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SUMMARY

This paper presents a geometric framework for the stabilization and control of a general class
of electrostatically-actuated mechanical systems. Microelectromechanical systems (MEMS), such
as micromirrors, are one motivating application for this work. There, wavelengths of applications
of interest lead to positioning requirements on the order of forty to one hundred nanometers.
Furthermore, electrostatic actuation is poised to be the method of choice for the emerging field of
nanoelectromechanical systems (NEMS), and the approach presented should be applicable there
as well. The class of devices under study consists of a movable, rigid, grounded electrode, with
a variety of allowable rotational and/or translational degrees of freedom, and a set of multiple,
fixed, independently-addressable, drive electrodes. A key contribution of this paper places general
electrostatic forces in a framework suitable for passivity-based control. The configuration space of the
movable body is assumed to have the structure of a simple mechanical system on a Lie group, and
stabilizing static and dynamic feedback control laws are derived in terms of coordinate-independent
geometric formulas. To obtain controllers for a specific device it is then necessary only to evaluate
these formulas. Appropriate approximations may be applied to make the computations more tractable.
The static output feedback controller requires only measurement of the charge and voltage on
each drive electrode to provide almost-global stabilization of a desired feasible configuration, but
performance is limited by the natural dynamics of the mechanical subsystem. Performance may
be improved using dynamic output feedback, but additional information is needed, typically in
the form of a model relating electrode capacitances to the system configuration. We demonstrate
the controller computations on a representative MEMS, and validate performance using ANSYS
simulations. Copyright c© 2005 John Wiley & Sons, Ltd.
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1. Introduction

Electrostatic actuation of micro- and nanoelectromechanical systems (MEMS and NEMS)
makes use of the attractive coulomb forces that develop between capacitively-coupled
conductors differing in voltage. Electrostatically-actuated MEMS are popular because they
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2 MAITHRIPALA ET AL.

are simple in structure, flexible in operation, and may be fabricated from standard, well-
understood, materials [21]. These same properties make it a good choice for the emerging field
of NEMS, such as for the rotational actuator described in [15]. In optical applications, the
minimum required device motion is on the order of the smallest wavelength of interest. In
fiberoptic applications this is typically 1.3–1.5 µm. For applications such as adaptive optics
this may cover the visible spectrum, 400–700 nm. Required precision in positioning will be
about one order of magnitude less, that is about 100 nm for communications applications, or
about 40 nm for visible light applications. Thus even for MEMS, nanoscale positioning may
be required. However, electrostatic actuation is highly nonlinear, making open-loop control
over a large operating range difficult. Furthermore, the nonlinearity gives rise to a saddle-
node bifurcation called “snap-through” or “pull-in” that results in operational limitations
[9, 14, 35, 36, 39, 40, 44, 48]. Bi-stable devices have been designed to exploit the bifurcation
[6, 11, 18, 31, 32], however eliminating the effect would allow for enhanced functionality
in applications including optical switching [11, 12, 13]; spatial light modulators for image
projection [18], data storage, and image recognition [17]; and reconfigurable diffraction gratings
for biosensors [52]. When pull-in is the nominal behavior, device lifetimes are often limited by
the incremental surface damage done at each contact [31]. Eliminating pull-in would increase
the operational range of the movable electrode, reduce the need for motion limiters and anti-
stiction measures, and prevent disturbances from causing the movable electrode to depart from
its stable operating region.

For the 1-DOF models, several researchers have noted that the bifurcation associated with
voltage control disappears when charge is considered as the control input instead of voltage.
Charge control has been most directly exploited by Nadal-Guardia, et al., who present open-
and closed-loop switching circuits for injecting and maintaining the appropriate amount of
charge on the device [33]. This scheme is globally stabilizing but does not address transient
behavior. A version of charge control, implemented by means of a switched capacitor circuit is
used by Seeger and Boser to stabilize a double-sided 1-DOF electrostatic MEMS [45], and an
electrostatic 2-DOF MEMS with both rotational and one dimensional translational degrees of
freedom [46]. Lu and Fedder use capacitance measurements to obtain displacement, and apply
a classical linear, time-invariant controller design to approximately double the operational
range of a parallel plate capacitor [23]. Transients are addressed through an input-shaping
pre-filter. These method extends the operational range of the device, but guaranteed stability
properties are only local. In [25, 27] we have presented a series of results on global and semi-
global stabilization of any point of the gap of an electrostatically actuated 1-DOF devices.
These control algorithms can be implemented with static output feedback of the charge on
the device and the voltage on the control electrode. Charge can be inferred from capacitance
and voltage measurements, where the capacitance measurements are made at a frequency well
above the natural frequencies of the device [23]. It can also be obtained by placing an auxiliary
electrode in series with the device, and measuring the voltage [3]. This is similar in structure
to the capacitive stabilization method [9, 44], but the auxiliary electrode serves only as a
sensor, rather than as a combined sensor/actuator. These ideas are extended in [26] to include
more complex devices such as membranes and 6-DOF rigid structures. The goal of the present
paper is to obtain a control methodology, applicable to a general class of devices, that directly
addresses nonlinearity, eliminates pull-in, and allows improvements in transient behavior.

In [25, 26, 27, 28] the electrostatic force due to an actuating electrode is factored as the
charge on the electrode squared, times a term possibly depending on the configuration, but
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A GENERAL MODELING AND CONTROL FRAMEWORK 3

independent of voltage or charge. This factorization is used to feedback passify the system
and form an appropriate storage function. In those works either this form is justified based
on computations specific to the device geometry under study, or it is simply assumed to
hold. In Section 2.1 we show that in fact this representation is valid for a general electrode
configuration, subject to standard assumptions on the electric field [14, 16, 33, 36]. In this sense,
the results presented may be considered to generalize many formulations found in the MEMS
and NEMS literature [14, 34, 35, 36, 39, 41, 42, 46, 48]. However use of the model for control will
require considerable simplifying assumptions, and so approximation techniques are required.
Common approaches include modeling by parallel plate capacitors, following Nathanson [35],
and seen in many subsequent works, including [34, 41, 46, 48]. These neglect fringing and other
geometry effects. A more accurate approach to approximation is seen in [42] for the special
case of circular symmetry. Most works to date, with the notable exception of [34], ignore
interelectrode coupling. For example, the work of Nemirovsky and co-workers [14, 36] presents
a general framework for computing pull-in parameters for electrostatic systems, but ignores
electrode-to-electrode effects. A first-order electrostatic coupling models for multi-electrode
systems has recently been presented in [34], which assumes a parallel plate capacitor model
for each movable-fixed electrode pair.

In Section 2.2 the general electrostatic force model is integrated into equations of motion for
a simple mechanical system with configuration space described by a Lie group. The Lie group
setting is quite general, and can incorporate rigid rotation and translation, flexible bodies, and
combinations of these.

In Section 3 we present two control laws for such systems. The first requires measurement
of the voltage drop from each control electrode to the movable electrode, and the charge on
each control electrode. As discussed above, charge can be measured in several ways. This
design is effective for stabilization, but not suitable for improving performance, as the natural
damping in the mechanical subsystem can shown to be unaffected by the controller. The
second design is passivity-based [20, 37, 38] and may be used to inject damping into the
mechanical subsystem. Thus, if the transients of the system are under-damped, the second
design, which also requires the generalized velocity of the movable electrode, should be used.
However it is often the case that the generalized velocity cannot be measured directly. In
[24, 27, 28] we propose an observer to provide estimates of the generalized velocity given
configuration measurements. Composing this result with the second design yields a dynamic
output feedback controller that both stabilizes and improves transient performance. Depending
on the properties of the zero dynamics of the system, the controllers may be locally, globally,
or almost globally asymptotically stabilizing.

If the system is over-damped, the controller presented cannot be used directly to speed
performance. Zhu and co-authors have addressed this concern for 1-DOF electrostatic MEMS
by stabilizing pre-computed open-loop trajectories [51]. This approach applied to over-damped
systems will outperform the methods presented below. However we note that no such scheme
has yet been presented for the general case, and also that it is in principle possible to reduce
damping, as well as increase it, using passivity-like methods. Thus both approaches remain
areas of on-going research interest.

In Section 4 we demonstrate our approach on a representative MEMS device, and validate
performance using the finite-element package ANSYS. A highly simplified control model is
used for design, but the ANSYS simulation includes electrostatic fringing, non-uniform charge
distribution, flexibility of the movable electrode, and geometric nonlinearities. Despite the
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4 MAITHRIPALA ET AL.

relatively crude control design model, performance is shown to be excellent.

2. Geometric Modeling of an Electrostatically-Actuated Mechanical System

The techniques of geometric mechanics provide a general framework for modeling and control
of electromechanical systems. The main advantage of these methods is that they provide a
coordinate-free representation of the system dynamics, allowing physical insight and controller
design without the notational complexity introduced by choosing coordinates and, if necessary,
changing coordinates patches. The controller must ultimately be implemented in coordinates,
but this is done only after the design is accomplished.

Results are available when the configuration space in which the electromechanical system
evolves is assumed only to be a Riemannian manifold. However, we will consider here the
case where the configuration space has the additional structure of a Lie group. The Lie group
setting is still quite general, and can incorporate rigid rotation and translation, flexible bodies,
and combinations of these.

The approach we will take is to write the Euler-Lagrange equations on the appropriate
configuration space in a coordinate-free way. These expressions are the foundation of a general
approach to controller design. They may also serve as the basis for open-loop analysis and
simulation. The first step is to write the forces acting on the system in a suitable form. This
is the subject of the next section, and a main contribution of this paper. We stress that the
results provide a general framework for modeling disturbance and control forces—including
interelectrode coupling, fringing effects and parasitics—but that the effort needed to obtain
explicit expressions in coordinates for a particular geometry may be significant.

2.1. Generalized Electrostatic Forces

In this section we derive an expression for electrostatic forces that is particularly well suited
for the geometric framework, and for subsequent controller design. We assume a finite number
of perfectly-conducting electrodes. These electrodes may represent movable bodies, fixed
control surfaces, and disturbances. The interaction between electrodes is modeled by Laplace’s
equation in a compact domain with zero potential at the boundary. The result may also be
applied to an infinite domain with zero potential at infinity.

The equations of motion arising from these forces are treated in subsequent sections. At that
point the choice of configuration space is critical, and is discussed in some detail. However the
forces are modeled using a quasi-static approximation, so it suffices for the purposes of this
section to denote the instantaneous configuration abstractly by g. This variable may stand,
for example, for a rigid rotation matrix, for a function defining the deformation of a flexible
body, or for various combinations of these.

For simplicity we detail the calculation only of the electrostatic forces and moments acting
on a given electrode. An identical process may be applied to obtain the forces and moments
on any electrode of interest. Let the total number of electrodes be m + 1, situated inside
the domain U , assumed to be a compact subset of R3. Each electrode is assumed to be a
closed subset Ūi of U , where i = 0, 1, 2, · · · ,m. Denote the interior and boundary of Ūi by
Ui ⊂ R3 and Si, respectively. Let Ω ⊂ U be the complement of the set ∪Ui in U , that is,
the regions of U that are not part of any electrode interior. The permittivity in this region is
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assumed constant with value ε. Because the electrodes are perfect conductors, they must each
be at a constant potential, denoted Vi [16]. In general this will require a net charge, denoted
Qi, on that electrode. For a perfect conductor, Qi may be found by integrating the surface
charge density σi(p) over Si [16]. Applying voltages to some or all the electrodes will induce
a potential and an electric field on Ω. We assume that the potential is zero on the external
boundary S̃ = ∂Ω/ ∪ Si. Without loss of generality we assume the force is to be computed on
Ū0, and let Q = [Q1, Q2, · · · , Qm]T and V = [V1, V2, · · · , Vm]T .

For a given electrode configuration g, let φi(p, g) defined on Ω be the potential at a point
p ∈ Ω when Vi = 1, and all other electrode potentials are zero. (The electrode shapes Ūi,
surfaces Si, and surface normals ni, are functions of g in general , but this explicit dependence
is suppressed for brevity.) Thus φi(p, g) is the unique solution of Laplace’s equation ∇2 φi = 0
subject to the boundary condition φi|Sj = δij , where δij is the Kronecker delta. Uniqueness
and linearity of solutions imply that φ(p, g, V0, V ) =

∑m
i=0 Vi φi(p, g) is the unique solution

corresponding to the boundary condition φ|S̃ = 0 and φ|Si
= Vi, i = 0, · · · ,m. Then the

electrostatic field intensity at a point p in space is given by

E(p, g, V0, V ) = ∇φ(p, g, V0, V ) =
m∑

i=0

Vi∇φi(p, g).

The electrostatic field is always perpendicular to the electrodes and the electrostatic field
inside a conductor is zero. Hence application of Gauss’ law yields that the magnitude of the
electrostatic field at the surface Si is σi(p)/ε [16], where σi(p) is the surface charge density at
a point p on Si. Thus the charge density must be

σi(p, g, V0, V ) =
m∑

j=0

εVj ∇φj(p, g) · ni(p),

where ni(p) is the unit outward pointing normal at p to Si. Thus the total charge on Ūi is

Qi =
m∑

j=0

εVj

∫
Si

∇φj(p, g) · ni(p) ds. (1)

Define the general capacitances

Cij(g) =
∫
Si

ε∇φj(p, g) · ni(p) ds.

Then Qi =
∑r

j=0 Cij(g)Vj . To make subsequent calculations more compact, we now specialize
the equations to the situation of interest for later sections, in which only Ū0 can move, and
V0 = 0. Then in matrix notation Q = C(g)V where C(g) = [Cij(g)], i, j = 1, · · · ,m. It can
be easily verified that the mapping C(g) : Rm 7→ Rr is one-to-one and onto and so a unique
C−1(g) = [Cij(g)] exists. Then also V = C−1(g)Q.

The electrostatic force acting on a unit charge at the surface of a conducting electrode is
E/2 [16]. Thus the force δfe acting at a point p on S0 is

δfe =
1
2

m∑
i=1

εVi

 m∑
j=1

Vj(∇φj · n)(∇φi · n)

n, (2)
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where n is the unit outward normal to S0 at the point p. Defining the matrix f̃(p, g) = [f̃ij(p, g)]
as

f̃ij(p, g) = ε(∇φj · n)(∇φi · n)

we have that

δfe =
1
2

m∑
i=1

m∑
j=1

(
Vi f̃ij(p, g)Vj

)
n(p) =

1
2
V T f̃(p, g)V n(p)

Observe that the matrix f̃(p, g) is symmetric.
Noting that V = C−1Q we can also express δfe(p, g) as,

δfe =
1
2
QT f(p, g)Q, (3)

where f(p, g) = C−1T
f̃(p, g)C−1 is again symmetric.

This last expression is the major contribution of this section, because it shows that the
magnitude of the electrostatic forces is a quadratic form of the electrode charges, Q. This
will prove to be critical in applying control techniques for feedback passifiable systems [8]. We
also emphasize that this model takes into consideration fringing, parasitics, and interelectrode
coupling. Fringing is included in the φi(p, g), which are complete solutions to the electrostatic
equations. Parasitics may be incorporated as uncontrolled electrodes. Interelectrode coupling
enters as the off-diagonal terms of the capacitance matrix C(g), and in the off-diagonal terms of
f̃(p, g) and f(p, g). In this sense, the above formulation may be considered to generalize many
formulations found in the MEMS and NEMS literature, such as [14, 34, 35, 36, 39, 41, 42, 48, 46]
However explicit computation of these terms requires solution of Laplace’s equation at each
possible configuration g. This is rarely practical without considerable simplifying assumptions,
and so approximation techniques, as explored in the references, will continue to be a research
focus.

Common approaches include modeling by parallel plate capacitors, following Nathanson
[35], and seen in many subsequent works, including [34, 41, 46, 48]. These neglect fringing
and other geometry effects. A more accurate approach to approximation is seen in [42] for the
special case of circular symmetry. Most works to date, with the notable exception of [34], ignore
interelectrode coupling. For example, the work of Nemirovsky and co-workers [14, 36] presents
a general framework for computing pull-in parameters for electrostatic systems, but ignores
electrode-to-electrode effects. A first-order electrostatic coupling models for multi-electrode
systems has recently been presented in [34], which assumes a parallel plate capacitor model
for each movable-fixed electrode pair.

Finally, we have assumed here that the electrostatic forces are given by Laplace’s equation.
While true NEMS may require a different model, incorporating electrodynamics and quantum
effects, to our knowledge this is not the case for the present generation of devices.

2.2. Generalized Electrostatically-Actuated MEMS Model

We now incorporate the force model derived above into a dynamical model for a general
electrostatically-actuated device. The model consists of a mechanical subsystem, coupled
through electrostatic forces to an electrical subsystem. For convenience we assume that only
Ū0 is free to move, that the other electrodes are fixed in space, and that V0 = 0. The problem of
configuration control of a single movable electrode using multiple actuators has many practical
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device applications, and is considered, for example, in [36]. Extension to the more general case
of multiple moving electrodes with assignable potentials is straightforward. The configuration
of the mechanical system is denoted by g, which is an element of the configuration space G. The
mechanical system is assumed to satisfy the Euler-Lagrange equations with generalized forcing
(the Lagrange-d’Alembert equations), where the forces are due to conservative mechanical
terms, Rayleigh damping, and the electrostatic coupling derived in the previous section. In
principle G can be finite- or infinite-dimensional [30]. For a detailed consideration of infinite-
dimensional devices such as flexible beams, plates, and membranes see, for example, [41].
The remainder of this paper will assume rigid-body motion, and hence focus on the finite-
dimensional case.

Each fixed electrode Ūi is assumed to be a capacitive element within a circuit also consisting
of a voltage source ui and series resistor ri. Define matrix R = diag(r1, r2 · · · , rm) and vector
U = [u1, u2, · · · , um]T . The loop currents are denoted Ji, with Ji = Q̇i, and

riQ̇i = ui − Vi . (4)

Electrodes are designated as either control electrodes when the source voltage can be arbitrarily
assigned, or disturbance electrodes when it cannot.

Using (3) we derive the resultant electrostatic force and torque on the movable rigid
electrode. The configuration space for general rigid body motion is the Lie group SE(3).
Constrained motions can be obtained from the expressions for SE(3), and multiple rigid
movable electrodes may be treated as the product of these cases. Some specific examples
are presented in later sections.

Let {e1, e2, e3} be a body fixed coordinate system fixed at the center of mass of the movable
electrode. In these coordinates n(p) = αi(p, g)ei and

δfe(p) =
1
2

3∑
k=1

V T f̃k(p, g)V ek, (5)

where f̃k(p, g) = [αk(p, g)f̃ij(p, g)] is symmetric. Then the total resultant force acting on the
moving electrode takes the form

fe =
1
2

3∑
k=1

V T f̃e
k(g)V ek, (6)

with f̃e
k(g) =

∫
S0

f̃k(p, g) ds symmetric. Similarly it can be shown that the total resultant
electrostatic moment about the center of mass of the moving electrode is given by

T e =
1
2

3∑
k=1

V T T̃ e
k (g)V ek, (7)

with T̃ e
k (g) symmetric. Noting that V = C−1Q we can express the resultant electrostatic force

fe and the resultant electrostatic torque T e, also as

fe =
1
2

3∑
k=1

QT fe
k(g)Qek, (8)
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where fe
k(g) = C−1T

f̃e
k(g)C−1 is symmetric, and

T e =
1
2

3∑
k=1

QT T e
k (g)Qek, (9)

where T e
k (g) = C−1T

T̃ e
k (g)C−1 is symmetric.

Using these forces combined with the potential and Rayleigh type damping forces acting on
the system, the equations of motion for a rigid electrode free to move in three dimensional space
can written down using the Lagrange-d’Alembert’s principle. The configuration space of the
mechanical system is the group of rigid body rotations and translations, SE(3) ' SO(3)×R3.
At a given time the configuration g of the movable electrode is described by the pair
(R, b) ∈ SO(3)×R3. Then the equations of motion are given by[

Ṙ ḃ
0 0

]
=

[
R b
0 1

] [
Ω̂ v
0 0

]
(10)[

Ω̇
v̇

]
= I−1

([
IbΩ× Ω
Mv × Ω

]
+ fc(R, b) + fd(R, b,Ω, v) + F e(Q,R, b)

)
, (11)

where fc(R, b) and fd(R, b, v,Ω) are the conservative and rayleigh type damping forces,
respectively. The generalized electrostatic force F e(Q,R, b) is given by F e = [T e fe]T , where
fe and T e are given by (8) and (9) respectively. The inertia tensor of the rigid body is Ib

and mass of the rigid body is M . The term Ω̂ is the skew symmetrized version of the vector
Ω ∈ R3. For additional details we refer the reader to [28] and the references there in.

We now generalize these ideas to the case where the configuration space of the movable
electrode is a finite dimensional Lie group and its dynamics satisfy the forced Euler-Lagrange
(Lagrange-d’Alembert) equations. The following mathematical notations and preliminaries will
be needed in the description of the model. Let the configuration variable and body velocities
of the mechanical subsystem be denoted by g(t) and ζ(t), respectively. Mathematically g(t) is
an element of a Lie group G and ζ is an element of the Lie algebra of the Lie group, G ' TeG
[1, 30]. The left translation of ζ ∈ G to TgG will be denoted by g · ζ = DLg ζ. The Lie bracket
on G for any two ζ, η ∈ G will be denoted by [ζ, η] = adζ η and the dual of the ad operator will
be denoted by ad∗. Let {ei} be any basis for the Lie algebra G and let {σi} be the dual left-
invariant one form basis for the dual of the Lie algebra, G∗. Let I(g) : G 7→ G∗, for each g ∈ G,
be an isomorphism such that the relation 〈〈ζ , η〉〉G = 〈I(g)ζ , η〉 for ζ, η ∈ G defines an inner
product on G. Here 〈·, ·〉 denotes the usual pairing between a vector and a co-vector. Identifying
G∗ and G with Rn, let Iij(g) and Iij(g) be the matrix representation of I(g) and I−1(g)
respectively. Note that I(g) is symmetric and positive definite. If I(g) is smooth in g then such
an I(g) induces a unique metric on G by the relation 〈〈g · ζ , g · η〉〉 = 〈I(g)ζ , η〉 and further it
also follows that every metric has such an associated family of isomorphisms. If the metric is
Left invariant then I is a constant and any constant symmetric positive definite matrix induces
a Left invariant metric on G. We assume that the kinetic energy of the mechanical system is
given by this metric [1, 30]. That is the kinetic energy is assumed to be 1

2 〈Iζ, ζ〉 = Iζ · ζ. For
rigid body motions I represents the inertia tensor of the rigid body.

The potential energy of the mechanical subsystem is Uc(g). Let fc(g) be the resultant
conservative forces acting on the movable electrode while fd(g, ζ) denote Rayleigh-type
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A GENERAL MODELING AND CONTROL FRAMEWORK 9

dissipative forces acting on the movable electrode. The model is now given by

Q̇ = −Λ−1 (V − u) , (12)
ġ = g · ζ , (13)

ζ̇ = I−1

(
ad∗ζ Iζ+fc(g)+fd(g, ζ)+

n∑
k=1

1
2

QT fe
k(g)Qσk

)
, (14)

where (g, ζ) ∈ TG ' G×G and Λ = diag(r1, r2, · · · , rr). Equation (12) describes the electrical
part of the system. In general V should be replaced by C(g)−1Q to make these state equations,
however we will later assume that the electrode voltages are available for measurement. In that
case the form shown above will be more convenient. Equation (13) describes the kinematics,
while (14) is the Euler-Lagrange equation with external forcing for a general rigid body. The
fe

k(g) are now the generalized electrostatic forces, which in the specific case of SE(3) derived
above would include the moments T e

k (g) as well. The index n is the dimension of G. The term
ad∗ζ Iζ describes the forces that arise from the non-Euclidean nature of G. These are variously
known as inertial or apparent forces and include, for example, coriolis terms. Further details
on modeling of simple mechanical systems in an intrinsic geometric framework can be found in
the excellent texts of [1, 5, 7, 30]. The Appendix contains a concise description of the necessary
geometric notations and ideas.

Examples of rigid models specializing (12)–(14) are 1-DOF piston motion, in which G = R,
tilting (G = SO(2) ' S), combined tilting and piston mode (G = SO(2) × R ' S × R), in-
plane translation and rotation (G = SE(2)), 3-DOF rotation about a fixed point (G = SO(3)),
and unconstrained 3-D translation and rotation (SE(3)).

3. Static and Dynamic Output Feedback Stabilization

In this section we show how the general model formulated above may be incorporated into a
feedback control design for stabilization and performance enhancement. To focus the discussion
on the suitability of (12)–(14) for this purpose, we make additional simplifying assumptions on
the electrical components and the available measurements. First, we neglect parasitic effects.
That is, all m electrodes are control electrodes, with all ui available for direct manipulation.
Next, as mentioned above, we assume all electrode voltages are available for measurement.
Finally, we assume that the charge on each electrode is known. This last may be accomplished
in several ways. The current in each control circuit may be monitored, or the electrode charges
induced directly, as in [33]. The voltage of auxiliary electrodes may be measured, as in [3]. The
capacitance across the drive electrodes may be measured with a high frequency probe signal,
and Q then found from Q = CV . Finally, the configuration may be measured directly, and Q
inferred from a capacitance model and the electrode voltage measurement. Direct measurement
of g is typically impractical, except for laboratory demonstration projects. However if Q is
measured or found by other means, g may be estimated from the measured V by inverting a
model for C(g) [3].

Passivity methods require that system inputs and outputs be specified. The natural inputs
are the control voltages u. We will henceforth set the output to be the deviation of the electrode
charges Q from some setpoint values Q̄, y = h(Q) ≡ Q−Q̄. With respect to this output the zero
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10 MAITHRIPALA ET AL.

dynamics of the system (12)–(14) correspond exactly to the mechanical subsystem (13)–(14)
with Q ≡ Q̄ [27, 28].

An equilibrium point is said to be locally (respectively, almost globally, globally)
asymptotically stable if it is locally stable, and if all trajectories that originate from a
neighborhood of the equilibrium (respectively, an open and dense subset of the state space,
the entire state space) converge to that equilibrium. We provide two control laws and show
that they are locally (respectively, almost globally, globally) asymptotically stabilizing, when
the system is locally (respectively, almost globally, globally) weakly minimum phase with
respect to y, and an additional detectability condition is satisfied. This detectability condition
is that whenever the output converges to zero asymptotically, the state must also converge
asymptotically [8].

The notion of minimum phase employed in this paper corresponds to that of [8]. Specifically,
with respect to the output y, the system (12)–(14) is said to be locally weakly minimum phase
if the following three conditions are satisfied: i), the equilibrium (ḡ, 0) of the system (13)–(14)
is locally stable with Q ≡ Q̄; ii) there exists a smooth positive definite function U(g) with a
local non-degenerate minimum at ḡ, and iii) the derivative of Wc = U(g)+ 1/2 Iζ · ζ along the
forced dynamics of the system is negative semi-definite (i. e. Ẇc = 1

2

∑n
k=1 ζkQ̄T fe

kQ̄+〈fd, ζ〉+
〈fc, ζ〉 + 〈dU, gζ〉 ≤ 0). Without loss of generality we set U(ḡ) = 0. The function U(g) is the
potential energy of the controlled mechanical subsystem obtained by shaping the potential
energy Uc(g) of the unforced mechanical system using the electrostatic forces QT fe

kQσk/2, so
that the corresponding controlled equilibrium (ḡ, 0) is locally stable. (The quantity Wc is the
total energy of the controlled mechanical system, obtained by adding the mechanical kinetic
energy to U(g).) For a given Q̄ the feasible equilibria are given by U−1(0). If such a U(g)
exists we can stabilize any feasible configuration by charge feedback control. The existence of
a suitable U(g) depends on the number of independently-addressable electrodes and the form
of fe

k(g). A necessary condition is that dfe(g) ≡ 0.
The system is said to be almost globally weakly minimum phase if it is locally weakly

minimum phase, ḡ is the unique minimum of U(g) and U(g) is proper. The system is said to
be globally weakly minimum phase if ḡ is the only critical point of U(g). For the case G = R
it can be shown that the system (12)–(14) is globally weakly minimum phase [27]. For other
problems this property must be investigated on a case-by-case basis.

When the detectability condition is not satisfied asymptotic stability cannot be guaranteed.
For detectability to hold it is sufficient to show that the zero dynamics are (locally, almost
globally, or globally) asymptotically stable, in addition to being (locally, almost globally, or
globally) weakly minimum phase. This has been proven when G = R [27]. More generally
detectability must be verified, as discussed further below.

3.1. Static Output Feedback

Under the assumptions made above, the system (12)–(14) can be stabilized using static output
feedback, with the region of convergence dependent on the properties of the zero dynamics—in
this case exactly the mechanical subsystem with the charge fixed at its equilibrium value. In
this case the mechanical subsystem will keep its open-loop dynamics, and thus highly under-
or over-damped systems will demonstrate bad transient performance.

Because static output feedback is limited in its ability to affect performance, we present it
very briefly. Also analysis of the general case is easily extended from G = R, which is discussed
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in [27, 28].
With measurements of V and Q we implement the static output feedback law

u = V − k(Q− Q̄), (15)

This control input/output linearizes the system (12)–(14) with respect to the output h(Q) =
Q−Q̄. The linearized portion is the electrical subsystem (12), and its unique equilibrium point
Q̄ is now globally exponentially stable with poles −kΛ−1. The equations are in zero dynamic
canonical form [19], and the zero dynamics are exactly (13)–(14) with Q ≡ Q̄. As discussed
above, asymptotic convergence of the zero dynamics is sufficient for asymptotic stability of the
closed loop system. It can be shown by a straightforward but somewhat technical extension of
[27] that for the system (12)–(14) and the control (15), this condition is also necessary.

The control (15) is completely independent of mechanical system characteristics such as the
inertia tensor, and the damping, potential, and electrostatic forces. Thus the implementation
of (15) does not require knowledge of these quantities. This implies that (15) robustly
stabilizes the system for all parameter variations that do not destroy the weak minimum
phase property of the system. However the convergent equilibrium configuration U−1(0) of the
movable electrode ḡ explicitly depends on Q̄. Thus the exact stable equilibrium configuration
depends on the system parameters. Since ḡ is a non-degenerate minimum of U(g), for small
parameter variations the equilibrium configuration will remain close to ḡ. To accommodate
larger disturbances or parameter variations, the above framework could be used to obtain an
adaptive controller.

An inherent drawback of the static feedback scheme is that damping cannot be added to the
dynamics of the mechanical subsystem, which constitute the zero dynamics of the closed-loop
system. This can be seen from the necessity of the asymptotic stability of the zero dynamics.
Thus an underdamped mechanical subsystem will cause the performance of the device to suffer
from long settling times and large overshoots. It is known that in order to inject significant
damping into a mechanical system, velocity feedback is necessary. The next section revisits
this principle from a passivity perspective.

3.2. Dynamic Output Feedback

In the previous section it was seen how to stabilize a feasible configuration of the movable
electrode, subject to the appropriate weakly minimum phase condition. This result generalizes
many results on charge feedback that may be found in the MEMS literature [9, 33, 44, 45, 46].
However, as shown above, no pure charge feedback scheme such as these is capable of altering
the transient behavior of the mechanical subsystem. This section shows how the transient
behavior may be improved by using passivity ideas in a general geometric framework—the
second major contribution of this paper.

If with the output h(Q) = Q − Q̄ the system (12)–(14) is locally weakly minimum phase
then we will show that with K > 0 a positive definite symmetric matrix the control

u = V − 1
2

n∑
k=1

ζkΛfe
k(g)(Q + Q̄)− ΛK(Q− Q̄). (16)

locally stabilizes the equilibrium (Q̄, ḡ, 0). Convergence is asymptotic if the system is detectable
to (Q̄, ḡ, 0). Once again, the result is global or almost global if the zero dynamics have the
corresponding weakly minimum phase properties.
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We first input/output linearize (12)–(14) by setting u = V + ν and consider the candidate
storage function

W (Q, g, ζ) =
1
2
(Q− Q̄)T (Q− Q̄) + Wc. (17)

Taking the derivative of W along the input/output linearized system, and using the symmetry
of fe

k(g) to show that

fe =
1
2

n∑
k=1

QT fe
kQ =

1
2

n∑
k=1

(
Q̄T fe

kQ̄ + (Q− Q̄)T fe
k(Q + Q̄),

)
we have

Ẇ = (Q− Q̄)Λ−1ν +
1
2

n∑
k=1

ζk(Q− Q̄)T fe
k(Q + Q̄) + Ẇc.

Thus setting ν = − 1
2

∑n
k=1 ζkΛfe

k(g)(Q + Q̄) − ΛK(Q − Q̄), Ẇ ≤ 0 holds locally if the zero-
dynamics are weakly minimum phase. Therefore (16) locally stabilizes the equilibrium (Q̄, ḡ, 0).
Detectability is satisfied here if Q ≡ Q̄ implies ζ = 0 and g = ḡ. This may be checked for
any electrode geometry from the rank of the map [fe

1 (g)Q̄ fe
2 (g)Q̄ · · · fe

n(g)Q̄]. Full column
rank of this matrix implies detectability. A necessary condition for this is that the number of
electrodes, m, be equal to the dimension, n, of the configuration space. With detectability, local
asymptotic stability of the closed-loop system follows, and the result holds almost globally or
globally if the zero-dynamics have the corresponding minimum phase properties. In the static
output feedback case we showed that asymptotic stability of the zero dynamics was necessary
and sufficient for detectability. the rank condition cited here does not imply asymptotic stability
of the zero dynamics, and so this condition is in general only sufficient. This has been explicitly
shown for the case G = R [27]. Thus even devices with undamped mechanical subsystems may
be asymptotically stabilized using velocity feedback, if the control electrodes are appropriately
positioned. It can also be shown that this is true for the case G = R×SO(2) treated in section
4.

Feedback law (16) contains the electrostatic forces, the voltage and charge on the drive
electrodes, and the velocity of the movable electrode. Of these, we have assumed only the drive
electrode voltage and charge to be measureable. In the examples given below, we use a model
for the electrostatic forces. Generally this will be as a function of configuration, which may be
estimated using a capacitance model as discussed above. However, we will see that even very
simple models seem to result in good performance. Such robustness is often claimed as a benefit
of the passivity framework [20, 37, 38]. Velocity assumed not to be measureable, but may be
estimated using a dynamic observer and a position estimate based on a capacitance model
[24, 27, 28]. The observer, in conjunction with (16), is therefore a dynamic output feedback
controller. Using results proven by the authors in [29] it can be shown that if the initial observer
error is sufficiently small, the closed-loop system under dynamic output feedback retains the
convergence properties of the full-state feedback (16).

4. Example: 2-DOF Tilting and Piston Mode Actuators

In this section we demonstrate our approach on a MEMS mirror modeled as a movable rigid top
plate with mass m and moment of inertia about the center of mass I. The electrode model has
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one translational and one rotational degree of freedom, each associated with a linear spring. The
vertical displacement is denoted x and measured from the zero voltage equilibrium position,
with the upward direction positive. The rotation θ is about the out-of-plane axis, with anti-
clockwise rotation positive. The configuration space of this is G = R × SO(2). Two control
electrodes of identical length l and areas A are fixed below the movable electrode.

The implementation of the control (16) requires a model of the electrostaic forces. The
explicit computation of these require that we solve the Laplace’s equation under very general
conditions. This may not be possible without additional simplifying assumptions. Even if
fringing, inter-electrode coupling and parasitics are neglected the resulting electrostatic force
model may still be complicated. For instance, under these assumptions the self capacitance,
C11, of the first electrode fe

11 appearing in the the electrostatic force quadratic term takes the
form

C11 =
εA

lθ
ln
(

d− x

d− x− l sin θ

)
, fe

11 = − εA tan2 θ cos θ

C2
11θ

2(d− x)(d− x− l sin θ)
,

respectively. Even though these expressions can be used in the controller design we deliberately
use a further simplified model to demonstrate the robustness of the scheme. The control design
model additionally assumes small angle rotations and uniform charge distributions. Which
results in fe

11 = −1
εA , fe

22 = −1
εA , T e

11 = l
2εA and T e

22 = −l
2εA .

The open-loop system (12)–(14) then takes the explicit form

Q̇1 = − 1
r1

(V1 − u1) , (18)

Q̇2 = − 1
r2

(V2 − u2) , (19)

ẋ = v, (20)
θ̇ = α, (21)

v̇ = −2ζxωxv − ω2
x(x− d) +

1
2m

[
Q1 Q2

]
fe

[
Q1

Q2

]
, (22)

α̇ = −2ζθωθα− ω2
θθ +

1
2I

[
Q1 Q2

]
T e

[
Q1

Q2

]
. (23)

The stabilizing control (16) reduces to

u1 = V1 − r1
(Q1 + Q̄1)

2
(vfe

11 + αT e
11)− r1k(Q1 − Q̄1), (24)

u2 = V2 − r2
(Q2 + Q̄2)

2
(vfe

22 + αT e
22)− r2k(Q2 − Q̄2), (25)

where α is the angular velocity and v is the velocity of the center of mass of the movable top
electrode. We choose K = diag(k, k) for k > 0.

The static and dynamic output feedback controllers for this model are tested in a 3-D,
multiphysics, ANSYS simulation. These finite-element simulations include flexibility and full
translational and rotational motion of the mirror, fringing of the electrostatic field, geometric
nonlinearities, and electrode-to-electrode coupling [53]. It neglects parasitic capacitances,
however. The ANSYS model is shown in figure 1. The cantilever beams and movable electrode
plate are aluminum. The movable electrode dimensions are 100 µm × 100 µm × 2 µm. The
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14 MAITHRIPALA ET AL.

cantilever thickness is 8 µm and the gap between the cantilever arms and the mirror plate is 12
µm. The zero voltage gap between the movable top electrode and the fixed bottom electrodes
is 3.5 µm. The two bottom control electrodes are each 50 µm × 100 µm.

The controllers are implemented in an ANSYS macro. Figure 2–3 shows the effectiveness
of charge feedback control (15) in stabilizing beyond pull-in. All dimensions are in microns,
with time in seconds. The dynamic feedback results are shown in Figure 4–5. A comparison of
figures (2)–(4) shows the improvement in overshoot and settling time when velocity feedback
(24)–(25) is used. Transient response of the system can be further improved by adjusting the
gain k. In spite of the extreme simplification of the control model, performance is seen to be
very satisfactory. We stress again that the ANSYS simulation does not include any of the
simplifying assumptions of the control model, except for the lack of parasitics.

5. Conclusion

We have presented a general geometric formulation for the control of electrostatically-actuated
devices, including MEMS and potentially NEMS. A general form of the governing equations
is presented, valid for devices whose configuration space may be written as a Lie group, and
whose kinetic energy is left invariant. It is shown that a passivity-based control approach may
be applied to systems of this form, to stabilize any feasible equilibrium point. Both robust static
output feedback, for pure stabilization, and robust dynamic output feedback, for stabilization
plus improved transient response, are given. The geometric formulation is specified for a MEMS
device of interest, and the results validated using finite-element ANSYS simulations.

The geometric approach provides a very powerful framework in which dynamics may be
analyzed, controllers designed, and important properties proved, with the resulting conclusions
then applicable to a very broad class of devices. Future work in this area will include adaptive
controllers for insensitivity to parameter uncertainty.

A number of important considerations are omitted here, notably the physical implementation
of the controllers. For MEMS devices, on-chip analog circuitry may be used to obtain charge
and capacitance measurements. The static output feedback strategies are well within current
practice. Implementation of the dynamic output feedback controller is a topic of future study,
but should not be much more involved than implementing a standard Luenberger observer.
For NEMS the topic is entirely open, like many issues in this emerging area.
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Figure 1. ANSYS model of electrostatic MEMS. Movable mirror suspended on four flexures over two
fixed control electrodes.

Figure 2. The displacement of the center of mass in the vertical direction for the charge feedback
control (15).
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Figure 3. The angular displacement about the out-of-plane direction for the charge feedback control
(15).

Figure 4. The displacement of the center of mass in the vertical direction for the velocity feedback
control (24)–(25).
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Figure 5. The angular displacement about the out-of-plane direction for the velocity feedback control
(24)–(25).

Copyright c© 2005 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2005; 00:1–19
Prepared using rncauth.cls


