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A general multi-objective hyper-heuristic for water

distribution network design with discolouration risk

Kent McClymont, Ed Keedwell, Dragan Savić and Mark Randall-Smith
ABSTRACT
The optimisation of water distribution networks (WDNs) by evolutionary algorithms has gained much

coverage in the literature since it was first proposed in the early 1990s. Despite being well studied,

the problem and objectives continue to evolve as demands on water companies change. Motivated

by the increased focus on reducing the risk of discolouration, this study examines a three objective

version of the WDN design problem which takes into account cost, head excess and discolouration

risk. Using this formulation, this paper presents a method for producing optimised network designs

aimed at reducing discolouration risk in the network design phase and thus reducing the associated

long-term maintenance and operational burdens of the system. This paper discusses the use of a

discolouration risk model and, using this model, the optimisation of network design, specifically pipe

diameters, to produce a range of high quality self-cleaning networks. The network designs are

optimised using the Markov-chain hyper-heuristic (MCHH), a new multi-objective online selective

hyper-heuristic. The MCHH is incorporated in to the known NSGA-II and SPEA2 and supplied with a

range of heuristics tailored for use on the WDN design problem. The results demonstrate an

improvement in performance obtained over the original algorithms.
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INTRODUCTION
The UK water industry is tightly regulated by Ofwat, the UK

regulatory body, with the performance of water companies

closely monitored by a range of indicators; from water qual-

ity, customer service (e.g., sufficient pressure) to customer

satisfaction. Recently, an emphasis has been placed on

customer satisfaction in particular, which is partly measured

by monitoring customer complaints and contacts. Motivated

by these regulatory demands, water companies are now

focusing efforts on reducing the frequency of water dis-

colouration events (Cook ) prior to customer contacts

occurring. Indeed, discolouration events (the visible dis-

colouration of water at the tap) have been attributed to

approximately 30% of all complaints received by water com-

panies in the UK (Cook ).

It should be noted, however, that the drive to reduce the

number of discolouration events is not isolated to the UK,

but experienced in many countries, worldwide. Importantly,
the phenomenon does not appear to display regional var-

iances, outside of temperature and material differences,

with Boxall & Prince () demonstrating the validity of

UK models abroad. As such, it can be supposed that any

advancement relating to discolouration modelling may

have world wide application.

However, despite its apparent prominence in industry,

discolouration risk is seldom included in studies that opti-

mise the design of water distribution networks (WDNs). In

this paper we investigate the use of discolouration risk as

an objective in a multi-objective algorithm and propose a

new hyper-heuristic called the Markov-chain hyper-heuristic

(MCHH) for the multi-objective optimisation of WDNs. The

proposed hyper-heuristic is able to adapt its behaviour

during optimisation to take advantage of the best performing

heuristics for a given problem and could incorporate expert-

derived problem-specific heuristics (although fairly generic
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heuristics are studied here). The use of discolouration risk and

theMCHHtogether demonstrate a powerful new direction for

WDN optimisation that can incorporate real-world business

considerations and expertise in the optimisation process.

Paper outline

A key aim of this study is to examine the impact of pipe diam-

eters on discolouration risk and demonstrate a method to

reduce that risk in parallel with optimising network design

and/or rehabilitation cost whilst meeting head requirements

in a novel consideration of theWDNdesign and rehabilitation

problems. The ‘Background’ section discusses various relevant

discolouration risk models from the literature. One of these

models, the Cohesive Transport Model (CTM), is used in this

study as an objective in the proposed multi-objective WDN

problem. The interaction between the problem’s competing

goals is investigated by using the traditional objective of mini-

mising cost and discolouration risk. Discolouration risk is

included to represent each design’s impact on the propensity

for pipes to accumulatematerial and thus generate discoloured

water. However, a natural by-product of reducing discolour-

ation risk may be the increase in head losses and thus

reducing pressures within the system, so characteristics such

as velocity and node head have also been considered as con-

straints in the optimisation process. There then follows a

section which introduces the WDN design problem and dis-

cusses some relevant approaches from the literature.

In order to optimise the problem, the MCHH, a newly

proposed multi-objective selective hyper-heuristic from the

field of optimisation (McClymont & Keedwell ) is

described and is applied to the WDN design and rehabilita-

tion problem. A review of hyper-heuristics is also presented.

The proposed hyper-heuristic is designed in an abstract

fashion to facilitate simple integration into existing optimi-

sers and allow for the tailored heuristics to be changed

and adapted for each new problem to be solved. A range

of low-level heuristics are used by the hyper-heuristic, each

tailored for use in WDN design/rehabilitation problems.

These heuristics include classic evolutionary algorithm

(EA) operators such as mutation and crossover.

Designs are evolved using the well known NSGA-II (Deb

et al. ) and SPEA2 (Zitzler et al. ) in addition to

MCHH variants of both these algorithms. The problem is
://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
modelled using EPANET (Rossman ) and a state-of-

the-art model of stored material using shear stress (Boxall

et al. ; Boxall & Saul ). The experiment is conducted

on three benchmark datasets (Two Loops, Hanoi and Any-

town) and three real-world networks, described in the

Results section. Optimisation results are compared with

hyper-heuristics from the literature as well as results presented

in (Shie-Yui Liong & Atiquzzaman ) who contrast a

shuffled complex evolutionary (SCE) approach to a variety

of preceding evolutionary approaches on these datasets.

Finally, the Conclusion section discusses the optimisation

results which reveal a correlation between cost and discolour-

ation potential in addition to the trade-off with head excess.
BACKGROUND

Modelling discolouration

Despite the varying approaches, only a handful of discolour-

ation risk modelling software packages are available to

water companies at present. The most notable of which

are: the PODDS I-IV models developed by the University

of Sheffield (Boxall et al. ; Boxall & Saul ); the

DRM software developed by Mouchel (Dewis & Randall-

Smith ); and prototype models founded on discolour-

ation risk ranking (Vreeburg et al. ).

The CTM (Boxall et al. ; Boxall & Saul ) provides

a method for calculating the volume of accumulated material

within a network, which is measured as turbidity (expressed

in Nephelometric Turbidity Units, NTU). The model is also

used to calculate the volume of material mobilised given

specific hydraulic events in the network. In theory, the

impact of mobilised material is proportional to and limited

by the material stored in the network and thus by reducing

the potential material in the network the associated discolour-

ation risk will also decrease. Taking that relationship into

consideration, this paper demonstrates the process of evolving

networks that have shear stress characteristics which encou-

rage self-cleaning and, therefore, the prevention of

discolouration events by reducing the material stored in the

network. The notion of self-cleaning thresholds have been

investigated a number of times by Boxall & Prince ()
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who consider shear stress thresholds and Buchberger et al.

() who consider velocity thresholds.

The PODDS models are based upon research into the

CTM (Boxall et al. ; Boxall & Saul ) which analyses

discolouration risk using a shear stress approach. This study

utilises a software implementation of the CTM, called the

Discolouration Propensity Model (DPM) that builds upon

Mouchel’s DRM software and incorporates the CTM.

The implementation of the discolouration model used in

the formulation of the WDN design problem is based upon

the following equations. The most pivotal aspect of the

model’s design is the shear stress equation:

τ ¼ ρgRhS0 (1)

where τ is shear stress, ρ is water density, g is gravitational

acceleration, Rh is hydraulic radius, and S0 is hydraulic gra-

dient. The CTM applies each link’s maximum daily shear

stress values (known as the daily conditioning shear stress;

Cook ) in the calculation of the potential material

stored in each link. Using the shear stress obtained above

and the relationship

τ 0s ¼
cb � cmax

k
(2)

given in Boxall & Saul (), it is possible to derive the

stored material C (measured as turbidity in NTU) for each

pipe in a network, where: Cmax is the maximum possible

material stored in the pipe; τ’s is the layer strength; and k

and b are calibrating constants.

The daily conditioning shear stress values are calculated

based on the hydraulic gradient values produced by an under-

lying hydraulic model – in this case the well known EPANET

(Rossman ). Appropriate NTU values are then calculated

given the proper calibration of the constants k and b. Using

these NTU values, a risk score can be assigned to each pipe.

Thekandbvaluesused in themodelwere set to2and1, respect-

ively; baseduponcalibrationdata given inBoxall&Saul ().

To more accurately determine the k and b constants for a new

network, a process of flushing and sampling is advised to

obtain accurate turbidity measures for each specific network.

WDN design problem

WDNs are built by water companies in order to provide

water services to the end users with the aim of satisfying
om http://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
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their demand. A WDN is comprised of pipes, nodes (junc-

tions and demand points), hydraulic devices (such as

pumps) and sources (tanks and reservoirs) and constitutes

the infrastructure that delivers water from the source (e.g.,

reservoir) to various locations where it is drawn from the

network for consumption (e.g., residential housing or indus-

trial sites).

Real world WDNs are, more often than not, large and

complicated structures which are commonly interlinked

with other neighbouring networks. Indeed, the set of

national WDNs in the UK alone represents a significant

infrastructure that requires constant operational manage-

ment, maintenance and rehabilitation. In order to satisfy

consumer demand, the networks must be constructed with

a good layout that connects to all points of demand and

designed to provide the best possible hydraulic conditions

and operational requirements. In essence, the creation of a

WDN can be broken down into three constituent parts:

layout, design and operation.

Each of these parts represents complex individual pro-

blems that require significant expertise and resources to

solve. Although, it should be noted that decisions made for

one problem has an effect on the next; i.e., selecting a network

layout will affect the possible design choices and thus overall

cost of the network. However, attempting to optimise all

three parts simultaneously would represent a significantly

more complex task and would need to take into account a

much larger range of decision maker considerations which

are not normally modelled in the individual problems. For

example, the design problem is primarily concerned with the

sizing (diameters) of pipes in the network. Changing pipe

sizes effects the hydraulic conditions in the network and

hence the quality of the network based on its ability to serve

the various demand points.

The problem is complex as the overall hydraulic con-

ditions are affected by each pipe and so changes to one

pipe will have a different effect on the overall conditions

depending on the sizes of all the other pipes in the network.

As such, each pipe cannot be designed in isolation, but

rather as a combination of sizes for all pipes in the network.

Furthermore, even for relatively small networks, the number

of possible combinations of pipes is very large which makes

enumeration of all the possible designs impossible within

reasonable time. If, for example, there were six potential
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sizes for each pipe in a network of just thirty pipes, there

would be 630¼ 2.21 × 1023 possible combinations – far

more than is possible to compute within a reasonable

time; the relationship between the number of pipes and

the increase in search space means that WDN optimisation

is known to be a NP-hard problem (Yates et al. ).

The non-linearity of the hydraulic equations also has an

effect on the complexity of the search space, creating a

multi-modal landscape. Multi-modal problems are particu-

larly difficult as good network designs are separated by

regions of less-good or infeasible network designs. As a

result, early methods like linear programming (Schaake &

Lai ) and hill-climbing algorithms are not as effective

at solving these problems and often get stuck in local

optima: i.e., the best network design in the local area of

the search space but not optimal in the context of the total

(global) search space.

WDN optimisation

The optimisation ofWDNs by EAs has gained much coverage

in the literature sincefirst proposed in the early 1990s (Murphy

& Simpson ; Simpson et al. ). Traditionally, theWDN

design problem has been formulated as a single objective pro-

blem where the quality of the network is based solely on the

economic impact of the design, i.e., given a fixed layout, the

optimal network design is one which meets the hydraulic

requirements with the least possible cost (Savic & Walters

). The hydraulic constraints are usually given as an accep-

table range of node pressures and/or pipe velocities. Single-

objective EAs, in particular, were shown to solve this problem

effectively (Savic & Walters ).

However, since the original problem of minimising cost

has been demonstrated as being efficiently solved by the

early EA methods and, in combination with the emergence

of the multi-objective approach, multi-objective formu-

lations of the problem are now more commonly used.

These multi-objective approaches are able to provide a

trade-off surface for the many competing aspects of new

WDN designs and take into account an assortment of differ-

ent factors influencing WDN design; such as reliability,

operational and maintenance costs and water quality (e.g.

Formiga et al. ; Farmani et al. ). However, as the

needs of water companies change and the measures of a
://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
network’s performance evolve, new formulations of the pro-

blem will continue to be proposed and thus any proposed

method for solving the problem should be as flexible as poss-

ible to accommodate future variations of this traditional

problem. Indeed, these multi-objective approaches consider

many more objectives and illustrate the many additional fac-

tors that influence the design of a WDN, such as

discolouration risk.

WDN problems have been solved with a wide and

varied selection of optimisation techniques, from early

approaches, such as (Savic & Walters ) that used tra-

ditional EAs, to more complex approaches with online

learning (di Pierro et al. ) and, more recently, hybrid

methods like a multi-algorithm genetically adaptive multiob-

jective (AMALGAM) method (Raad et al. ). Indeed,

AMALGAM is a good example of the more recent trend

to examine self-optimising search strategies such as memetic

algorithms (Ong et al. ) and hyper-heuristics (Burke

et al. ). Being an intentionally generalised method,

hyper-heuristics in particular show great promise in provid-

ing an effective means of augmenting traditional and well

known optimisation methods like NSGA-II (Deb et al.

) and SPEA2 (Zitzler et al. ) to further improve

the efficiency of the optimisation search process whilst

also ensuring a robust method that can more easily be

applied to new forms of the WDN problem. The hyper-heur-

istic approach aims to achieve this improvement through the

automated process of selecting and generating heuristics for

hard computation problems (Burke et al. ), which

enables the methods to adapt as well as removing much of

the burden of parameter tuning from user.

Hyper-heuristics

Although a number of traditional meta-heuristic techniques

have been applied to the WDN design problem, such as

differential evolution (Vasan & Simonovic ; Suribabu

), these methods often rely on specific types of oper-

ations to work effectively. In contrast, hyper-heuristics are

methods which are designed to automate the process of

selecting heuristic operators (like mutation and crossover)

which greatly improves the efficiency of the search and

removes the need to strictly specify the type of operations

used to create new solutions. Conceptually, hyper-heuristics
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can be thought of solving the problem of heuristic selection

by using ‘heuristics to choose heuristics’ (Cowling et al.

).

Indeed, traditional meta-heuristic methods, like EAs are

essentially iterative processes that use fixed strategies for

generating new solutions (i.e., network designs) to a pro-

blem that sequentially employ low-level heuristic

operators, such as crossover and mutation, to enable the

search of the space of possible solutions in order to find opti-

mal solutions to the given problem (Deb ). In contrast,

by supplying an online selective hyper-heuristic with a

wider range of heuristic operators, for example a set of

different mutation operators, the algorithm is able to learn

and select the most appropriate heuristics for the current

problem at run time and so improve the efficiency of the

search process. In effect, the selective hyper-heuristic deci-

des which heuristic to apply next at each generation in the

search process, allowing for the possibility of applying

mutation for a few generations before then applying cross-

over and vice versa. The hyper-heuristic approach has

been demonstrated in the literature to be very effective at

solving a range of real-world optimisation problems (Burke

et al. ); especially problems from operations research.

A key benefit of the abstract nature of hyper-heuristic

selection methods is that they are distinct from the selection

and propagation of good solutions in a population. For

example, in addition to creating new solutions with

mutation and crossover heuristics, EAs use selection strat-

egies to determine which solutions will be propagated

from one generation to the next. These two parts, solution

generation and solution selection, are distinct and are

often contained within different program modules. As a

result, the modular design of EAs makes them an ideal

base algorithm that can be easily modified to include

higher-level optimisation elements, such as selective hyper-

heuristics. This combination of generic hyper-heuristics

embedded in efficient EA with highly specialised low-level

heuristic operators makes hyper-heuristic methods well

placed for solving difficult problems like WDN design will

minimal effort.

However, whilst hyper-heuristics have been shown to be

very effective at solving a range of single-objective combina-

torial optimisation problems (Burke et al. ), few

examples of multi-objective approaches exist in the
om http://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
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literature. Indeed, much of the hyper-heuristic literature is

focused on demonstrating the efficacy of new methods on

single- or bi-objective (which has unique properties when

compared with higher objectives) combinatorial problems,

with few examples of higher order multi-objective methods

such as Burke et al. (). Furthermore, those methods

that do exist are often focused on the generation of low-

level heuristics (known as generative hyper-heuristics)

rather than methods to select heuristics during optimisation

(selective hyper-heuristic), such as McClymont & Keedwell

().
METHOD

The novel formulation of the multi-objective WDN design

problem and a novel online selective hyper-heuristic

(MCHH) is presented in this section.
Multi-objective WDN design problem

As outlined earlier, the formulation of the WDN design pro-

blem used in this study incorporates the evaluation of a

network’s propensity to cause discolouration events. This

was done by using discolouration risk as an objective

which was calculated using the DPM software based on

the CTM model (Boxall et al. ; Boxall & Saul ),

where the EA is to minimise this potential for pipes to

store material.

In order to fairly represent the complete effect of chang-

ing pipe diameters in the network, the discolouration risk

objective was combined with the traditional objective of

minimising cost in addition to minimising head excess.

These three objectives are:

1. Cost of network infrastructure:

f0 ¼
XL

i¼0
fcost(diameteri, lengthi) (3)

2. Sum of cumulative potential material after daily con-

ditioning shear stress for all pipes in the network (L):

f1 ¼
XL

i¼0
fturbidity(τ

0
si , Rh, S0) (4)



Figure 1 | Schematic representation of an EA with embedded online selective hyper-

heuristic processes (shaded).
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3. Sum of the cumulative head excess (head over 35 m):

f2 ¼
XL

i¼0
max (0, headi �maxHead) (5)

The fturbidity function returns the stored material in a pipe,

given the shear stress (τ’s), hydraulic radius (Rh) and hydrau-

lic gradient (S0). The maxHead was set at 35 m, where F3
returns the excess in recorded head (headi). The cumulative

head excess was calculated by summing, for every hourly

time step, the excess on each demand node above a given

maxHead threshold value.

The fcost function calculates the cost of the network

design based on the length and diameter of the pipes in

the network. The cost tables for the three benchmark net-

works are used from the original papers and are available

online at http://centres.exeter.ac.uk/cws/. The total cost of

the network infrastructure assets (pipes) was calculated for

all pipes in the network. For Two Loops and Hanoi, it was

assumed that the entire network was to be replaced or, per-

haps more appropriately, newly constructed. This allowed

the optimising algorithm to take into account the overall

cheapest network, as opposed to the cheapest network reha-

bilitation relative to an initial design. In contrast, for

Anytown and the three real-world networks, only specific

pipes were able to be resized, basing the problem on the net-

work rehabilitation scenario. For these networks, the first

objective (cost) was only calculated for the new pipes with

all other objectives remaining the same; i.e., cost was calcu-

lated for new pipes but discolouration and head calculated

for all nodes in the network to reflect the hydraulic changes

experienced across the whole network.

In addition to the three objectives outlined above, a node

head constraint was placed on all solutions. If the network

design resulted in any head deficit (a node with head below

30 m), then a penalty was added to each of the three objec-

tives. The penalty was equal to the maximum value for each

objective. In effect, this ensured that all feasible networks

always dominated networks with head deficit and provided

a strong selection pressure for feasible solutions and pre-

vented the algorithms wasting evaluations searching

infeasible regions of the search space. A second constraint

was also added for excess velocity (over 2.5 m s�1). Again,

if the network contained pipes with excess velocity, the
://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
same penalty was added to each objective. If both constraints

were broken, then two penalties would be added.
The Markov-chain Hyper Heuristic (MCHH)

Hyper-heuristics are designed to operate independently of

any specific problem or set of heuristics. Instead, hyper-

heuristics aim to optimise the selection heuristics for the

current problem, effectively acting as ‘heuristics to choose

heuristics’ (Cowling et al. ). The MCHH is an online

approach that can be integrated into existing meta-heuris-

tics, such as an EA. The MCHH uses meta-data collected

during the search, such as the number of dominating sol-

utions generated by a heuristic, to learn the most effective

heuristics for the current problem. As shown in Figure 1

below, when incorporated in an EA, the MCHH is applied

after the new generation of solutions have been created

and evaluated.

The steps used in the MCHH are shown below in

Figure 2, which outlines the MCHH incorporated in a

(μþ λ) Evolution Strategy (Laumanns et al. ). The

steps in 2.1 relate to the selective hyper-heuristic operations,

operating on meta-data that quantifies the quality of each

heuristic’s performance, given in more detail below. In

effect, the MCHH evaluates how effective each heuristic is

at generating new solutions and adjusts the likelihood of

http://centres.exeter.ac.uk/cws/
http://centres.exeter.ac.uk/cws/


Figure 2 | Pseudocode for the Markov chain hyper-heuristic (MCHH) algorithm incorporated in a (μþ λ) Evolution Strategy (a simple EA).
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selecting that heuristic in future generations based on this

score.

In Figure 2, the terms μ and λ represent the parent and

child populations. p is the performance score of the current

heuristic, given below, γ is a performance threshold that

controls the adaption of the weights, and α and β are the

reward and penalty scores applied to the weights,

respectively.

Heuristic performance

Theperformancemeasure calculated in step2.1.1 (Figure 2) of

theMCHH is outlined briefly below. Although a large number

of studies have been conducted on hyper-heuristics, the

majority of these are focused on single-objective problems.

As such, few frameworks exist which evaluate heuristic per-

formance on multi-objective problems. Examples from the

literature include objective specific learning methods, such

as the TSRoulWheel selective hyper-heuristic (Burke et al.

). Whilst the TSRoulWheel method is shown to be effec-

tive in the original study, and to be reasonably good in an

initial study of the MCHH (McClymont & Keedwell ), it

relies on improvements in one objective resulting in improve-

ments in another. This is because it evaluates each objective in

turn, effectively formulating the problem as a set of single-

objective sub-problems. However many real-world problems

include objectives with varying degrees of correlation, such

as the formulation of the WDN design problem used in this

study, making the TSRoulWheel less amenable to this type

of problem.

The MCHH employs a more general approach based on

Pareto optimality, a fundamental technique used in the

majority of multi-objective EAs. The Pareto dominance

relationship is used to assign a quality performance measure
om http://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
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to each heuristic, calculating the ratio of dominating solutions

produced by the heuristic and indicating the chances of gener-

ating dominating solutions when applied in future iterations.

The score is calculated, for each solution in the new child

population, as the ratio of solutions it dominates in the

parent population and then averages these ratios to produce

a single score. This is shown in Equation (6). Theoretically,

good heuristics (for moving towards the Pareto front) will

have a high probability of generating dominating solutions.

p(h, μ, λ) ¼
P

∀a∈λ∀b∈μdom(a, b)
μj j × λj j

where dom(a, b) ¼ 1, a ≺ b

0, a 6≺ b

� (6)

The function p(h, μ, λ) shown in Equation (6) returns the

average ratio of parent solutions μdominated byeach child sol-

ution in λproducedbyheuristich. The terms a and b refer to an

individual child and parent, respectively, whilst the function

dom(a, b) returns an integer (0 or 1) value indicating whether

a dominates b.

Markov chain

As implied by the name, the MCHH uses a Markov chain to

guide the selection of heuristics and applies online reinforce-

ment learning to adapt the transition weights in the Markov

chain. By using a Markov chain to control the selection of

heuristics and adapting the transition weights from one

heuristic to another, the MCHH is able to not only learn

which heuristics are effective, but what sequence of heuris-

tics are most effective. For example, a heuristic may be

good in general but a combination of two other heuristics,

when applied in a specific sequence, may perform even



Figure 4 | Transition weight matrix for a Markov chain with three states representing

three heuristics.
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better. The approach is designed to try and learn these tran-

sition sequences to further improve the optimisation

process. Firstly, the MCHH constructs a fully connected

Markov chain with one state for each heuristic, i.e., each

state in the chain is connected to every other state and to

itself (see Figure 3). The weight of each edge out of a state

represents the probability of moving from the current state

(the current heuristic) to the destination state (the heuristic

to be applied subsequently), where all edges out of each

state sum to one.

The MCHH traverses this Markov chain by stochasti-

cally selecting the next heuristic using roulette selection

biased by the outbound edge weights. Each heuristic is

applied ε times (set to two in the experiments below)

before selecting the next heuristic. The next heuristic is

then applied ε times before again selecting another heuristic,

and so on. At the end of each episode (ϵ applications of a

heuristic) the quality score is calculated and the weight of

the last edge traversed by the MCHH, the edge used to

move to the current heuristic, is updated. The transition

weights in Markov chain can also be represented as a

matrix of m ×m, shown in Figure 4, where m is the

number of heuristics. The row represents the current state

and the columns the potential state to move to.

After applying the heuristics for one episode of ε appli-

cations, the heuristic’s quality is calculated. If the resulting

score is greater than some threshold γ, the weight corre-

sponding to the last transition (made to get to the current

operator) is increased by α, otherwise, the weight is

degraded by β. Once the weight has been adjusted, the

sum of outflow edges from the previous state are normalised

to 1 to maintain the fidelity of the matrix. After normalising,

the effect of increasing or decreasing an edge in the Markov

chain will decrease or increase the other edges, respectively.
Figure 3 | Example Markov chain with three states representing three heuristics.

://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
The repetition of this process should allow the matrix to

converge on a set of probabilities for moving between indi-

viduals in the set of heuristics. This process identifies the

good links between heuristics, with sequencing controlled

by the edge direction, giving probabilistic information

about combinations of heuristics.
EXPERIMENTAL SETUP

This section describes a novel application of online selective

hyper-heuristics, such as the MCHH, to the multi-objective

WDN design problem.

Experimental data

Experiments to demonstrate the benefits of considering dis-

colouration risk during the optimisation run and examine

the efficacy of the MCHH were conducted on three well-

known benchmark networks (Two Loops, Hanoi and Any-

town) in addition to three real-world networks. The Two

Loops network consists of eight links which connects the

six nodes and a reservoir. The Hanoi network consists of

34 links which connects the 32 nodes and a reservoir. The

Anytown network consists of 1 reservoir, 1 pumping station,

2 tanks, 22 nodes, and 42 links. However, only a selection of

links in the Anytown network were available for resizing,

treating the problem as a rehabilitation test case. The

tanks and pumps in the Anytown network were fixed to

the initial setting. The input files and cost models are avail-

able at http://centres.exeter.ac.uk/cws/.

The three real-world networks are located in the South

West of England. The smallest network contains 1 reservoir,

52 junctions and 68 pipes, the medium sized network

http://centres.exeter.ac.uk/cws/
http://centres.exeter.ac.uk/cws/
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contains 1 reservoir, 1 tank, 81 junctions and 107 pipes, and

the largest network consists of 2 reservoirs, 160 junctions

and 213 pipes.

In addition to applying the MCHH, the experiment was

used to study the effect of pipe diameter on network self-

cleaning characteristics subject to node head constraints

and as such so no other characteristics were altered during

the optimisation process. The experiment used EPANET

to simulate the hydraulic effects of pipe diameter changes

over a 24 hour extended period. The DPM was then applied

to calculate the potential material stored in each pipe given

the revised hydraulic conditions. The hydraulics, potential

for discolouration and cost calculation formed the basis of

the objective function for the optimising algorithms.

Optimisers

The optimisation of the pipe diameters was completed using

a NSGA-II and SPEA2, two modified variants of these algor-

ithms which included the MCHH operations as well as

Simple Random and TSRoulWheel. NSGA-II and SPEA2

were given populations of 10 and run for 2,000 generations

for both the normal optimisation runs and the optimisation

runs with the MCHH. The parameters for the MCHH were

set as follows: γ¼ 0.2, α¼ 0.1, β¼ 0.1 and ε¼ 2. A schematic

view of the optimisation process is given in Figure 5.

As shown in Figure 5, both Cost and Potential are calcu-

lated using the EPANET output and Head Excesses and

Violations directly from recorded Head values. The normal

EA elements (i.e., NSGA-II operations) shown in solid

boxes. Hyper-heuristic elements (heuristic selection) shown

in dashed boxes and only included in the MCHH variants.
Figure 5 | Schematic view of the experimental design.

om http://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
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Hyper-heuristics for comparison – Simple Random

Perhaps the most basic selective hyper-heuristic is the

‘Simple Random’ (Burke et al. ) which randomly

selects a heuristic at each generation. Although simple,

even this basic approach can provide significant improve-

ment in performance over meta-heuristics that employ a

fixed heuristic. However, it is assumed that although

Simple Random performs well on many problems, a

more sophisticated strategy should be able to provide

further improvement in performance. Simple Random

has been included in this study to provide a benchmark

of performance for the MCHH and TSRoulWheel

(Burke et al. ). Simple Random was embedded

in NSGA-II using the same approach as the MCHH;

selecting random heuristics at each generation. The algor-

ithm was also used as a control to demonstrate that the

heuristics alone did not provide the significant improve-

ment in performance observed in the MCHH variants.
Hyper-heuristics for comparison – TSRoulWheel

Although many hyper-heuristic algorithms have been pro-

posed in the literature, there are few that can be applied to

the online selection of heuristics on multi-objective pro-

blems. However, of the few hyper-heuristic methods that

can be applied to multi-objective problems, the TSRoul-

Wheel (Tabu Search Roulette Wheel) algorithm is perhaps

the most notable and general multi-objective scoring

method from the literature (Burke et al. ). In TSRoul-

Wheel, each heuristic is rated on its performance on each

objective, which informs the update of selection weights
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by reinforcement learning, i.e., for a problem with m objec-

tives and h heuristics, a weight matrix of m × h is produced.

The algorithm first selects an objective to use as a basis from

which it then selects heuristics, based on each heuristic’s

weight for that specific objective. Whilst this method is

shown to be the most effective examined in Burke et al.

(), and to be a reasonably good method in this study,

it relies on improvements in one objective resulting in

improvements in another as it evaluates each objective in

turn, formulating the problem as a set of single-objective

sub-problems. The TSRoulWheel hyper-heuristic was

implemented as directed in Burke et al. () with a learn-

ing rate of 1.

Heuristics

Four extra heuristics were supplied to the MCHH variants

of the EAs in addition to the normal single-point additive

Gaussian integer mutation operator (σ¼ 1) and the

uniform crossover operators used in both the original

algorithms. Three alternative parameterisations of the

Gaussian integer mutation (σ¼ 0.01, 0.075, 0.75) and a

simple replacement heuristic was used that created a new

random resampled solution rather than perturbing an exist-

ing solution.

Performance measure

The hypervolume indicator (Bader et al. ) (which was

normalised to 1) was used to monitor the performance of
Figure 6 | Illustration of the calculation of hypervolume using sampling.

://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
each of the six algorithms, calculated using random samples

drawn from within the objective space. The hypervolume

indicator gives a scalar representation of the ratio of objec-

tive space dominated by the population, illustrated in

Figure 6.

The hypervolume was calculated by sampling in the

range of possible values for each objective and calculating

the ratio of sampled points that were dominated by the

population (those in the shaded region). The hypervolume

was normalised by dividing the number of sample points

dominated by the population by the total number of

sample points. Once a sample set had been generated it

was kept and used for all hypervolume calculations on

that problem for all algorithms and trials. Each of the four

algorithms was run 20 times and the hypervolume results

averaged to ensure a fair comparison of performance.
RESULTS

The results for the three benchmark and three real-world

networks are given in Table 1 which shows the best result

obtained by each algorithm on each objective. Each algor-

ithm returned a Pareto front (population) of the most

optimal solutions it was capable of locating. The Cost, Dis-

colouration Risk and Cumulative Head Excess columns

report, for each algorithm on each network, the best value

obtained across the population. For example, the Hanoi

results for NSGA-II represent the best cost, discolouration

risk and head excess from two different solutions. The
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numbers in bold indicate that the value was the best found

for that object on that network across all the algorithms, e.

g., NSGA-II and MCCH variant of NSGA-II both found

the lowest cost solutions for Anytown.

The results given in Table 1 clearly shown an improve-

ment in the best possible objective values obtained by the

MCHH variants of NSGA-II and SPEA2. One of the two

MCHH variants obtains the best objective value for all

three objectives over all six problems, while the original

NSGA-II and SPEA2 algorithms only locate best values on

some of the objectives on the smaller, benchmark networks.

More detailed analysis of selected problems is given below

in Figures 7, 8 and 9. The results discussedwere obtained using

the MCHH embedded in NSGA-II, and are used to illustrate

the benefits of including discolouration risk modelling into

the design of new and rehabilitation of existing WDNs. An

analysis of the performance of the MCHH on these problems

comparedwith twohyper-heuristics from the literature is given

in the Conclusions section below.

The MCHH on WDN problems

As shown in the Hanoi results (Figure 7), the MCHH vari-

ants converge more quickly when compared with the

original NSGA-II and SPEA2 algorithms. In addition to con-

verging quickly (shown in the generational plot in Figure 7),

both MCHH variants also consistently produce better final

generation results – illustrated in the box plots in Figure 7

that show the distribution of results. Due to the short

number of generations and limited number of evaluations,

only the NSGA-II and SPEA2 variants of the MCHH

located the known optimum of 419,000 for Two Loops.

Simple Random and TSRoulWheel both fail to locate good

solutions and so have poor (near to zero) hypervolume

throughout the search.

Despite the poor performance on Hanoi, the perform-

ance of both Simple Random and TSRoulWheel improves

significantly on the rehabilitation problems, as illustrated in

the Anytown (Figure 8) and real-world network 2 (Figure 9)

results. Indeed, TSRoulWheel performs very well on the Any-

town problem and outperforms NSGA-II. While NSGA-II

produces good results on the simple problems, such as

Hanoi, as the complexity of the problem increases by the

introduction of larger number of pipes, SPEA2 is shown to



Figure 7 | Two plots showing hypervolume results NSGA-II, SPEA2, both MCHH variants, Simple Random and TSRoulWheel on the Hanoi benchmark network. Left plot shows hypervolume

over generations (averaged over all trial runs), right plot shows distribution of final generation hypervolume for all trial runs. Simple Random and TSRoulWheel are shown at the

bottom of the figure along the x-axis.

Figure 8 | Two plots showing hypervolume results NSGA-II, SPEA2, both MCHH variants, Simple Random and TSRoulWheel on the Anytown benchmark network. Again, the left plot shows

hypervolume over generations (averaged over all trial runs), right plot shows distribution of final generation hypervolume for all trial runs.
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consistently outperform NSGA-II – again shown in Figures 8

and 9. Interestingly, this relationship is not mirrored in the

MCHH variants, with the NSGA-II variant of the MCHH

achieving the best results across all the problems. This

might indicate a stronger tie between the variation and selec-

tion operations of SPEA2 compared with those of NSGA-II.
://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
A common problem in optimisation is early conver-

gence: converging on a poor solution quickly. In the

experiments conducted in this study, the MCHH hyper-

heuristic variants not only converged on a solution more

quickly than the original algorithms but also located a

better range of solutions, dominating a larger proportion



Figure 9 | Two plots showing hypervolume results NSGA-II, SPEA2, both MCHH variants, Simple Random and TSRoulWheel on real-world network 2.
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of objective space. Examining the final generation archives

of SPEA2 and the final generation population of MCHH

(NSGA-II) confirmed the greater spread of solutions, provid-

ing a better range of options to decision makers, as shown

later in Figure 11.

All the results clearly demonstrate the MCHH variants’

ability to utilise the additional heuristics which is shown

by a better performance when compared with Simple

Random and TSRoulWheel both of which were supplied

with the additional heuristics. On the simpler problems,

the MCHH performs much better than NSGA-II and

SPEA2. However, it is also noticeable that as the problem

complexity increases, the improvement in performance is

less profound.

Heuristic weights

The improvement in performance of the MCHH over the

traditional meta-heuristics like NSGA-II is directly a result

of the MCHH’s ability to select good heuristics during the

search process. The online learning process enables the

MCHH variants to utilise a wider set of low-level heuristics

in a single optimisation run and is therefore better equipped

to search for good solutions. However, as illustrated by the

Simple Random hyper-heuristic, supplying an optimiser

with a large set of heuristics does not guarantee it will use

them efficiently or even improve the quality of the search.
om http://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
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As described in the Method section, the learning method

and weight structure of the MCHH allows it to use these

heuristics effectively by updating the probability of selecting

each heuristic (their weights) during the search process.

An example of this is shown in Figure 10 that illustrates

the overall weights assigned to each heuristic over gener-

ations from two individual trial runs on the Hanoi

problem. As expected, the weight assignments vary between

the two runs due to the different areas of the search space

(the distribution of the population) being searched in both

trial optimisation runs. Interestingly, both examples quickly

downgrade the importance of the crossover operator, indi-

cating the operator does not tend to produce dominating

solutions compared with the other heuristics. The Resample

heuristic, which samples new solutions, is also reduced in

one of the runs (right pane, Figure 10) but interestingly still

used in the other (left pane, Figure 10). The reduced weight-

ing of the resample heuristic in the right pane results could be

a reaction to the increased weight assigned to the mutation

heuristic with the largest standard deviation. As both heuris-

tics have strongly explorative behaviour, the MCHH is less

likely to give strong weighting to both heuristics as this

would result in a stronger stochastic element to the search

which would further decrease the rate of convergence.

The MCHH always initialises all weights to be equal at

the start of the search, however, as can be seen in Figure 10,

the MCHH quickly biases the use of heuristics to those that



Figure 10 | Two plots of normalised total weights (sum of all weights for moving to each

heuristics) over generations assigned to each heuristic by the MCHH during

the optimisation search process from two different trial runs on the Hanoi

benchmark water network.
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provide good results early on in the search. Indeed, while it

appears as though the weights start at different points in

Figure 10 due to the scale, the weights are changed within

the first couple of generations. Clearly, the first few gener-

ations of the search have a strong impact of the later
://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
weighting of the heuristics and contributes to the differences

in the heuristic weightings between the different optimis-

ation runs.

Discolouration risk in WDN problems

Both variants of the MCHH (NSGA-II and SPEA2) pro-

duced the best results across all the problems, with similar

final generation results. As such, the NSGA-II variant of

the MCHH results is discussed below as the trends found

in the final populations occur in all sets of results.

Two Loops

The Two Loops network was used to examine the possibility

of using discolouration propensity, in the form of stored tur-

bidity, during the process of optimising WDN design. A set

of solutions that satisfied the head constraints was found by

optimising the network. Of these solutions, two were found

that matched the known minimal cost of 419,000 and elimi-

nated all discolouration potential – i.e., satisfied the self-

cleaning threshold. These were the same as those found in

Savic & Walters (). These results prove that, for a

simple WDN, a solution may exist that is both self-cleaning

and minimal for cost: the ideal solution.

A further set of solutions that satisfied head constraints

with self-cleaning properties but incurred additional cost

was identified. These improved upon the head excess of

the minimal cost solutions and could be viable alternatives

if leakage were a concern. Excessive pressure in a WDN

leads to water loss through leakage from joints, fixtures

and small breaks which, over a large number of networks,

can result in significant costs for water companies (Al-

Hemairi & Shakir ). Interestingly, the results show a

degree of correlation between cost and discolouration

(also shown in Hanoi results in Figure 11). It is hypothesised

that this is not a perfect correlation as changes in pipe sizes

close to sources will increase the possible shear stress down-

stream, increasing the cost and reducing discolouration.

Hanoi

The Hanoi benchmark was used to examine whether, for

larger networks, it was possible to find solutions with



Figure 11 | Two plots showing the combined Pareto front from all MCHH (NSGA-II)

optimisation runs on the Hanoi benchmark problem for all three objectives –

2D view of Head Excess and a 3D view of the whole front.
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known minimal cost and a self-cleaning feature. It

was theorised that as the complexity of the network

increases the likelihood of finding ideal solutions would

decrease. As this study shows, this is indeed the case and

it is not easy to find these solutions in networks larger

than Two Loops, where a trade-off surface is more likely.

Figure 11 shows the results from the MCHH (NSGA-II)

on Hanoi in three objectives. Whilst a Pareto front often

resembles a curved line in two objective problems, it usually

forms a plane in three objective problems, allowing for a

trade-off between all three objectives. During the Hanoi

experiment, the MCHH did locate a solution of known mini-

mal cost, although it was not self-cleaning. Furthermore, it
om http://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
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can clearly be seen in Figure 11 that the correlation between

cost and discolouration is retained, albeit with some noise.

There is also a significant trade-off between the Head

Excess and Discolouration with reduced head excess result-

ing in increased discolouration risk. In contrast, while there

is a trade-off between cost and head excess for the more

expensive networks (which suggests bottlenecks in the

designs), the relationship between the two objectives

becomes less strong as the size of the network decreases.

This is shown by the curved edge of the front in the 3D

plot in Figure 11 and the increase in the density (number

of alternatives) of solutions as the cost scales down. At the

lowest cost networks, the trade-off in solutions is found

only between discolouration and head excess. If only head

excess and cost or discolouration and cost were used as

two objective problems, then the problem would be degene-

rate – i.e., the trade-off is lost close to the true Pareto optimal

solutions.

The cheapest network satisfying the head-deficit con-

straint was found at US$6.22 m, comparable with the SCE

optimal solution found for EPANET2 (Rossman ).

Interestingly, 16.7% of the pipes for this solution stored

over 5 NTU of potential material (based upon recorded vis-

ible NTU). However a range of alternative solutions were

also located that satisfied the constraints and for an

increased cost of US$68,422, this discolouration risk can

be reduced to just 11.8% of pipes by adopting a slightly

more expensive solution. By including the discolouration

risk scores into the optimisation process, it is possible to

consider alternative solutions that incur a marginally more

expensive up-front cost but significantly reduce later main-

tenance costs by reducing the discolouration risk and

allowing for more selective cleaning schemes to be

introduced.
CONCLUSIONS

This paper presents a novel approach to pipe diameter

design for WDNs and proposes the MCHH, a multi-objec-

tive online selective hyper-heuristic, which is applied to

the problem. The experiment demonstrated that by incor-

porating discolouration propensity, calculated using the

DPM, and excess head (thus taking some leakage concerns
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into account) it is possible to lessen future discolouration

mitigation burdens with a calculated increase in rehabilita-

tion/construction costs. The method was tested on three

benchmark networks (Two Loop, Hanoi and Anytown)

and three real-world networks.

Two solutions with minimal cost and a self-cleaning fea-

ture were found for Two Loop. However, results for Hanoi

highlighted the difficulties in finding minimal cost, self-

cleaning networks for relatively larger networks. This

study does show that a modest increase in cost can also

attain a self-cleaning threshold in this larger network a

result which may be more applicable to much larger, real

WDNs.

As anticipated, the results from the application of this

approach to the rehabilitation of real-world networks sup-

ports the theory that a trade-off curve of cost against

discolouration potential becomes increasingly more

varied and gradual as the complexity of the problem

increases. The likelihood of finding minimal cost, self-

cleaning solutions is also improbable for relatively large

networks. Nevertheless, by applying this approach

during rehabilitation planning, companies can also con-

sider discolouration potential in addition to new

demands and thus improve the self-cleaning properties

of their networks for a marginal increase in cost.

In addition, this paper applied the MCHH to the same

three objective formulation of the WDN design and rehabi-

litation problems. The MCHH was incorporated in the well-

known NSGA-II and SPEA2 and supplied with a range of

low-level heuristics tailored for use on WDN design and

rehabilitation problems. Both the original optimisers and

the MCHH variants were run on the problem. The results

demonstrated an improvement in performance across all

six benchmark (Two Loops, Hanoi and Anytown) and

real-world networks used in the experiment and clearly

demonstrated the improvement in performance that can

be obtained over the original algorithms. In each case, the

MCHH variants produced better results more quickly that

the original algorithms, requiring minimal work to embed

the MCHH.

Finally, this study conducted a comparison of the

MCHH against two hyper-heuristics from the literature:

Simple Random and TSRoulWheel. The results demon-

strated the MCHH’s ability to find a wider range of
://iwaponline.com/jh/article-pdf/15/3/700/387024/700.pdf
solutions across the networks as indicated by better hyper-

volume results. Furthermore, the results illustrated the

faster rate of convergence of the MCHH across all three of

the real-world problems, allowing for shorter runs on each

of the problems and providing significant reduction in the

cost associated with optimising the networks.
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