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Abstract 

Neural Particle Method (NPM) is a newly proposed Physics-Informed Neural Network (PINN) 

based, truly meshfree method for hydrodynamics modeling. In the NPM, PINN is applied to 

globally approximate field variables, and the high-order Implicit Runge-Kutta (IRK) method 

is used to treat the time integration. The NPM can easily achieve incompressibility and deal 

with the free-surface problem. However, the NPM is currently limited to inviscid 

hydrodynamics problems and is computationally expensive. In this work, we developed a 

general NPM (gNPM) for viscous hydrodynamics modeling. In the gNPM, a single pressure is 

output as the predicted pressure field rather than the multiple pressures in the original NPM. 

Thus, the size of the neural network is greatly reduced, making the gNPM computationally 

more efficient. Besides, the spatial derivatives in the governing equations are calculated with 

respect to the current spatial coordinates rather than the predicted space. In this manner, the 

gNPM is more straightforward to be implemented. Furthermore, by considering the viscous 

term in the conservation of momentum, the gNPM can be applied for viscous hydrodynamics 

modeling. The effectiveness and robustness of the gNPM have been demonstrated through 

several hydrodynamics benchmark cases with different boundary conditions. We highlight that 
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the proposed gNPM is able to cope with highly uneven particle distributions, while the 

traditional meshfree method can produce severe failure. 

 

Keywords: Neural Particle Method; Physics-informed neural network; Machine learning; Deep 

learning; Hydrodynamics modeling, Meshfree method 

1. Introduction 

Computational Fluid Dynamics (CFD) is an essential way to study hydrodynamics problems 

[1]. In CFD, numerical and computational methods are applied to deal with the governing 

equations of fluid dynamics and boundary conditions [2]. These numerical methods can 

provide favorable approximate solutions to complex hydrodynamics problems, which are 

challenging to be solved analytically [3].  

In the past few decades, great progress has been witnessed in the CFD field, and various CFD 

methods have been proposed [4]. In the early methods, meshes or grids were applied to 

discretize the spatial domain, and the terms in governing equations were approximated through 

connected mesh nodes [5]. Typical examples of these so-called mesh-based methods include 

the Finite Difference Method (FDM) [6], Finite Volume Method (FVM) [7], and Finite 

Element Method (FEM) [8]. To date, mesh-based methods remain the most prevailing type of 

numerical techniques for hydrodynamics modeling. However, mesh-based methods suffer 

significant difficulties, including the high cost of generating the mesh for complex geometries, 

mesh distortion in large deformation problems, and boundary tracking in free-surface problems 

[5]. Hence, to avoid these difficulties, a class of new methods, namely the meshfree methods, 

were proposed. The meshfree methods use nodes or particles in replacement of meshes. 

Compared to mesh-based methods, meshfree methods offer flexibility for hydrodynamics 

modeling, which can effectively alleviate the difficulties of the aforementioned mesh-based 

methods [2]. Thus, meshfree methods have attracted more attention in recent decades [1]. The 

typical meshfree methods for hydrodynamics modeling include Smoothed Particle 

Hydrodynamics (SPH) [9-11], Moving Particle Semi-implicit (MPS) [12] method, and 

Meshless Local Petrov-Galerkin (MLPG) [13].  

Deep learning, an important branch of the Machine Learning method,  is based on the multi-

layer artificial neural network, which is a biomimetic computing system inspired by biological 

neural networks [14]. Deep learning automatically extracts the inherent features and 
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representations from raw data [15]. Deep learning techniques have successfully been applied 

in various areas [16], including bioinformatics [17], image recognition [18], and financial 

prediction [19]. 

Deep learning techniques have attracted attention in hydrodynamics modeling as well [20-22]. 

It has opened a new avenue for solving hydrodynamics problems [20]. Works have been 

published to apply various deep learning techniques in predicting hydrodynamics problems 

with massive observation data, which can be classified as the pure data-driven method [23-27]. 

However, pure data-driven deep learning methods for hydrodynamics modeling still have some 

shortcomings. Firstly, the pure data-driven deep learning hydrodynamics methods can be 

regarded as interpolation methods [32]. Deep learning techniques are trained to fit the given 

data and then used for predictions. When applications of the trained neural networks fall out of 

the span of the given data, the results from the neural network may not be reliable anymore. To 

alleviate this issue, a tremendously large, completed, and labeled database is required to cover 

the possible problem domain. However, it is currently difficult or even impossible for the 

hydrodynamics field to obtain such a well-developed database [20]. Secondly, the accuracy of 

pure data-driven deep learning techniques for hydrodynamic modeling is not ideal enough [26-

28]. Accordingly, those applications are currently confined to the areas of animations and game 

engines [26, 27, 29, 30].  

Recently, Raissi et al. [31-33] introduced the Physics-Informed Neural Networks (PINNs), 

which can integrate physics information to train neural networks. With embedded physics 

information, the neural network can achieve favorable accuracy with less training data. Besides, 

PINNs also contribute to the inverse problem, such as extracting parameters from observations 

[34, 35]. Up to now, PINNs have attracted increased attention and great efforts have been made 

to further improve the performance of PINNs framework [36, 37]. Wang et al. [38] studied the 

convergence of PINNs and leveraged the neural tangent kernel algorithm to alleviate the scale 

differences in the loss function. Liu and Wang [39] introduced an adaptive learning algorithm 

for PINNs to normalize the loss terms. Nguyen-Thanh et al. [40] proposed a parametric training 

approach that improves the performance of PINNs for complex geometry domains. Sukumar 

and Srivastava [41] proposed the distance functions to exactly impose the boundary conditions. 

Kharazmi et al. [42] tailored a decomposition approach for PINNs to deal with variational 

problems. Shukla et al. [43] further incorporated parallel computing to improve the 

computational efficiency of PINNs for decomposed domains. Haghighat et al. [44] proposed a 

non-local scheme to greatly improve the performance of PINNs with respect to sharp gradient 
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problems. In addition, various kinds of neural networks have been applied to explore further 

possibilities of the PINN [45, 46]. Currently, PINNs have become one of the most popular deep 

learning techniques in certain areas of research and have already made significant contributions 

[47-49]. 

PINNs have also been applied to solve direct hydrodynamics problems as an alternative to 

traditional CFD approaches [21, 47, 50]. In most PINN-based hydrodynamics modeling 

methods, the spatiotemporal coordinates are equally treated as the inputs of neural networks. 

Jin et al. [51] introduced the Navier-Stokes Flow nets (NSFnets) for incompressible 

hydrodynamics modeling. In their work, PINN is applied to solve two formulations of the 

Navier-Stokes equations, i.e., the velocity-pressure and vorticity-velocity formulations. The 

convergence and accuracy of the NSFnets have been discussed, and it has been employed for 

numerical examples in terms of laminar and turbulent flows to prove its effectiveness. Xiang 

et al. [52] proposed a self-adaptive loss balanced Physics-Informed Neural Network (lbPINN) 

for incompressible Navier-Stokes equations. By adding weights in front of loss terms, the 

lbPINN greatly improves the accuracy of PINN in solving incompressible hydrodynamics 

problems.  

Another attempt of using PINNs to the direct hydrodynamics problems separately treats the 

spatial and temporal coordinates through the Lagrangian point of view. Wessels et al. [53] have 

explored the applicability of PINNs for inviscid hydrodynamics modeling and proposed Neural 

Particle Method (NPM). In their method, neural networks have been applied to approximate 

the velocity and pressure in the spatial fields, while the Implicit Runge-Kutta (IRK) method 

has been used to achieve temporal discretization. Particles are used to represent the fluid 

substance, and the positions of the particles are updated after each timestep. In this manner, the 

NPM is able to deal with free surface hydrodynamics problems while achieving 

incompressibility. Furthermore, numerical techniques in terms of interpolation [54] and penalty 

approach are introduced to strictly fulfill the Dirichlet boundary and solid rigid wall, 

respectively. Several free-surface examples have been conducted to test the conservation 

properties of the NPM, and close agreements have been observed with respect to experimental 

data. Accordingly, the NPM opens up a new avenue for hydrodynamics modeling while 

possessing favorable potential to become an even more powerful tool in this context [53].  

Nevertheless, the applications of the NPM are currently confined to inviscid problems. Only 

limited results and discussion of the NPM are provided. Besides, in the NPM, multiple 

pressures are output at each timestep to fit the IRK method. We notice that no time-dependent 
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evolution equation is given for the pressure field. Therefore, the predicted pressure is updated 

through the weighted average of the multiple pressure outputs rather than using the IRK method, 

resulting in redundant pressure information and increasing the computational expense. 

Furthermore, the spatial derivatives in the NPM are obtained with respect to the predicted 

configuration. A linear push-forward operation is required to transfer the derivatives from the 

current space to the predicted space. The application of the push-forward operator results in 

additional calculations and brings difficulties in taking the viscous force into account, which 

includes a second-order spatial derivative. Accordingly, in this paper, we develop a general 

Neural Particle Method (gNPM) for viscous hydrodynamics modeling. In the gNPM, a single 

pressure is output as the predicted pressure field. In this manner, the size of the neural network 

is significantly reduced, and the gNPM becomes computationally more efficient. All the spatial 

derivatives are obtained regarding the current space, making the gNPM more straightforward 

to be implemented than the original NPM. In addition, by considering the viscous term in the 

conservation of momentum, the gNPM can be applied for viscous hydrodynamics modeling. 

We study the convergence of the gNPM and test its performance towards static, moving, 

periodic, and free surface boundary conditions. Moreover, we demonstrate that the gNPM 

brings more flexibility in spatial discretization to the CFD field. Comparing with the SPH 

method, a typical meshfree particle method, we find that the gNPM is generally more robust 

for hydrodynamics modeling than traditional meshfree methods.  

We organize this paper as follows. In Section 2, the fundamentals of hydrodynamics in terms 

of the governing equations and the boundary conditions are given, respectively. In Section 3, 

we elucidate the methodology of the gNPM and discuss its numerical implementation. In 

Section 4, numerical cases with different boundaries are conducted to assess the convergence 

and robustness of the gNPM. Finally, conclusions and future perspectives are summarized in 

Section 5. 

2. Physics laws of hydrodynamics problems 

2.1. Conservation laws of momentum and mass 

The governing equations for hydrodynamics problems, in terms of conservation of mass and 

momentum, can be written in the form of Lagrangian description as 

 ( )
( , )

( , ) ( , ) 0
ρ t

ρ t t
t


+  =



x
x v x  (1) 
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( , ) ( , ) ( , ) ( , )
( , ) ( , )

x t p t t t
ρ t ρ t

= −  +   +a x τ x g x
x x

 (2) 

where a(x, t) is the acceleration of the fluid. v(x, t) and p(x, t) represent the fluid velocity and 

pressure, respectively. ρ(x, t) is the fluid density. g(x, t) refers to the body force per unit mass. 

τ(x, t) is the shear stress tensor related to the rheological properties of the concerned fluid. 

For incompressible Newtonian fluids, ρ remains constant and τ can be formulated via Newton’s 

law as τ = μ∇v where μ denotes the fluid viscosity. Accordingly, Eq. (1) and Eq. (2) can be 

simplified as 

 ( , ) 0t =v x  (3) 

 ( )
1 1

( , ) ( , ) ( , ) ( , )t p t μ t t
ρ ρ

= −  +    +a x x v x g x  (4) 

2.2. Initial and boundary conditions 

The governing equations are closed by the boundary conditions. Here, we introduce three 

common boundary conditions, namely the solid boundary, the periodic boundary, and the free 

surface. First of all, the no-slip solid boundary condition can be written as: 

 
s f , =v v  (5) 

where v
Γs
 represents the solid boundary velocity and vf is the fluid velocity at the solid boundary. 

For the periodic boundary, let us assume we have two boundaries that are connected 

periodically. Respectively, they are denoted as Γ1 and Γ2. In this manner, the periodic boundary 

condition can be written as: 

 .
1 2

1 2

,

,p p

 

 

=

=

v v
. (6) 

where v
Γ1
, v

Γ2
, p

Γ1
, p

Γ2
 are respectively the velocity and pressure on Γ1 and Γ2. Finally, the free-

surface boundary condition is achieved via setting the pressure on the boundary line, Γfs, to be 

zero, which reads 

 
fs

0.p =  (7) 

3. General Neural Particle Method (gNPM) 

The basic idea of the NPM [53] is using an Feedforward Neural Network (FNN) [55] to 

approximate the field variables v and p at each timestep. The FNN is trained with the inviscid 
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governing equations and boundary conditions. Besides, particles are used to represent both the 

fluids and the boundaries. The positions of the particles are updated after each timestep so that 

the morphology of the fluid and free surface can be clearly captured. Based on the idea of the 

NPM, in this section, we propose the methodology of the general Neural Particle Method 

(gNPM) for viscous hydrodynamics modeling. It should be noted that, although the loss 

function of the well-trained FNN should ideally reach zero, the actual loss function is generally 

a small value because the FNN is trained through optimizers (such as SGD [56], Adam [57], 

Adagrad [58], and Adadelta [59]) to reach predefined convergence criteria. Thus, the 

satisfaction of governing equations and initial/boundary conditions is in the “weak” sense. 

3.1. FNN for physical field modeling 

Without loss of generality, we consider a 2D hydrodynamics problem. The velocity and 

pressure fields in Eqs. (4) and (3) are functions of temporal variable t and spatial coordinates 

(x, y). In this work, we focus on the temporal-discretized model where the time domain is 

discretized into timesteps t0, t0+Δt, t0+2Δt, ∙∙∙. Note that Δt is the time increment. The velocity 

and pressure fields at timestep t are then modeled as functions of spatial coordinates (x, y) 

through an FNN [60] as 

 , , ( , )t t t

x yv v p F x y=  (8) 

where t

xv   and t

yv   denote the x- and y-component of vt. F(x, y) is the  FNN as shown in Fig. 1. 

The FNN consists of an input layer, single or multiple hidden layers, and an output layer. Each 

layer has a number of neurons [61]. The number of neurons in the input layer ninput equals the 

dimension of input features (in our case ninput=2). The Fully Connected Neural Network (FCNN) 

is obtained if all neurons in the previous layer are fully connected to the neurons in the adjacent 

layer. The (l+1)-layer feature hl+1 is mathematically expressed in terms of the l-layer feature hl 

as 

 1 ( )l l l l+ =  +h w h b  (9) 

where wl and bl are the weights and biases of l-layer. The activation function   is a nonlinear 

operator which endows the FNN with the ability to model nonlinear functions. Actually, it has 

been demonstrated that the FNN with a single hidden layer can model arbitrarily complex 

functions if the number of neurons is large enough [62]. For a more detailed introduction of 

the FNN, readers are referred to [55]. The FNN in Fig. 1 can be obtained through sequence 

operations of Eq. (9) 
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 1 2 1 1 2 1

layer 1

layer 2

layer 1

( , ) ( ( ( ) ) )n n

n

F x y   + +

+

= + + + +xw w w b b b  (10) 

A distinguished advantage of using the FNN for modeling physical fields is that the partial 

differentials of field variables with respect to spatial coordinates can be easily calculated via 

automatic differentiation [63]. As is known, traditional CFD methods rely on the surrounding 

mesh nodes or particles to obtain the spatial differential terms. For instance, the FDM uses the 

Taylor expansion with connected mesh nodes to calculate the gradient terms [64], and the SPH 

interpolates the spatial differential terms by summing up the field variables of the surrounding 

particles with weights (kernel functions) [4]. Because the traditional CFD methods 

approximate the differential terms through the nearby nodes and particles, it unconsciously 

brings restrictions in terms of the mesh quality and particle distribution to the conventional 

CFD methods. Researchers have pointed out that, for mesh-based methods, the highly distorted 

or irregular meshes can greatly affect the accuracy of modeling [2]. For meshfree methods, the 

applications with highly uneven particle distribution can fail to satisfy the completeness 

condition [65]. Local particle clustering and vacancy can respectively induce local information 

redundancy and deficiency, resulting in large departures of the interpolated values on the 

particles [66]. Therefore, some additional algorithms or techniques are required to force the 

nodes or particles to be evenly distributed [4], e.g., the particle shifting algorithm that slightly 

modifies positions of the particles from the high-dense region to the low-dense region after 

each timestep [67, 68] and the artificial stress that introduces a force between every two 

particles to avoid particles clustering [69]. The neural network-based method can obtain the 

spatial differential terms directly from the automatic differentiation rather than nearby nodes 

or particles. Hence, the neural network-based method can cope with highly uneven particle 

distributions and is more robust than traditional CFD methods. To further elaborate this, a 

detailed comparison between the gNPM and a widely used meshfree method, namely the SPH 

method, with respect to particle distributions are provided in the Section 4. 



9 

 

 

Fig. 1. An illustration of the FNN structure (with an input layer, n hidden layers, and an output layer) for modeling 2D fluid 

velocity and pressure fields. The spatial coordinates (x, y) are fed into the FNN as input. The FNN outputs the velocity and 

pressure fields as a black-box function of (x, y). wl and bl are the weights and biases of l-layer (l = 1, …, n+1). ϑ denotes the 

activation function. 

3.2. Training of the FNN with physics laws 

Training of the FNN aims at finding the optimal weights wl and biases bl that approximate the 

outputs. In the training process, the backpropagation algorithms [70] are applied to minimize 

the selected loss functions, which can qualify how good the neural network is in approximating 

the outputs [71]. In the original NPM, the loss function is formulated by the inviscid 

conservation of mass and momentum, and boundary conditions. Multiple pressure predictions 

are required to fit the selected IRK order. Besides, the spatial derivatives in the loss function 

are calculated with respect to the predicted space through a linear push-forward operator. In 

the gNPM, we include the viscous term in the loss function and simplify the pressure output of 

the FNN. In addition, all the spatial derivatives are calculated based on the current space rather 

than the predicted space.  

In incompressible hydrodynamics problems, since the velocity and the pressure fields satisfy 

both the governing equations and the boundary conditions at every timestep, we formulate the 

loss function, , in the following manner, 

 
BC ,GE= +  (11) 

where BC and GE are the loss terms from the boundary conditions and the governing 

equations, respectively. BC can be straightforwardly formulated by calculating the Mean 
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Squared Error (MSE) of the predictions on the boundaries comparing to the corresponding 

boundary conditions, which reads 

 BC p s fsMSE MSE MSE ,= + +  (12) 

where MSEp, MSEs, and MSEfs are the MSE for the periodic boundary, solid boundary, and 

the free surface, respectively. Hence, at timestep t, they can be calculated through the predicted 

field variables  

 

( )

( )

p p

1 2 1 2

s s

fs

fs

22

p , , , ,

1 1p p

2

s , ,

1s

2

fs ,

1fs

1 1
MSE ,

1
MSE ,

1
MSE ,

s

N N

t t t t t t t t

i i i i

i i

N
t t t t

i i

i

N
t t

i

i

p p
N N

N

p
N

+ + + +

   

= =

+ +

 

=

+



=

= − + −

= −

=

 





v v

v v  (13) 

where Np, Ns and Nfs are the number of the particles on the periodic boundary, the solid 

boundary and free surface. We note that those residuals will vanish to zero when  the boundary 

conditions are strictly satisfied.  

In addition, the conservation of mass and momentum are used to formulate the other loss term, 

GE, which reads  

 
m vMSE +MSE ,GE =  (14) 

where MSEm and MSEv are respectively the MSE from the conservation of mass and 

momentum. Based on the conservation of mass, in which the predicted field variables should 

satisfy Eq. (3), MSEm can be therefore written as 

 
f 2

m

1f

1
MSE ,

N
t t

i

iN

+

=

=   v  (15) 

where Nf is the number of the fluid particles, and the differential term in the equation is gained 

through automatic differentiation.  

However, unlike the conservation of mass, when applying the conservation of momentum 

given as Eq. (4), there is an unknown variable, i.e., the predicted acceleration at+Δt, on the right-

hand side and no ground truth acceleration data is available to compare with it. Thus, the 

conservation of momentum cannot be directly used in the loss function. Here, with the 

predicted velocity and acceleration term, we apply both implicit and explicit kth order Runge-

Kutta (RK) method [31] to obtain the velocity, t
v , at the timestep t. In this manner, we can 
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formulate MSEv by comparing t
v  with the input velocity field, vt. The implicit and explicit kth 

order Runge-Kutta methods are respectively given as follows: 

 
1

1

1

,    1,..., ,

.

j

j

k
ct t t

i ij

j

k
ct t t

k j

j

t d i k

t e

+

=

+

+

=

= −  =

= − 





v v a

v v a

 (16) 

where cj, dij, ej are the coefficients in the RK method [72], and jc
a  is the predicted acceleration 

calculated from Eq. (4), 

 ( )1 1
,j jc ct ta p v g

 

+= −  +   +  (17) 

where j jc t c t+ 
=v v  for i = 1, …, k, are the predicted velocities from the FNN. In order to apply 

the kth order RK method, the FNN should output k+1 terms, , as the predicted velocities rather 

than a single velocity output, t t+
v . It is worth noting that, in the NPM, the number of pressure 

outputs should fit the IRK order. However, since no time-dependent pressure equation is 

available for incompressible hydrodynamics, the predicted pressure at the next timestep is 

approximated through the weighted average of all the pressure outputs rather than using the 

IRK method [53]. The multiple pressure outputs were found not essential for the calculations 

but more time-consuming. Herein, we directly apply 1 ,  ... , ,kcct t t tp + + 
 v v v  as the pressure 

in all RK stages calculations. Excellent pressure contours are obtained and detailed in the 

Section 4. Accordingly, the loss function term from the conservation of momentum, MSEv, can 

be written as 

 
f 1

2

v ,

1 1f

1
MSE .

N k
t t

i j i

i jN

+

= =

= − v v  (18) 

3.3 Time integration 

Once the training process converged, we use the trained FNN to predict both the velocity and 

the pressure fields of the particles. The positions and the velocities of those fluid particles are 

updated after each timestep as follows: 

 
( )

1
,

2

.

t t t t t t

t t t t

+ +

+ +

= + +

=

x x v v

v v

 (19) 
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In this manner, the updated information, xt+Δt and vt+Δt, of the particles can be fed into the next 

timestep as input to continue the modeling. 

3.4 Numerical Implementation 

To implement the gNPM, at each timestep, we build up a physics-informed FNN through the 

TensorFlow [73] package in python. The initial weights and biases in the FNN are randomly 

generated by the TensorFlow package. Besides, we apply the Mish function [74] as the 

activation function in the neural network. As for the optimizer, the Adam and the L-BFGS-B 

optimizers are the commonly used optimizers for PINNs [52]. The L-BFGS-B optimizer 

performs better in terms of finding the optimal, while the Adam optimizer has the advantage 

of handling problems with a large volume of sample data [75]. Considering that the sizes of 

the sample data in our numerical examples are relatively small, we select the L-BFGS-B 

optimizer provided by the SciPy package [76] to train the FNN. The parameter ‘factr’ in the L-

BFGS-B optimizer is 10, representing the extremely high accuracy convergence condition [76]. 

In all cases, the 4th order Runge-Kutta method is applied for time integration. In addition, we 

note that all the parameters for the FNN and the optimizer used in Section 4 are settled as 

default if not explicitly mentioned.  

The detailed flowchart of the gNPM is given in Fig. 2. 
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Fig. 2. Flowchart of the gNPM for a 2D hydrodynamics problem. In each timestep, the positions, xt and yt, from the previous 

timestep are fed into an FNN as inputs. The predicted outputs are two sets of velocities with respect to x and y directions and 

the pressure. The loss function comprises three terms: the MSEs obtained through the conservation of momentum, conservation 

of mass, and boundary conditions. The FNN is trained via the backpropagation algorithm. Once the training is converged, 

positions and velocities of particles are updated and passed forwardly to the next timestep. 

 

4. Numerical examples 

In this section, numerical examples are conducted to test the performance of the gNPM. All 

the numerical examples are implemented on a 64-bit Linux system with an Intel(R) Xeon(R) 

Gold 6140 CPU (2.3GHz). We study the convergence and robustness of the gNPM through the 

Poiseuille flow case with periodic boundary and static solid boundary. The errors of the gNPM 

with respect to different numbers of particles, neurons, layers, and particle distributions are 

discussed in detail. Then, we further test the effectiveness of the gNPM towards the periodic 

boundary and moving solid boundary through the Couette flow. Finally, a dam breaking case 
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is conducted to show the effectiveness of the gNPM towards free surface problems and its 

ability to predict the incompressible pressure field.  Comparisons are also given to show the 

excellent robustness of the gNPM with respect to highly uneven particle distributions compared 

to the SPH method. 

4.1. Poiseuille flow 

The plane Poiseuille flow is a well-known benchmark case for various CFD methods. In this 

problem, the fluid between two infinite parallel walls is driven by a constant body force, gx = 

1 m/s2. The corresponding configuration is shown in Fig. 3. The timestep is Δt = 0.01 s. The 

distance between the two parallel planes is L = 1 m. The density of the fluid is 1 kg/m3, and the 

viscosity of the fluid is 1 kg∙s/m. Due to the viscosity, the velocity in the channel direction, vx, 

varies with t and y, while the vertical velocity, vy, equals zero. Further, as the conservation of 

mass is naturally satisfied here, we do not apply it in the loss function. Consequently, the output 

of the neural network is the multiple predicted velocities in the x direction. The governing 

equation of this problem is given as: 

 
2

2

1
.x

x x

v
a g

y


= −


 (20) 

Furthermore, the no-slip boundary condition is applied to both the solid walls, which reads, 

 ( ) ( )2 0,  2 0.x xv y L v y L= = = − =  (21) 

In the numerical implementation, we set a 1×1 m2 computational domain and apply the periodic 

boundaries respectively at the left and right of the computational domain to achieve infinite 

length. The periodic boundary condition reads, 

 ( ) ( )0 .x xv x v x L= = =  (22) 

The analytical solution for this problem can be found in [77]. 



15 

 

 

Fig. 3. Configuration of the Poiseuille and Couette flow problems.  

 

The performance of the gNPM with respect to the number of particles used in modeling is 

firstly studied. Four uniform particle distributions, i.e., 25, 100, 225, and 400 particles, are used 

respectively to represent the fluid domain. 16 uniform particles are used to represent each solid 

boundary, and 14 particles are placed on each periodic boundary. The FNN is fixed to have 4 

layers and 50 neurons per layer. Fig. 4 shows the velocity profiles at the cross-section of the 

channel at t = 0.05, 0.08, 0.12, 0.2, and 1 s. We observe that the velocity results from the gNPM 

are in good agreement with the analytical results. The accuracy of the gNPM is further validated 

through Table 1, which lists the velocity L2 error and the overall CPU time for training with 

respect to the number of particles. As expected, the gNPM can achieve higher accuracy with 

more particles in the problem domain. It is reasonable to conclude that using more particles in 

the domain brings sufficient data to train the neural network, resulting in higher accuracy. 

Besides, we notice that the overall CPU time for training increases with the increasing number 

of particles, indicating that using more particles makes training more time-consuming. In 

addition, referring to our numerical experiments, the computational efficiency of the gNPM is 

more than 20 times lower than the traditional SPH method. The major CPU time is consumed 

in training the neural networks. Hence, more efforts should be paid for training algorithms to 

improve the computational efficiency of the gNPM in future research endeavors. 



16 

 

 

Fig. 4. Velocity profiles of the Poiseuille flow problem with respect to the different numbers of particles at t = 0.05, 0.08, 0.12, 

0.2, 1 s. 

 

Table 1 

Velocity L2 error and overall CPU time for training with respect to different numbers of particles, Nf. All results are the mean 

value from 10 cases with different weights and bias initialization. 

Nf  

 
25 100 225 400 

Velocity L2 Error 4.27×10-6 1.11×10-6 5.86×10-7 4.32×10-7 

CPU time (s) 897.12 1128.7 1480.7 1848.1 

 

Next, we investigate the robustness of the gNPM with respect to unevenly particle distributions. 

Here, we generate 255 fluid particles inside the computational domain with uniform and 

random distributions. Fig. 5 shows the comparison of the velocity contour between uniform 

and random distributions, and the analytical result at t = 1 s.  It is clear that the velocity contours 

from both particle distributions are in good agreement with the analytical solutions (see 

Supplementary Video 1 and 2 for more details). Fig. 6 shows the comparison of the histogram 

of the velocity L2 error with random and uniform particle distributions. For each particle 

distribution, 100 cases with different weights and bias initialization are used. We find that the 

distributions of the velocity L2 error from both cases show approximately normal distribution.  

The mean values of the velocity L2 error with respect to random and uniform particle 
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distributions are 6.93× 10-7 and 6.07× 10-7, respectively, indicating that uneven particle 

distributions can induce a small decrease in the modeling accuracy. However, both the values 

and the distribution of the errors are quite close to each other, demonstrating that uneven 

particle distributions have a small influence on the gNPM, and that the method is robust enough 

with respect to unevenly distributed particles.  

 

Fig. 5. Velocity contour and interpolated velocity contour of the Poiseuille flow problem at t = 1 s. (a) The velocity contour 

result from gNPM with randomly generated particles; (b) The velocity contour result from gNPM with uniformly generated 

particles; (c) The interpolated velocity contour from (a); (d) The interpolated velocity contour from (b); (e) The analytical 

solution. 
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Fig. 6. Histogram of the velocity L2 error of random and uniform particle distributions. Total 100 cases are studied for each 

particle distribution with different weights and bias initializations. 

 

In addition, we revisit the problem to test the performance of the gNPM towards different 

numbers of layers and neurons. Table 2 lists the velocity L2 error with different settings. It can 

be seen that the velocity L2 error in all the cases remains at a low level. Besides, the velocity 

L2 error decreases with the increasing number of layers. However, we notice that the error 

exhibit fluctuations with the increasing number of neurons per layer. In fact, the same issues 

also appear in other neural network applications [32, 51]. We need to note that, for a given 

problem, more layers with more neurons do not guarantee a better result. Researchers have 

pointed out that a neural network with more layers and neurons is more capable of 

approximating more complex functions, but for a given simple problem, using a too complex 

neural network may induce overfitting [14]. Besides, larger neural networks also bring 

difficulties to the training algorithms and are more time-consuming in the training process. 

Thus, the number of layers and neurons for the applications should be carefully determined. 

Fortunately, some criteria to guide this decision of the number of layers and neurons for various 

problems have been given in [14, 78]. However, further investigations for more accurate 

criteria for the neural network are still required.  
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Table 2 

Velocity L2 error with respect to different layers and neurons. All the results are the mean value from 10 cases with different 

weights and biases initializations. 

Neurons 

Layers 
20 30 40 50 

1 1.08×10-6 1.34×10-6 1.57×10-6 1.45×10-6 

2 5.89×10-7 7.64×10-7 7.12×10-7 6.94×10-7 

3 6.20×10-7 4.12×10-7 4.49×10-7 4.35×10-7 

4 6.35×10-7 4.69×10-7 4.02×10-7 4.28×10-7 

 

4.2. Couette flow 

Next, we present the plane Couette flow simulated with the gNPM. In this problem, the fluid 

between two infinite parallel walls is driven by the upper moving boundary with constant 

velocity, vx = 1 m/s. The configuration of the problem is same as the Poiseuille flow case, which 

is shown in Fig. 3. The timestep Δt = 2×10-3 s. The density of the fluid is 1 kg/m3, and the 

viscosity of the fluid is 1 kg∙s/m. The FNN is fixed to have 4 layers and 50 neurons per layer. 

Here, we use the same geometry settings and fluid properties as the Poiseuille case. In this 

manner, the governing equation can be written as: 
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 (23) 

The corresponding boundary conditions can be written as: 

 

( )

( )

( ) ( )
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= =
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= = =

 (24) 

Fig. 7 shows the velocity profile of the Couette flow from both random and uniform particle 

distributions at t = 0.01, 0.03, 0.06, 0.13 and 0.5 s. It is observed that both results align well 

with the analytical solutions [77]. The velocity L2 error from random and uniform particle 

distributions are 9.50×10-5 and 1.42×10-4, indicating that the gNPM can achieve high accuracy 

towards both particle distributions and is robust with respect to uneven particle distributions. 

Besides, we also observe that velocity of the particles near the moving boundary remains a 

high level of accuracy throughout modeling, despite the existence of high non-linearity at the 

beginning stage t = 0.01 s. Fig. 8 shows the velocity contour and interpolated velocity contour 
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of the Couette flow problem at t = 0.5 s. It can be observed that the velocity contours from both 

the particle distributions agree well with the analytical solutions (see Supplementary Video 3 

and 4 for more details). 

 

Fig. 7. Velocity profiles of the Couette flow problem with respect to two different particle distributions at t = 0.01, 0.03, 0.06, 

0.13, and 0.5 s. 
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Fig. 8. Velocity contour and interpolated velocity contour of the Couette flow problem at t = 0.5 s. (a) The velocity contour 

result from gNPM with randomly generated particles; (b) The velocity contour result from gNPM with uniformly generated 

particles; (c) The interpolated velocity contour from (a); (d) The interpolated velocity contour from (b); (e) The analytical 

solution.  

 

4.3. Breaking dam 

Finally, a breaking dam case is studied to test the performance of the gNPM with respect to the 

free surface problem and show the ability of the gNPM in predicting the incompressible 

pressure field. Besides, we also conduct some comparisons between the gNPM and NPM. The 

configuration for the breaking dam case is shown in Fig. 9. The initial dam length L and height 

H are respectively 0.1 m and 0.2 m. Water is used as the fluid whose viscosity and density are 

respectively 110-3 N∙s/m2 and 1103 kg/m3. The gravitational acceleration is 9.81 m/s2. Here, 

we use 741 particles to represent the fluid domain. As for the solid boundary condition, 121 

fixed wall particles are uniformly placed on the solid boundary with 0.005 m intervals. 

Meanwhile, 59 fluid particles are placed on the initial free surface with the same interval as the 

fixed wall particles. In modeling, the neural network is fixed to have 4 layers with 50 neurons 

per layer, and the timestep is Δt = 2×10-3 s. It is worth noting that, during modeling, the scale 

of the output pressure field is far larger than the velocity field, which can result in low 



22 

 

efficiency and non-convergence in the training process [79]. Hence, we apply the normalized 

pressure, P = p/ρ, so that the scale of the pressure output is the same as the velocity outputs. In 

this manner, the conservation of momentum used in the training process can be rewritten as: 

 ( )
1

.a P v g


= − +   +  (25) 

In addition, we note that the free surface particles along the modeling will remain unchanged. 

Accordingly, we can easily impose the free surface boundary condition on those particles. For 

more complex problems, additional boundary tracking algorithms, such as the alpha-shape 

technique [80], are required to identify the free surface particles at every timestep. However, 

this is beyond the current scope of this paper and will be covered in our future works. 

 

Fig. 9. Configuration of the breaking dam problem. 

 

We test the gNPM with uniformly and randomly distributed particles. Fig. 10 shows the 

configurations and the pressure contours of the dam at t = 0, 0.09, and 0.18 s. The results from 

the Incompressible SPH (ISPH) method [67] with the shifting particle algorithm [66] are also 

provided for comparison (see Supplementary Video 5 for more details). We note that the 

number of fluid particles in ISPH is the same as in the gNPM. From Fig. 10, it can be observed 

that the free-surface of the dam at the given times can be easily recognized with both particle 

distributions, and the shapes of the dam from both the methods greatly align with each other. 

This can be further demonstrated through Fig. 11, where the outlines from the gNPM, ISPH 

method, and VOF results [81] are compared at t = 0.09, 0.14, and 0.2 s. It is worth noting that, 

in Fig. 10, at the leading edge from the ISPH method, there are particles far away from the 

continuous fluid domain, while smoother leading edge outlines are obtained through our 

method. Meanwhile, the pressure contours from different methods are in good agreement. Due 
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to the existence of the gravitational acceleration, pressure near the bottom-left solid boundary 

is relatively high to prevent the fluid from penetrating the wall. Further, we observe that the 

gNPM is robust in dealing with unevenly distributed particles, as shown in the middle column 

of Fig. 10, where favorable pressure results can be obtained. With the same randomly 

distributed particles, the ISPH method results in severe failure, as shown in Fig. 12, even 

though the particle shifting algorithm is applied to re-distribute the irregular particles to be 

more regular [4]. Fig. 13 plots the non-dimensional leading edge position, X = x/H, versus the 

non-dimensional time, T = t(g/H)0.5. The VOF and the experimental results from references [81] 

are also provided for the sake of a more detailed comparison. The results from our method 

agree very closely with the experimental data and other methods, for both uniformly and 

randomly distributed particles.  

 

Fig. 10. Configurations of the fluid and pressure field at t = 0, 0.09, and 0.18 s from (a) gNPM with uniformly distributed 

particles, (b) gNPM with randomly distributed particles, and (c) ISPH with uniformly distributed particles and particle shifting 

algorithm [66]. 
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Fig. 11. Comparison of the free surface line from gNPM with different particle distributions, ISPH, and VOF [81] at t = 0.09, 

0.14, and 0.2 s.  
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Fig. 12. Comparison of the results obtained by gNPM and ISPH with the same random particle distribution at t = 0.054, 0.056, 

and 0.058 s. The ISPH results explode at the right bottom of the dam due to the uneven particle distribution. (a) Results from 

gNPM; (b) Results from ISPH method. 

 

Fig. 13. Comparison of the non-dimensional leading-edge position versus the non-dimensional time plot from gNPM with 

different particle distributions, experimental data, ISPH, and VOF [81]. 
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In addition, we conduct comparisons between the proposed gNPM and the original NPM. Fig. 

14 shows the comparisons of the pressure fields along with time at three different dam positions. 

As shown in the figure, the pressure fields from both the gNPM and the NPM are quite close 

to the SPH results at positions (0,0) and (0.1,0), indicating that the simplified pressure scheme 

in the gNPM can be as effective as the NPM with multiple pressure outputs. Besides, the 

pressure curve from the gNPM still aligns well with the SPH result at the position (0,0.1), while 

the pressure curve from the NPM generates a departure after t = 0.1 s. Meanwhile, we also 

compare the gNPM with the NPM regarding the final loss, CPU time, and iterations for one 

timestep training, which are given in Fig. 15. We studied 100 cases with random weights and 

biases initializations for both the gNPM and NPM. As shown in Fig. 15 (a), the final losses of 

the gNPM and NPM can converge to the same level (the mean values of the final losses of the 

gNPM and NPM are respectively 4.29×10-3 and 4.75×10-3). However, to achieve the same level 

of final loss, the NPM requires more CPU time and iterations than the gNPM, as shown in Fig. 

15 (b) and (c). The gNPM can take an average of 9945 iterations (corresponding to 2256.4 s) 

to converge, while the NPM requires an average of 12165 iterations (corresponding to 2747.3 

s). We note that the multiple pressure outputs in the NPM are related to the Runge-Kutta stages, 

which may ensure the accuracies of pressure fields for intermediate Runge-Kutta stages. 

However, the NPM updates the next timestep pressure field by using the weighted average of 

the multiple intermediate pressure fields. This simple approximation will bring errors for the 

predicted pressure field at the next timestep. On the contrary, the gNPM directly applies the 

pressure at the next timestep in all Runge-Kutta calculations. Although it is difficult to 

analytically quantify errors of the pressure caused by the approximations in these two methods, 

nevertheless, based on the numerical examples, we can conclude that the single pressure output 

in the gNPM can improve the computational efficiency compared to the original NPM, while 

the pressure field from the gNPM can maintain a favorable level of accuracy as the NPM and 

ISPH.  
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Fig. 14. Comparisons of the pressure values along with time at (a) position (0,0); (b) position (0.1,0); (c) position (0,0.1). The 

results from gNPM, ISPH and NPM are plotted in blue, red and yellow, respectively.  

 

Fig. 15. Histograms of (a) the final loss, (b) CPU time, and (c) iterations for one timestep training. For each method, 100 cases 

with different weights and biases initializations are studied. 

 

5. Summary 

In this work, we have developed a general Neural Particle Method (gNPM), a physics-informed 

neural network (PINN)-based truly meshfree method, for viscous hydrodynamics modeling. In 

gNPM, the field variables in terms of multiple velocities relating to the selected order of the 

RK method and the single pressure at the next timestep are approximated through an FNN. The 

neural network is trained through the physical information in terms of the boundary conditions 

and governing equations of hydrodynamics including the viscous term. The spatial derivatives 

in the governing equations are obtained through the automatic differentiation at the current 

configuration. Particles are used to discretize the computational domain and boundaries. In 

addition, the particles move with the fluid, and the positions of particles are updated after each 

timestep. In this manner, the free surfaces and moving boundaries can be easily tracked at each 

timestep. 
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Through numerical validations, we found that the gNPM shows good convergence property for 

the number of particles used in modeling. Further, the gNPM can achieve high levels of 

accuracy with different sizes of neural networks. Both velocity and pressure fields can be 

accurately predicted for incompressible hydrodynamics problems. The effectiveness of the 

gNPM towards static, moving, periodic, and free-surface boundary conditions are also 

demonstrated. Specifically, the gNPM can produce smoother free-surface boundary lines than 

the SPH method. In addition, the proposed gNPM is proven to be more robust than the SPH 

method when facing highly uneven particle distributions.  

Compared to the original NPM, the proposed gNPM is a more generalized method for viscous 

hydrodynamics applications. Unlike the NPM that calculates the spatial derivatives with 

respect to the predicted configuration, the gNPM computes spatial derivatives within the 

current configuration, making the gNPM more straightforward to implement the viscous term 

in modeling. The capability for the viscous modeling is a significant advantage of gNPM to 

solve problems in the real world. Besides, the single pressure output simplification in the 

gNPM has been demonstrated to be as effective as the NPM and ISPH. Moreover, the 

simplified pressure output reduces the required iterations for convergence compared to the 

original NPM. Hence, the gNPM is computationally more efficient than the original NPM.  

It is worth noting that, unlike other physics-informed deep learning hydrodynamics modeling 

techniques that apply neural networks to study the whole spatiotemporal space [50-52], the 

gNPM separates spatial and temporal coordinates. Normal time integration is used to handle 

the temporal space, and only the spatial space is studied through neural networks. In this 

manner, users can customize and control neural networks at different timesteps or periods to 

generate more accurate results. Further, the well-trained neural network for a given timestep 

can be applied in the next timestep training through transfer learning [82]. Transfer learning 

can greatly improve the efficiency of neural network training [82]. Moreover, the proposed 

gNPM can be extended to broader applications, including the dynamics of solids. This is one 

of the avenues we intend to explore in our future work. 

Nevertheless, we still need to note that there are certain limitations of the studies in this work. 

The proposed gNPM relies on neural networks, and more investigations regarding neural 

networks should be thoroughly conducted. Terms in the loss function can face severe scale 

differences for complex problems. Hence, more advanced techniques, e.g., the adaptive 

learning [39] and the neural tangent kernel algorithm [38], should be incorporated to balance 

the scales of the loss terms. In addition, as the developed gNPM is also computationally more 
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expensive than traditional CFD methods, further numerical techniques should be explored to 

improve the computational efficiency of gNPM, which will broaden the applicability of the 

proposed gNPM. 
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