data in the atmospheric boundary
layer. The consensus of the experimental data suggests a rise of about 20%

in./3 U as the flux Richardson number, Rf, rises from zero to 0.1. (Rf rep-
resents the rate at which turbulence energy is destroyed by gravitational ef-
fects, divided by the rate at which it is created by mean shear; i.e., Rf
-G/P.)

0.0

0.7

0 6o o0 oe

0.5 a 0

0

0.4 - - -

-

0 0.05 0.1 0.15 0.2
Rf

(.- ... 1/2Fig. 8. Dependence of (u / 2 on Flux Richardson Number in Stably Strati-
fied Flow. Atmospheric boundary-layer data from Ilaugan et al. (1971).
Predictions: __ wall flow;.----.......free shear flow.

The model predictions actually indicate that, for Rf greater than 0.18,
the wall has no detectable effect in modifying the Reynolds stresses (because

the effective length scale has become so small). That is why u/u7 starts
to fall with further increase of Rf. In view of the scatter, it is hard to say
from the data whether this feature is actually displayed; the predicted result
is at least not inconsistent with the available measurements.

D. Three-dimensional Flows

Nearly all currently reported computations of three-dimensional heat
transport have assumed the effective thermal diffusivity to be isotropic in the
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plane normal to the mean velocity vector. Such isotropy, however, is by no
means observed in practice. In an unsymmetrically heated pipe it is found
that, near the wall, circumferential thermal 'liffusivities will be several
times greater than radial ones. [See, for example, Black and Sparrow (1967)or Quarmby and Quirk (1972).] The present model does indeed produce a
nonisotropic diffusion coefficient similar to what has been measured. The
main cause of the higher circumferential diffusivity is (according to the pres-ent model) the greater intensity of velocity fluctuations in that direction.

As an illustration of the importance of this phenomenon, Fig. 9 relates
to the spread of a jet of cool fluid discharged through a plate past which an

Nonisotropic (k-E)

--- Isotropic(k-E)

xx Experiment

z Parallel to wall and perpendicular to
0.3 flow direction

'ry 0 2 ---........ /D=0

0.1z/D:l.0

0 -i L ~ L
5 10 15

x/D

Fig. 9. ffect of Nonisotropic Transport Cocffi-
cients on Film-cooling Lffcctivcness

external stream is flowing. It is part
of an extensive film-cooling study by
Bergeles et al. (1978). The figure
shows the variation with distance
downstream of the cooling effective-
ness at the surface ['f (r - r )/

(r - rh), where the subscripts 00, w,

and h denote external-stream, wall,
and hole- exit values, respectively].
Values are shown along the line pass-
ing through the hole center and at a

representative off-centerline position.

Two predicted curves are shown, one

using a nonisotropic model similar to

(though simpler than) that developed
in the present work, and one in which
the diffusivities were mades i

th ff v46i%# wJ " va b1 irrplcWith the latter version, values of '1 along the centerline decay too slowly;
off-center, the values remain too low. Using the nonisotropic model, however,
entirely removes these shortcomings.

The final example considered is that of developing flow in noncircular
ducts. The basic phenomenon of interest here is that, due to the inhomogeneity
of the turbulence, weak mean-flow currents are established normal to the axis
of the duct. These motions rarely exceed 1% of the mean flow, yet they may
significantly modify the mean level of shear stress and heat-transfer coeffi-
cient and (more dramatically) the distribution of the local values of these quan-
tities around the duct surface. Reece (1977) has computed the flow-field
behavior for developing flow in a square-sectioned duct. His closure entailed
the solution of transport equations for each of the stresses. Since, however,
the flow develops only slowly in the streamwise direction, the use of the al-
gebraic stress approximation, introduced in Sec. II.D, should not lead to sig-
nificantly different results.
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In fact, the most important aspect of the model for securing accurate
predictions to this flow is the near-wall correction. Reece (1977) introduced
the "linear-superposition" principle in treating the effects of the various walls
of his duct, an idea that the present proposals have retained. Figure 10 com-
pares the predicted mean flow contours with Melling's (1975) experiments at
different positions from the duct entrance. Clearly evident is the progressive
buildup of secondary motions along the duct, evidenced by the bulging of the
axial velocity contours toward the corners. Agreement of the predictions with
measurements is generally most satisfactory.

x3/D

'At-

0.00

| 1 --------.|1 9

0.975

0.2 040.6 0.

Fir -.10

.ontours of Axial Mean Velocity
in a Square Duct, at 29.0 diameters

X2/D from the l:ntrance. Data of Melling
(19T) - . - - . ; predictions of
leece (1977)

V. CONCLUDING REMARKS

The present report has proposed a general closure for momentum and
heat transport in turbulent flow for arbitrary Prandtl number. The aim has
been to strike a balance between the competing requirements of complexity(to allow proper account to be taken of different processes affecting iij and
uiY and economy (to keep the computer-core requirement as small as possi-
ble). In several respects, the detailed mathematical modeling of the physical
processes needs further refinement or validation. Nevertheless, as the pre-
dictions of Sec. IV may have conveyed, the closure allows satisfactory pre-
diction of several basic turbulence phenomena that would defeat simpler
treatments.
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APPENDIX A

The Turbulence-model Equations in Cartesian Coordinates

This appendix writes out, for a general three-dimensional flow using
Cartesian coordinates, the turbulence-model equations developed in Sec. II.
What follows presumes that the x, direction is vertically downward. Should thereader wish to treat the xi direction vertically upward, it merely requires areversal of sign of the gravitational acceleration, denoted in this appendix as gi.

The turbulence transport equations are presented first, followed by thealgebraic Reynolds-stress and heat-flux equations.

The Turbulence-energy Equation

Dk
Dt Dk+P+G - e. (A.1)

The Energy-dissipation-rate Equation

D D (P + G)e ez
Dt e + c k - c ez k - (A.2)

The Scalar Energy-transport Equation

Dg + Pg +.g(Ag.3)

DtkR axi Pcp 0Xi / X \Pcp 0X2 /0X 3 Pp 0x3(A.3)

In the above,

+0X6Ui c + uj'P 

+

+ jjuaIk- + U3U x + u3  (A.4
0x3 ai 0X ax3(A.4)

where cp stands for k, g, or e.

P e- u + uz + - /' + u + bU

Z 

x b2  x 1 xA+ aT0x3+ x +ax3 (A.5)
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Pg U (i i + 2 + Y (A.6)1 0x3

,

G U +L-.-g1 = 
(aAuYg)p r '(A.7)

where LV is the dimensionless volumetric expansion coefficient:

pJ r I (A.8)

The Reynolds Stress Equations

The following formulas do not provide detailed forms of the wall-correction term because these depend on the topography of the flow to be
calculated.

- k P + G -1

u = ( + c1 -){(l - cZ)P1 + 2(1 - c3)G

- [¬(l - c1) - czPJ]+ CP 1  '(A.9)

where

P11 =-Zu +Uu+uz l - + uu (A.lo)

and

= =+ c - 1 [(1 - cZ)Pi + (1 - c3)G1i + cpz,wJ; (A.1l)

where

Px U z x + 1 +Ox? + u + zu3  ,, (A.12)

GI? 

-

r sit(A.13)

and

-- ( ---,k /P + G \1--
1u = usi =e- -+ cl - 1 [(1 - cZ)Ps+ (1 -c )Gia+ ew; (.4
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where

P1 3 5 . - - + - MU i
us I u 2z + 7U 1

+ U3 .5
- bU +......-. bU3+ U1 5 + ug + usus 

,

G13 =-u3Y 81

and

a- _ k P + G -1

uZ = + c- l){(l c2)P2 + c 3G + c P -(1 - c )e] + "ZZ,w}

where

(A.15)

(A.16)

(A.17)

Pz _ - Uzz --2( 'au + aU4 ---- MUz
+ u xz +UZU 3g;-

kP+G
UZU3 u~ut+ C1 1/1 [(I - cZ)PZ3 + ea23W]:

P2 3  u -t 

+

p ----. 0ax,
A bU3

Ua ax + U2U 3 + I 

-

+ u- a3

and

+ ci - 1 {(1 - c)P 3 + .[czP + c3G0- (1 - cI)s] + essW ;

P33 : I -2 2 + + -3

The Velocity.Temperature Correlations

Note that the enthalpy fluxes are obtained from the velocity-temperature
correlations by formulas of the type -uih = -cpuiY.

As with the Reynolds stress equations, no explicit forms can be given
for the wall correction.

and

where

(A. 18)

(A.19)

where

(A. 20)

(A.21)

(A.ZZ)

- k P+ G
ut =-7

+ u aZ



~..P+G-e Pg"Cg
\ k g + [r 1 + (1 - cZY)P1y

+ (1 - c +3Y)G1 + pIyow],

Fl y ui

Ply =5- u Y

jgW
Gy a92c g,

+ -.. r . . r
+ u ax + uius

+ uzY + uy ),

+G- e
uZY = 2 k g + 1 y 

+

(I - cZY)Pty + Pay~w];

ry 5-

Pay = -

+

+ 

+

Uz Y 5

+

(P+G a
U3y = 2 k 

+

g -g

g + a dr3y + (I - c y)P3y + esy9W];

where

r3 y Ur + UjU3 + 3

and

-- m-' pm 
3 (A.32)
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where

(A.23)

and

(A.24)

(A.25)

(A.26)

where

(A.27)

and

u3 ,)

(A.28)

(A.29)

(A.30)

p3Y 
.

-

(A.31)
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APPENDIX B
TheTurbulence-model Equations in Cylindrical Polar Coordinates (r, e, x)

The coordinates r and e define horizontal planes, and the x coordi-
nate is directly vertically downwards. Accordingly the gravitational acceler-
ation is denoted as gx.

1. Turbulence-energy Equation

bk k U Bbk bk(.)
+ Ur + + U = P + G - e + D (k)(B.1

where

Generation rate due to mean shear,

PUZreUr ur ___b Ur _ Ue bUe bU
-- u + -- + uux a -urue r+ urue 

+

_ U U __ 
r r r 

e 

rue --brr

+uOux + U --- u ( (B.2)rxruxar r aex8 a

Generation rate due to buoyant interaction,

G = -g (B.3)

with the temperature-density relationship

a--
G = - ryuxgx' 

(B.4)

Turbulent diffusion of turbulent kinetic energy,

Dt(k) =c (a rk+ lbr(k-bkr+ lb rku bk
a 

r rb "b ,raer r abxJ

+ c. k..urme b + c (k zbk)+ c= km.bk

+ c + c u + c k(B.5)
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2. The Energy-dissipation-rate Equation

be be eZ+ Ue- + U = c6 1 -P + ce - c T+ ~)

The generation rates P and G were given earlier.

Diffusion rate of dissipation,

D(E) =cE r uzr + c r-uu
r Or a rr Er br cr r-

b/k----be /k-z be\+ cc (urue + ce u

+ e bbx u x +r c bx +-u ux 

/

1+ Ce 

-

(B.6)

r r u u

+ . k- be
+ a a exa

+ a k- 

.

(B.7)

3. The Scalar-energy-transport Equation

+g ubg bg
bt rr + U + UxW - Pg

e g
-R + Dt(g) + Dm(g)

Generation rate of temperature fluctuation,

Pg rb13 - uxy
ax

Turbulent diffusion rate of g,

Dt(8) =cg r R ur + c (r R1/i e
+r/g + cr rbe

cg (4R /zrii.x)+ cg -(R /ziu5._

+ c=k R ui/ aA&9rah a rb9

+ c R urux

+ cg - R/ux)

ba(kR' 12  b6g+ Cgru/

+ kR"c/Z bg+ cg -* ~ueux
ax srah,

(B.10)

be be

t + UrF

(B.8)

(B.9)
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Molecular diffusion rate of g,

Dn(g) l_ 1 b1 a r

p [rbr \cp

g + 1 a
br r br

rb6 c+( br)

c, r e/

r
r or

Cp X

rg 

)

+ a x +-aX ag
+- -'(4-:fJ(Bell1ax \cp roe/ ax\C p ax/ B

The Reynolds stress equations and velocity-temperature correlations
used above are defined below.

4. The Reynolds Stress Equations

uz = (ci - 1) ++u+ ~ - 2u+ 2uru8-re +Ur+ 2urux~

- 2u r "- + 2
rbe

- C 3(-jG ) +Cprr w +I(c1 - 1)ej

k = ( ) P+ G 1/ ue_I -(ci - 1) + I-I2~ra

(B.12)

+ 2 - + 2 U
+ ze A~x

+ 2ize -r Cz - 2 br + -

+

rbe
2ueux b

uc = _(ci - 1) + I[-2uxur #+

+ 2 ux 

+

rae

6Ux

ax

2uxux ).4.p

C( 2t---C3 - Yuxgx -. G
(B.14)+ PXXW +((c1 )cII

+ 2r

(B.13)

roe c rb9 c p cx

_ Ue

2urue

r

bux

2uxue

roe

xfx

)

Z aUr

cZ - 2ur 

-

ar

-Z Ur ?" 2

+ 2ue- p - C3 G + + ? (c _ 1)E
r 3 eeW 3 1

aux

- CZ - (2U u

6 r



=rc 1 Gy'( bUerue ( 1  - r+ G1... [7 
E 

r

+ ur
+ UO~Ur 

-

+ u2 eUr
_ZUe_z e

- er

+ urue

r

__U r _-_._ aU e

+ urue- + uru

- c2 ) + Pr6,w]

u _kF P+ G] O'?.au xauUrx = - (c - 1) + LG bU _ _u
r -r-+a urue

___bUr
+ uxue

_2 bU r
+ ux

bUx
+u uu

aUr

+ u'u Or

- C) -(fyi gx)(1 - C3) 

+

cPrx,w]

(B.16)

and

Ueux~~= (Cl - 1)+P+G- _ _b
x P+G - U 

+

ex -(1 Jjj\%ur e , + uu + uur
a UUxr

bUe
+ UxUe 0 -- 0Uz

x Ur\n(1uXe -r1 -c 2

)

( fC +x( - c 3) + x w 

-

(B.17)

5. The Velocity-Temperature Correlations

S= + yFi(Pe))][ (izr [ .(.. +- f -of

-Ur
-IUrY

-- bur
+ur --y

ra0
- u;-; (1 - c 2 y) + 9 ryw],

1
+-- c y1 (Pe)I
R

b~s __bUe
( urY + u r+r-e + ~Ue

Ur
+ iey - ( -CZy) + ve.W 

,

+G e+ 

-

+ Y

- c1 Fi(Pe))J - { aria + r

+ uxY )(1 - c2y) -(7g)(1 -c3y) x+p.

(B.2o)
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(B.15)

UY = 2 +P+G
k

- (1

(B.18)

- ui-b6 r+ -zr e Ue- rb

and

u~~Y = 2

+ or
8x

(B.19)

+ u

- u ue-- (1

bur
+ uxY 

-

aX

I- 1 1.

aUx

-u

ar
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APPENDIX C

Systematic Simplifications of Proposed Turbulence Model

The simplifications proposed in this appendix are arranged so that
they may be applied sequentially. That is, the first proposal implies that least
modification; the second proposal used in conjunction with the first represents
a further simplification, and so on.

Simplification 1: Elimination of Transport Equation for Mean-square Temper-
ature Variance, g

The transport equation for g is replaced by the simple algebraic for-
mula that results from equating generation and production agencies in Eq. 52
of the main text.

0 = Pgj-

or

g = PgkR/e, 
(C.1)

where

Pg = -ukyf/)xk

and R may be obtained from Eq. 54:

R = 0.7[l - exp(-Pet/a')]2 . (C.2)

To save computational time, Eq. C.2 could be replaced by its high-Peclet-
number asymptote R = 0.7.

In connection with this simplification, consistent assumptions need to
be introduced into the heat-flux formula, Eq. 50, since g appears there in the
denominator and could thus cause instabilities when Pg becomes very small.
The first group of terms in braces of Eq. 50 should thus read

--- (P-+ G) k lye(e 1- b

uy= {(P + j[2cyFi(Pet - 1 [-+ ... . (C.3)

Correspondingly, the group (Pg - eg)/g in Eqs. A.23 and A.27 should be
dropped, as should likewise the same terms in Eqs. B.18-B.20. (Due to a
slightly different algebraic presentation, the terms Pg/g and -e/Rk in the
first brackets on the right need to be suppressed.)
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Experience gained by Professor Launder's group and that of Dr. W.
Rodi of the SFB80 of the University of Karlsruhe suggests that the above
simplifications will usually not produce significantly different calculated be-
havior from that given by the complete model.

Simplification 2: Replacement of Algebraic Stress Closure by Isotropic-
turbulent-viscosity Approach Based on Solution of the k and e Equations

This approach eliminates most of the auxiliary algebra coupling the
stresses and heat fluxes to one another. Buoyant influences can be included
in only very rough ways, but this may suffice for initial testing.

In place of Eqs. 49 and 50, the following equations should be inserted:

uiu = - kb i' - cv + (C.4)J3 J Ve Jx 

/

and

__vt of
uyta (C.5)

where

cv = 0.09(1 - 3.0G/P)

or whichever is greater (C.6)

cv = 0

and

t= 0.9/[l - exp(-Pet/a'))] (0.7)

Equation C.6 eliminates turbulent shear stresses whenever the local
flux Richardson number exceeds 1/3; Eq. C.7 puts in the dependence of tur-
bulent Prandtl number on turbulent Peclet number that is indicated by Eq. 54
of the main text under local-equilibrium conditions.

When buoyant effects are negligible, this approach has proved to be
competitive in accuracy with the more complete formulation proposed in the
main report.
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Simplification 3: Elimination of Transport Equation for Dissipation Rate

The following rather drastic simplification may be justified for inter-
nal flows if recirculation is absent or of very limited extent and turbulent
flow extends over the whole region, for example, in flow through a pipe not
too close to the entrance.

The transport equation for e is replaced by the formula

e = -k3 /2/., 
(C.8)

where the length scale t is taken as the smaller of

. = 2. 5
xn Xn being the distance to the nearest wall,

or

= 0.6dh, dh being the hydraulic diameter of the containing vessel.

For flow through pipe-like containers the hydraulic diameter should
be obtained from the conventional definition (i.e., dh = 4 x cross-section area/wetted perimeter). For motions in a tank, it may be more appropriate to take

dh = 6 x volume/surface area.

The above proportioni.ity constant was chosen so that, for a spherical con-
tainer, the hydraulic diameter exactly equals the actual diameter of the
sphere.

It needs to be emphasized that in complex recirculating flows the
above suggestions will provide only a very rough guide to the level of the tur-
bulent stresses.

Simplification 4: Elimination of Transport Equation for Turbulence Energy

For local equilibrium in a simple shear flow, the equality of turbulence
energy generation and dissipation rates implies

-uv -- ---
uy (c.9)

and

-uv = 0.3k.
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Hence by eliminating WiV, we obtain

k/ 2 = 0.3 . (oEby (C.10)

The use of this formula eliminates the need to solve Eq. 51. The resultant
turbulence model is essentially Prandtl's mixing-length hypothesis (mth). To
generalize Eq. C.10 to situations in which there are several nuinzero compo-
nents of the velocity gradient or, equally, to regions in which all mean strain
is zero or very small, we propose the following form:

2

k = 0.09 2 (_

or 
(C.11)

k = 5 x 10-4U29

whichever is larger, where U represents some characteristic average veloc-
ity through the vessel.

The above scheme is probably of nearly the same width of validity as
Simplification 3, i.e., it is useful for near-equilibrium external flows without
recirculation.
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