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A generalized, computationally tractable fluid model for capturing the effects of neutral particles in

plasmas is derived. The model derivation begins with Boltzmann equations for singly charged ions,

electrons, and a single neutral species. Electron-impact ionization, radiative recombination, and

resonant charge exchange reactions are included. Moments of the reaction collision terms are

detailed. Moments of the Boltzmann equations for electron, ion, and neutral species are combined

to yield a two-component plasma-neutral fluid model. Separate density, momentum, and energy

equations, each including reaction transfer terms, are produced for the plasma and neutral

equations. The required closures for the plasma-neutral model are discussed. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4736975]

I. INTRODUCTION

A plasma-neutral model is developed in which, essen-

tially, a single-fluid magnetohydrodynamic (MHD) plasma

reacts and interacts with a gasdynamic neutral fluid. The

model accounts for electron-impact ionization, radiative

recombination, and resonant charge exchange (CX)

e� þ n! iþ þ 2e� � /ion;

e� þ iþ ! nþ h�;

iþ þ n! nþ iþ: (1)

The plasma-neutral model is derived from the ion, electron,

and neutral species Boltzmann equations using the same basic

approach as Braginskii,1 except that a neutral species is

included, species conversion (due to ionization, recombina-

tion, and CX) is allowed, and related effects on mass, momen-

tum, and energy equations are captured. Single ionization and

overall charge neutrality are assumed, and electron mass is

neglected. Only one type of atom, along with its associated

ion, is considered. The model allows separate densities, tem-

peratures, and velocities for the plasma and neutral fluids. An

optically thin plasma is assumed, so that radiation energy due

to atomic physics effects, such as de-excitation energy associ-

ated with radiative recombination, is lost from the system. To

simplify the model, excited states are not tracked. Instead, an

effective ionization potential, /ion, is assumed. This potential

includes the electron binding energy plus the excitation energy

that is expended (on average) for each ionization event.

Background information and motivation for this research

is presented in Sec. II. The model derivation is given in

Sec. III. The derivation is split into four subsections. Moments

of the collision operators are presented in Sec. III A. Mass,

momentum, and energy equations are derived for ion, electron,

and neutral fluids in Sec. III B. These equations are reduced to

a two-component plasma-neutral model in Sec. III C. Finally,

in Sec. III D, the closures required for the plasma-neutral

model are discussed. Although some specific closure options

are presented, general closure remains a topic of future

research. In Sec. IV, conclusions are drawn.

II. BACKGROUND AND MOTIVATION

In a seminal 1965 paper, Braginskii1 derives plasma

fluid equations by taking moments of ion and electron Boltz-

mann equations and closes the model by using the Chapman-

Enskog successive-approximation method to determine the

local distribution function. Braginskii’s 1965 paper includes

a “multicomponent plasma” model; his model treats the

plasma and neutral as a combined fluid and does not allow

for reactions between species and associated species conver-

sion. For a strongly collisional plasma-neutral mixture, the

combined-fluid approach of Braginskii is convenient.

Several models have been developed to simulate the inter-

action of the solar wind with the local interstellar medium, as

discussed in the review by Zank.2 Pauls et al.3 describe a non-

linear two-component hydrogen ion-neutral model that meticu-

lously accounts for CX between hydrogen ions and neutrals,

but no other reactions are included. An electron species is not

evolved, and electromagnetic fields are neglected. Closure is

handled by assuming Maxwellian fluids. Baranov and

Malama4 present a steady state model that uses a Monte Carlo

approach for handling collision integrals. Recently, a linear

two-component plasma-neutral model, but without reactions

and associated species conversion, is presented by Zaqarashvili

et al.5 for astrophysical plasma applications.

A variety of simulation tools have been developed to

understand and predict behavior of edge plasmas in toka-

maks and other fusion-grade plasmas. Two leading exam-

ples are UEDGE6–8 and B2.9,10 These codes are based on a

fluid description and are often coupled to Monte Carlo neu-

tral transport codes such as DEGAS 211 and EIRENE.12

Also, to determine turbulent transport, these 2D codes are

sometimes coupled to 3D fluid codes. For example, UEDGE

has been coupled to the turbulent transport code, BOUT.13a)Electronic mail: meier23@llnl.gov.
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Furthermore, these codes have been developed to treat im-

purity effects. Izzo et al.14,15 have developed an extension

of the 3D NIMROD code called NIMRAD to model massive

injection of impurity gas, which is used to quench tokamak

disruptions. 0D and 1D models have been developed by

You16 to model refueling physics in tokamak-like devices.

A model proposed by Helander et al.,17 again aimed at

magnetic fusion applications, uses a fluid moment approach

similar to Braginskii to derive a combined-fluid ion-neutral

model. (The electron fluid is not included in the analysis by

Helander et al. In an implementation of this model, an elec-

tron fluid equation would be either solved separately or

included with the ion fluid.) The neutral and ion distribution

functions are assumed to be strongly coupled via CX, and a

detailed description of the related closures is given.

The development of models for partially ionized gas has

primarily focused on specific problems like tokamak edge

physics or the interaction of the solar wind with the helio-

pause. A model suitable for capturing the primary fluid

effects of ionization, recombination, and charge exchange in

a variety of plasma science problems is not described in liter-

ature. Such a model is the objective of the research presented

here.

III. PLASMA-NEUTRAL MODEL DERIVATION

This derivation is split into four parts: in Sec. III A, the

required integrals of the collision operators are detailed; in

Sec. III B, the three-component electron-ion-neutral model is

described; in Sec. III C, the three-component model is

reduced to the two-component plasma-neutral model; finally,

in Sec. III D, closure of the plasma-neutral model is

discussed.

The Boltzmann equation for species a is

@fa
@t
þ v � rxfa þ

qa

ma
ðEþ v� BÞ � rvfa ¼

@fa
@t
jcollisions

¼ Cscat:;react:
a ; (2)

where the subscript of the collision operators, Cscat:;react:
a ,

refers to the species affected by the term, and the superscript

refers to the scattering or reacting collision type. The scatter-

ing collisions are elastic. The reactions can be thought of as

inelastic collisions (except for resonant CX, in which case

the initial and final quantum states are degenerate). All of the

relevant collisions may be summarized as

X
a¼i;e;n

X
scat:¼ii;ie;in;ee;en;nn

Cscat:
a þ

X
react:¼ion;rec;cx

Creact:
a

 !
; (3)

where contributions are to ion, electron, and neutral (i, e, and

n) species due to scattering collisions—ion-ion, ion-electron,

ion-neutral, electron-electron, electron-neutral, and neutral-

neutral (ii, ie, in, ee, en, nn)—and reacting collisions—ioniza-

tion, recombination, and CX (ion, rec, cx). The plasma-neutral

model is derived from Eq. (2) using the same basic approach

as Braginskii,1 except that a neutral species is included, spe-

cies conversion (due to ionization, recombination, and CX) is

allowed, and related effects on mass, momentum, and energy

equations are captured assuming reacting Maxwellian popula-

tions. As discussed in Sec. III D, closure of the model is

achieved by adopting the results of earlier work1,18 that

applied the Chapman-Enskog successive-approximation

approach to determine local ion, electron, and neutral distribu-

tion functions.

A. Moments of collision operators

For the purposes of this derivation, specific forms of the

scattering collision operators are not needed. The electron-

impact ionization, radiative recombination, and resonant CX

collision operators are

Cion
n ¼ �fn

ð
ferionvreldv; (4)

Cion
e ¼ Cion

i ¼ fn

ð
ferionvreldv; (5)

Crec
e ¼ �fe

ð
firrecvreldv; (6)

Crec
i ¼ �fi

ð
ferrecvreldv; (7)

Crec
n ¼

me

mn
fe

ð
firrecvreldvþ mi

mn
fi

ð
ferrecvreldv; (8)

Ccx
i ¼ fn

ð
rcxvrelfidv� fi

ð
rcxvrelfndv; (9)

and

Ccx
n ¼

mi

mn
fi

ð
rcxvrelfndv� mi

mn
fn

ð
rcxvrelfidv: (10)

Here, vrel is the relative speed of the colliding particles. The

ionization and recombination cross-sections are assumed to

be functions of only the random component of the electron

particle velocity. As discussed by Ripken and Fahr,19 the

form of the resonant CX collision operator is attributable to

the fact that the initial and final quantum mechanical states

have identical energy. The CX cross section is assumed to be

a function of a representative collision velocity as discussed

below.

A Maxwellian form for fa is assumed—fa ¼ na

ðpv2
TaÞ
�3=2e�ðv�vaÞ2=v2

Ta , where na is the species number den-

sity, v is the velocity, and va is the species bulk velocity. The

species thermal velocity is vTa �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kTa=ma

p
, where Ta is the

species temperature and k is the Boltzmann constant. The

random velocity is defined as w � v� va.

0th, 1st, and 2nd moments of the reaction collision opera-

tors are derived next. A summary of results is provided fol-

lowing the moment derivations.

As noted in Sec. II, Pauls et al.3 describe these moments

for resonant CX but not for electron-impact ionization and

radiative recombination. In the model proposed by Helander

et al.,17 moments of the ionization and recombination colli-

sion operators are shown without supporting details.

Moments of the CX operator are not necessary in the

072508-2 E. T. Meier and U. Shumlak Phys. Plasmas 19, 072508 (2012)

Downloaded 23 Sep 2012 to 128.95.104.109. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



combined-fluid formulation of Helander et al. The

UEDGE6–8 and B29,10 codes can rely on Monte Carlo calcu-

lations to include the effects of reaction collisions or use

fluid models for flows parallel to the magnetic field to

account for momentum and energy exchange due to ioniza-

tion, recombination, and CX (though, for CX, only the direct

transfer of momentum between ion and neutral fluids, as dis-

cussed below, is included).

1. 0th moments—$Cscat :;react :
a dv

Scattering has no 0th moment effect.

For the 0th moment effect of ionization on the neutral

species, the required integral of Eq. (4) isð
Cion

n dv ¼ �
ð

fnðv0Þ
ð

feðvÞrionðvrelÞvreldvdv0: (11)

Consider the inner integral over electron particle velocity

space. The Maxwellian electron distribution is a function of

the random velocity, w � v� ve. The relative velocity is

vrel ¼ jv� v0j. Assuming that the electron thermal speed is

high compared to the relative fluid flow speed, jve � vnj, and

the neutral thermal speed, the relative velocity in the ionizing

collisions is vrel � w, where w � jwj. The inner integral is

thenð
feðvÞrionðvrelÞvreldv �

ð
feðwÞrionðwÞwdw ¼ nehrionvei;

(12)

where h�i refers to the statistical average over velocity space,

and hrionvei is the ionization rate parameter with units of vol-

ume per time. As discussed in Sec. III D, hrionvei is parame-

terized in terms of Te. The entire integral is nowð
Cion

n dv � Cion
n � �

ð
fnðv0Þnehrionveidv0 ¼ �nennhrionvei;

(13)

where the notation, Creact:
a , is introduced for source rates due

to a given reaction collision (react:) affecting species a.

Using a similar procedure, the ionization contribution to the

ion species is found to be
Ð

Cion
i dv � Cion

i ¼ �Cion
n . The ioni-

zation contribution to the electron species is identical,Ð
Cion

e dv � Cion
e ¼ Cion

i . Only Cion
i will be used to refer to

ionization source rates for the ion, neutral, and electron spe-

cies. Appropriate substitutions will be made based on

Cion
e ¼ �Cion

n ¼ Cion
i .

For recombination, again assuming high electron ther-

mal speed compared to the relative bulk fluid flow speed,

jve � vij, and the ion thermal speed,ð
Crec

i dv � Crec
i � �ninehrrecvei: (14)

The quantity hrrecvei is the recombination rate parameter. As

discussed in Sec. III D, hrrecvei is parameterized in terms

of Te. The 0th moment recombination contribution to the

electron and neutral species are
Ð

Crec
e dv � Crec

e ¼ Crec
i and

Ð
Crec

n dv � Crec
n ¼ �Crec

i . Substitutions will be made, so that

only Crec
n will be used to refer to recombination source rates.

It is intuitively obvious that CX does not result in a net

change of total electron, ion, or neutral populations. How-

ever, understanding the details of the CX collision term is

important for higher moments and so the 0th moment is

examined now. Following Paul et al.,3 Ccx
i , given by Eq. (9),

can be accurately approximated as

Ccx
i � rcxðv�i nifn � v�nnnfiÞ; (15)

where v�a � vTa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=pþ x2

p
. Here, x � jv� vaj=vTa. After an

additional approximation (resulting in a total worst-case

error on the order of a few percent), the 0th moment integra-

tion of the first term of Eq. (15) yieldsð
rcxv�i nifndv � rcxðVcxÞninnVcx; (16)

where a representative speed for the CX interaction, Vcx, is

defined as

Vcx �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

p
v2

Ti þ
4

p
v2

Tn þ v2
in

r
; (17)

where v2
in � jvi � vnj2. Note that rcx is evaluated at Vcx. The

steps required to arrive at Eqs. (15) and (16) are detailed in

the dissertation by Meier,20 which also discusses formulas

for the dependence of rcx on velocity for hydrogenic species.

It is useful to define the quantity

Ccx � rcxðVcxÞninnVcx: (18)

Now it is clear that
Ð

Ccx
i dv � Ccx � Ccx ¼ 0 andÐ

Ccx
n dv � mi=mnðCcx � CcxÞ ¼ 0.

2. 1st moments—
Ð
mavCscat :;react :

a dv

For scattering collisions affecting species a, 1st moments

are
Ð

mavCscat:
a dv. Splitting the particle velocity into bulk

and random components, v ¼ va þ w,ð
mavCscat:

a dv ¼ mava

ð
Cscat:

a dvþ ma

ð
wCscat:

a dv: (19)

The first term on the right is zero. The second term is the

frictional force,

Rscat:
a ¼ ma

ð
wCscat:

a dv: (20)

Approximations of frictional forces between ions and elec-

trons are presented by Braginskii.1 Frictional forces between

charged species (ions and electrons) and the neutral species

are presented in the three-component and two-component

models of Secs. III B and III C, but in the closures discussed

in Sec. III D, these terms are assumed to be negligible.

The effect of ionization on the ion species is found by

taking the 1st moment of Eq. (5),
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ð
mivCion

i dv ¼
ð

mivfnðvÞ
ð

feðv0Þrionvreldv0dv: (21)

Using the earlier result of Eq. (12) for the inner integral and

splitting the neutral particle velocity into bulk and random

components, v ¼ vn þ w,ð
mivCion

i dv � mivnC
ion
i : (22)

(Note that the integral of the odd function that arises in the

preceding integral, and in several following integrals, van-

ishes.) Similarly, the 1st moment contributions of ionization

to the electron and neutral species are
Ð

mevCion
e dv

� mevnC
ion
i , and

Ð
mnvCion

n dv � �mnvnC
ion
i .

1st moment contributions of recombination to the ion,

electron, and neutral species are
Ð

mivCrec
i dv � �miviC

rec
n ,Ð

mevCrec
e dv � �meveC

rec
n , and

Ð
mnvCrec

n dv � ðmivi

þmeveÞCrec
n .

For CX, the 1st moment contribution to the ion species

isð
mivCcx

i dv � mircx

ð
vðniv

�
i fn � nnv�nfiÞdv

¼ mircx nivn

ð
v�i fndvþ ni

ð
wv�i fndv

�

� nnvi

ð
v�nfidv� nn

ð
wv�nfidv

�
¼ miðvn � viÞCcx

þ mircx ni

ð
wv�i fndv� nn

ð
wv�nfidv

� �
: (23)

The final two terms in the last line of Eq. (23) represent the

frictional transfer of momentum, Rcx
in � mircxni

Ð
wv�i fndv

and Rcx
ni � mircxnn

Ð
wv�nfidv. As found by Pauls et al.3 (and

detailed by Meier20), appropriate approximations for these

frictional forces are

Rcx
in � �mircxðVcxÞninnvinv2

Tn 4
4

p
v2

Ti þ v2
in

� �
þ 9p

4
v2

Tn

� ��1=2

(24)

and

Rcx
ni � mircxðVcxÞninnvinv2

Ti 4
4

p
v2

Tn þ v2
in

� �
þ 9p

4
v2

Ti

� ��1=2

:

(25)

Thus, the 1st moment CX contribution to the ion species isð
mivCcx

i dv � miðvn � viÞCcx þ Rcx
in � Rcx

ni : (26)

The neutral species CX contribution has the same magnitude,

but the opposite sign,
Ð

mnvCcx
n dv ¼ �

Ð
mivCcx

i dv � mi

ðvi � vnÞCcx þ Rcx
ni � Rcx

in .

The 1st moment terms involving reaction rates (Crxn
a )

times velocities represent the direct transfer of momentum

due to bulk fluid effects. The terms Rcx
in and Rcx

ni represent the

“frictional” drag forces due to charge exchange and are anal-

ogous to the frictional drag force acting on electrons and rep-

resented by gj in the generalized Ohm’s law (see Secs. III C

and III D). Such frictional terms do not arise for ionization

and recombination because, for those reactions, the electron

thermal speed is assumed to be much faster than the relative

particle motion.

3. 2nd moments—
R

1
2 mav

2Cscat :;react :
a dv

For scattering collisions between species a and b, 2nd

moments are
Ð

1
2

mav2Cscat:
a dv. Splitting the particle velocity

into bulk and random components, v ¼ va þ w,ð
1

2
mav2Cscat:

a dv ¼ mava � Rscat:
a þ 1

2
ma

ð
w2Cscat:

a dv; (27)

where the first term, involving the frictional force (already

discussed), represents conversion of kinetic to thermal

energy, i.e., frictional heating. The second term,

Qscat:
a � 1

2
ma

ð
w2Cscat:

a dv; (28)

is called “heat generation” by Braginskii (cf. discussion on

p. 232 of Braginskii1). Because Qscat:
a is more accurately

described as an inter-species exchange of energy, this term

will be referred to as “heat exchange.” The approach of Bra-

ginskii1 may be followed for the terms in Eq. (27) corre-

sponding to ion-electron scattering. Equation (27) also

describes charged-neutral (i.e., ion-neutral and electron-neu-

tral) scattering collisions. Ion-electron and charged-neutral

2nd moment terms are presented in the three-component

model of Sec. III B. The ion-electron terms cancel in the

reduction of the three-component model to the two-

component model of Sec. III C. As discussed in Sec. III D,

the charged-neutral terms can often (but certainly not

always) be neglected.

The 2nd moment of Cion
i , after again using Eq. (12) for

the integral over electron velocity space, isð
1

2
miv

2Cion
i dv�minehrionvei

1

2
v2

n

ð
fndvþ1

2

ð
w2fndv

� �
: (29)

The first term on the right is related to the 0th moment. The

second term is easily evaluated in spherical coordinates.

Inserting the Maxwellian form for fn, the integral isð
w2fndv ¼ 3

2
nnv2

Tn; (30)

Eq. (29) is nowð
1

2
miv

2Cion
i dv � mi

mn

Cion
i

2
mnv2

n þ
3

2
mnv2

Tn

� �
: (31)

Using the definition of vTn, the two terms on the right can be

identified as transfer of kinetic energy and internal energy.

Defining Qion
n � Cion

i
3
2

kTn, the equation for the 2nd moment

of Cion
i can be expressed as
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ð
1

2
miv

2Cion
i dv � mi

mn
Cion

i

1

2
mnv2

n þ Qion
n

� �
: (32)

Similarly,ð
1

2
mev2Cion

e dv � me

mn
Cion

i

1

2
mnv2

n þ Qion
n

� �
� Cion

i /ion; (33)

where the effective ionization energy is extracted, andð
1

2
mnv2Cion

n dv � � Cion
i

1

2
mnv2

n þ Qion
n

� �
: (34)

The 2nd moment of Crec
i isð

1

2
miv

2Crec
i dv � � Crec

n

1

2
miv

2
i þ Qrec

i

� �
; (35)

where Qrec
i � Crec

n
3
2

kTi. The 2nd moment of Crec
e isð

1

2
mev2Crec

e dv ¼ � 1

2
meni v2

e

ð
ferrecvreldv

�

þ
ð

w2ferrecvreldv

�
: (36)

Here, the usual high electron thermal speed assumption is

made. The product rrecvrel is assumed to be independent of

ion velocity and is extracted from the inner integral of Eq.

(6). The inner integral yields the ion density, ni, which is

seen in Eq. (36). The first term on the right side of Eq. (36)

represents transfer of kinetic energy; the integral over elec-

tron velocity space gives nehrrecvei just as seen for the 0th

moment in Eq. (14). The second term, representing conver-

sion of electron thermal energy, involves the integralÐ
ferrecw3dv. Whereas the 0th moment integral

Ð
ferrecwdv

results in nehrrecvei, where hrrecvei is parameterized in terms

of Te, a convenient parameterization for the integralÐ
ferrecw3dv in Eq. (36) is not immediately available because

an additional factor of w2 is entangled in the integral. For

further discussion, see Sec. III D. Defining Qrec
e � 1=2meniÐ

ferrecw3dv,ð
1

2
mev2Crec

e dv ¼ � Crec
n

1

2
mev2

e þ Qrec
e

� �
: (37)

The 2nd moment of Crec
n isð

1

2
mnv2Crec

n dv � Crec
n

1

2
miv

2
i þ

1

2
mev2

e

� �
þ Qrec

i þ Qrec
e :

(38)

The 2nd moment contribution of CX to the ion species isð
1

2
miv

2Ccx
i dv � 1

2
mircx

ð
v2ðv�i nifn � v�nnnfiÞdv; (39)

which after expanding the velocities into fluid and random

velocities, is

ð
1

2
miv

2Ccx
i dv� mircx

1

2
niv

2
n

ð
v�i fndv� 1

2
nnv2

i

ð
v�nfidvþ nivn �

ð
wv�i fndv� nnvi �

ð
wv�nfidvþ 1

2

ð
w2ðniv

�
i fn� nnv�nfiÞdv

� �

¼ Ccx 1

2
miðv2

n� v2
i Þ þ vn �Rcx

in � vi �Rcx
ni þ

1

2
rcxmi

ð
w2ðniv

�
i fn� nnv�nfiÞdv: (40)

The last term in Eq. (40) represents transfers of random

thermal energy, Qcx
in � 1

2
rcxmi

Ð
w2 niv

�
i fndv and

Qcx
ni � 1

2
rcxmi

Ð
w2nnv�nfidv. As found by Pauls et al.3 (and

detailed by Meier20), appropriate approximations of these

thermal energy transfers are

Qcx
in � rcxðVcxÞmininn

3

4
v2

Tn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

p
v2

Ti þ
64

9p
v2

Tn þ v2
in

r
(41)

and

Qcx
ni � rcxðVcxÞmininn

3

4
v2

Ti

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

p
v2

Tn þ
64

9p
v2

Ti þ v2
in

r
: (42)

Equation (39) can now be writtenð
1

2
miv

2Ccx
i dv�Ccx1

2
miðv2

n�v2
i Þþvn �Rcx

in�vi �Rcx
niþQcx

in�Qcx
ni :

(43)

The 2nd moment of Ccx
n is

ð
1

2
mnv2Ccx

n dv � Ccx 1

2
miðv2

i � v2
nÞ � vn � Rcx

in

þ vi � Rcx
ni � Qcx

in þ Qcx
ni : (44)

4. Summary of reaction collision operator integrals

Summarizing for the 0th moment,ð
Cion

e dv � Cion
i ;

ð
Cion

i dv � Cion
i ;

ð
Cion

n dv � �Cion
ið

Crec
e dv � �Crec

n ;

ð
Crec

i dv � �Crec
n ;

ð
Crec

n dv � Crec
nð

Ccx
i dv � Ccx � Ccx ¼ 0;

ð
Ccx

n dv � Ccx � Ccx ¼ 0:

(45)

Summarizing for the 1st moment,
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ð
mevCion

e dv � mevnC
ion
i ;

ð
mivCion

i dv � mivnC
ion
i ;

ð
mnvCion

n dv � �mnvnC
ion
ið

mevCrec
e dv � �meveC

rec
n ;

ð
mivCrec

i dv � �miviC
rec
n ;

ð
mnvCrec

n dv � ðmivi þ meveÞCrec
nð

mivCcx
i dv � miðvn � viÞCcx þ Rcx

in � Rcx
ni

ð
mnvCcx

n dv � miðvi � vnÞCcx þ Rcx
ni � Rcx

in :

(46)

Summarizing for the 2nd moment,ð
1

2
mev2Cion

e dv � me

mn
Cion

i

1

2
mnv2

n þ Qion
n

� �
� Cion

i /ion;ð
1

2
miv

2Cion
i dv � mi

mn
Cion

i

1

2
mnv2

n þ Qion
n

� �
;ð

1

2
mnv2Cion

n dv � � Cion
i

1

2
mnv2

n þ Qion
n

� �
;ð

1

2
mev2Crec

e dv � � Crec
n

1

2
mev2

e þ Qrec
e

� �
;ð

1

2
miv

2Crec
i dv � � Crec

n

1

2
miv

2
i þ Qrec

i

� �
;ð

1

2
mnv2Crec

n dv � Crec
n

1

2
miv

2
i þ

1

2
mev2

e

� �
þ Qrec

i þ Qrec
e ;ð

1

2
miv

2Ccx
i dv � Ccx 1

2
miðv2

n � v2
i Þ þ vn � Rcx

in � vi � Rcx
ni þ Qcx

in � Qcx
ni ;ð

1

2
mnv2Ccx

n dv � Ccx 1

2
miðv2

i � v2
nÞ þ vi � Rcx

ni � vn � Rcx
in þ Qcx

ni � Qcx
in :

(47)

B. Three-component electron-ion-neutral model

The next step toward the two-component plasma-neutral

equations is to compose the three-fluid electron-ion-neutral

model, which is a generalization of the two-fluid plasma

model21,22 to include reacting neutrals. Using the expressions

for moments of the reaction collision operators summarized

in Sec. III A and taking moments of Eq. (2) (closely follow-

ing the approach of Braginskii1), the following continuity,

momentum, and energy equations are derived for the ion,

electron, and neutral species.

1. Continuity

@ni

@t
þr � ðniviÞ ¼ Cion

i � Crec
n ; (48)

@ne

@t
þr � ðneveÞ ¼ Cion

i � Crec
n ; (49)

@nn

@t
þr � ðnnvnÞ ¼ Crec

n � Cion
i : (50)

2. Momentum

@

@t
ðminiviÞ þ r � ðminivivi þPiÞ

¼ qiniðEþ vi � BÞ þ Rie
i þ Rin

i þ Cion
i mivn

� Crec
n mivi þ Ccxmiðvn � viÞ þ Rcx

in � Rcx
ni ; (51)

@

@t
ðmeneveÞ þ r � ðmeneveve þPeÞ

¼ �qeneðEþ ve � BÞ � Rie
i þ Ren

e

þ Cion
i mevn � Crec

n meve; (52)

@

@t
ðmnnnvnÞ þ r � ðmnnnvnvn þPnÞ

¼ �Rin
i � Ren

e þ Crec
n ðmivi þ meveÞ � Cion

i mnvn

þCcxmiðvi � vnÞ � Rcx
in þ Rcx

ni ; (53)

where qi and qe are the ion and electron charge magnitudes,

respectively, and Rie
i is the usual scattering collisional trans-

fer of momentum to the ion species presented by Braginskii1

as Rie. Rin
i is a similar scattering collisional momentum

transfer to the ion species, but for ion-neutral collisions. Ren
e

is a similar momentum transfer for electron-neutral colli-

sions. The species pressure tensor, Pa, can be decomposed

as Pa ¼ paIþPa, where pa is the scalar pressure and Pa is

the stress tensor.

3. Energy
@ei

@t
þr�ðeiviþvi �PiþhiÞ

¼ vi � ðqiniEþRie
i þRin

i ÞþQie
i þQin

i

þmi

mn
Cion

i

1

2
mnv2

nþQion
n

� �
�Crec

n

1

2
miv

2
i �Qrec

i

þCcx 1

2
mi v2

n� v2
i

� �
þvn �Rcx

in �vi �Rcx
ni þQcx

in �Qcx
ni ; (54)
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@ee

@t
þr � ðeeve þ ve �Pe þ heÞ ¼ ve � ð�qeneE� Rie

i þ Ren
e Þ þ Qie

e þ Qen
e þ

me

mn
Cion

i

1

2
mnv2

n þ Qion
n

� �
� Cion

i /ion

� Crec
n

1

2
mev2

e � Qrec
e ; (55)

@en

@t
þr � ðenvn þ vn �Pn þ hnÞ ¼ �vn � ðRin

i þ Ren
e Þ þ Qin

n þ Qen
n þ Crec

n

1

2
miv

2
i þ

1

2
mev2

e

� �
þ Qrec

i þ Qrec
e

� Cion
i

1

2
mnv2

n þ Qion
n

� �
þ Ccx 1

2
miðv2

i � v2
nÞ þ vi � Rcx

ni � vn � Rcx
in þ Qcx

ni � Qcx
in ; (56)

where ea � manav2
a=2þ pa=ðc� 1Þ is the total fluid energy

density, and Qie
i and Qie

e are the usual scattering collisional

heat exchange presented by Braginskii1 as Qie and Qei,

respectively. Qin
i=n and Qen

e=n represent the same type of heat

exchange due to ion-neutral and electron-neutral collisions,

respectively. The species heat fluxes are represented by ha.

Maxwell’s equations couple the fluid dynamics to the elec-

tric and magnetic field evolution. The heat fluxes (ha) and

the stress tensors (Pa) must be specified to close the model.

This closure is often accomplished by using a Chapman-

Enskog-like determination of the local distribution functions.

These terms are further addressed in Sec. III D.

To compare to the well-known two-fluid transport

equations presented by Braginskii,1 it is useful to identify

temperature evolution equations for this three-component

ion-electron-neutral model. Beginning with the fluid energy

evolution equations above, kinetic energy evolution is

subtracted to find pressure evolution. For each species, ki-

netic energy evolution is found by taking the scalar product

of the fluid velocity with the momentum equation. The spe-

cies continuity equations are used to simplify the results.

(This procedure is outlined by Braginskii1 and is described

in some detail by Meier.20) Next, temperature evolution is

isolated. For the ion species, for example, the ion continuity

equation is used to find the relationship

1

c� 1

@pi

@t
þr � 1

c� 1
pivi

� �

¼ kni

c� 1

@Ti

@t
þ vi � rTi

� �
þ kTi

c� 1
ðCion

i � Crec
n Þ: (57)

Similar relationships for electron and neutral temperature

evolution are easily found. The resulting temperature evolu-

tion equations are

kni

c� 1

@Ti

@t
þ vi � rTi

� �
þ pir � vi ¼�r � qi �Pi : rvi �

kTi

c� 1
ðCion

i �Crec
n Þ þQie

i þQin
i þ ðCion

i þ CcxÞmi

2
ðvi � vnÞ2

þ mi

mn
Qion

n �Qrec
i þRcx

in � ðvn � viÞ þQcx
in �Qcx

ni ; (58)

kne

c� 1

@Te

@t
þ ve � rTe

� �
þ per � ve ¼�r � qe �Pe : rve �

kTe

c� 1
ðCion

i � Crec
n Þ þ Qie

e þ Qen
e

þ Cion
i

me

2
ðve � vnÞ2 � /ion

h i
þ me

mn
Qion

n � Qrec
e ; (59)

knn

c� 1

@Tn

@t
þ vn � rTn

� �
þ pnr � vn ¼�r � qn �Pn : rvn �

kTn

c� 1
ðCrec

n � Cion
i Þ þ Qin

n þ Qen
n

þ Crec
n

mi

2
v2

i þ
mn

2
v2

n þ
me

2
v2

e � mevn � ve � mivn � vi

	 

þ Qrec

i þ Qrec
e � Qion

n

þ Ccx mi

2
ðvn � viÞ2 þ Rcx

ni � ðvi � vnÞ þ Qcx
ni � Qcx

in : (60)

C. Two-component plasma-neutral model

To reach a two-component model, the electron and ion

fluids are treated as a single fluid. The MHD approximations

are made, such that n ¼ ni ¼ ne, me ! 0, and v ¼ vi. It is

further assumed that q ¼ qi ¼ qe and mi ¼ mn. Current den-

sity, j ¼ qnðvi � veÞ, is introduced.

1. Continuity

Along with the neutral continuity equation, only a single

plasma continuity equation is needed.

@n

@t
þr � ðnvÞ ¼ Cion

i � Crec
n ; (61)
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@nn

@t
þr � ðnnvnÞ ¼ Crec

n � Cion
i : (62)

2. Momentum

The ion and electron momentum equations are summed

to yield the plasma momentum equation.

@

@t
ðminvÞ þ r � ðminvvþ pIþPÞ

¼ j� Bþ Rin
i þ Ren

e þ Cion
i mivn � Crec

n miv

þ Ccxmiðvn � vÞ þ Rcx
in � Rcx

ni ; (63)

@

@t
ðminnvnÞþr� ðminnvnvnþpnIþPnÞ

¼�Rin
i �Ren

e þCrec
n miv�Cion

i mivnþCcxmiðv�vnÞ
þRcx

ni �Rcx
in : (64)

To arrive at Eq. (63) for plasma momentum evolution, the

relationship1,23,24

minvvþP ¼
X
a¼i;e

ðmanvava þPaÞ

is used. The total scalar plasma pressure is p ¼ pi þ pe, and

the total plasma stress tensor is P ¼ Pi þPe. Assuming the

same density and temperature for ions and electrons, for

magnetized or unmagnetized plasma, the components of the

electron stress tensor, Pe, are all much smaller than the cor-

responding components in the ion stress tensor, Pi, essen-

tially because of the much larger momentum carried by

ions.1 Components of Pe are smaller than the corresponding

components of Pi by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
or greate r. The

factor
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mi=me

p
is approximately 43 for protons and is larger

for species with higher atomic numbers, so the approxima-

tion P � Pi is appropriate.

3. Generalized Ohm’s law

The generalized Ohm’s law is found from the electron

momentum equation after letting me ! 0, and using

ve ¼ vi � j=qn, where j is defined in terms of B via the low-

frequency Ampère’s law.

Eþ v� B ¼ 1

qn
ðj� B�r �Pe � Rie

i þ Ren
e Þ:

Applying Faraday’s law, this can be written as

@B

@t
¼r� v�B� 1

qn
ðj�B�r �Pe �Rie

i þRen
e Þ

� �
: (65)

4. Energy

Again adding the electron and ion equations and letting

me ! 0,

@e
@t
þr � ðevþ v � ðpIþPÞ þ hÞ ¼ j � Eþ v � Rin

i þ ve � Ren
e

þ Qin
i þ Qen

e þ Cion
i

1

2
miv

2
n � /ion

� �
þ Qion

n � Crec
n

1

2
miv

2

� Qrec
i � Qrec

e þ Ccx 1

2
miðv2

n � v2Þ þ vn � Rcx
in � v � Rcx

ni

þ Qcx
in � Qcx

ni ; (66)

@en

@t
þr � ðenvn þ vn � ðpnIþPnÞ þ hnÞ

¼ �vn � ðRin
i þ Ren

e Þ þ Qin
n þ Qen

n þ Crec
n

1

2
miv

2

þ Qrec
i þ Qrec

e � Cion
i

1

2
miv

2
n � Qion

n þ Ccx 1

2
miðv2 � v2

nÞ

þ v � Rcx
ni � vn � Rcx

in þ Qcx
ni � Qcx

in : ð67Þ

To arrive at Eq. (66) for plasma fluid energy evolution, Rie
i �

ðv� veÞ has cancelled with Qie
i þ Qie

e as discussed by Bra-

ginskii.1 The relationship1,23,24

evþ v �Pþ h ¼
X
a¼i;e

ðeava þ va �Pa þ haÞ

is used in adding the ion and electron flux terms. Here, e
¼ ðpi þ peÞ=ðc� 1Þ þ qv2=2 and h ¼ hi þ he � cpej=
½neðc� 1Þ�. (The electron stress tensor is neglected in

defining h.)

Alternative formulations of the energy equations may be

desired. For example, Meier20 derives equations for plasma

and neutral species pressure evolution.

D. Closure of plasma-neutral model

In general, when taking moments of Boltzmann equa-

tions to generate fluid moment equations, each moment pro-

duces terms that depend on the next higher moment of the

distribution function. The fluid moment procedure must be

“closed” by using a limited set of fluid equations to approxi-

mately determine each species distribution function. For the

three-component electron-ion-neutral and two-component

plasma-neutral models derived above, the moment procedure

is truncated after the second moment. Closure is established

by applying the Chapman-Enskog approach as discussed in

detail by Braginskii.1 The species distribution functions are

expanded as fa ¼ f 0
a þ f 1

a þ f 2
a þ � � �, where f 0

a is Maxwellian

and the additional terms represent higher-order perturba-

tions. Typically, only the first-order perturbations (f 1
a ) are

retained. Braginskii1 describes the closure of his plasma

models under the assumption that the lowest-order terms in

the ion and electron Boltzmann equations are the scattering

collision terms and the magnetic terms. The same assump-

tion is adopted for the closures suggested here for the

plasma-neutral model. Other researchers have assumed dif-

ferent orderings. For example, Helander et al.17 assume that

CX collision terms are dominant in the neutral species Boltz-

mann equation. As discussed by Meier,20 a generalization

that allows scattering, CX, ionization, and recombination

reactions to share the dominant role is an objective of future

research.

The higher-order terms generated by the moment proce-

dure are the heat fluxes (ha) and stress tensors (Pa). Once

the distribution functions have been approximated, these

terms can be quantified. The presence of non-Maxwellian

perturbations to the distribution functions also has implica-

tions for moments of the collision operators. For example,

Braginskii1 discusses and quantifies the thermal gradient

force that contributes to the ion-electron frictional force, Rie
i ,
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and associated heat exchange terms, Qie
i and Qie

e , which

appear in the three-component ion-electron-neutral model of

Sec. III B. (Note that the ion-electron frictional force and

heat exchange terms cancel when the two-component

plasma-neutral model is formulated.) Purely Maxwellian

reacting distribution functions (i.e., fa ¼ f 0
a ) are assumed

when taking moments of reaction collision operators. Thus,

the non-Maxwellian effects due to thermal gradients in the

CX friction terms Rcx
in and Rcx

in and associated thermal energy

exchange terms are neglected in the present derivation.

Specific closures for each equation of the plasma-neutral

model of Sec. III C are now discussed. The reaction-related

terms, i.e., Creact:
a , Rreact:

a , and Qreact:
a , do not technically fall

into the “closure” category—non-Maxwellian effects are not

included in those terms. However, discussion of their quanti-

fication is included below and relevant references are

supplied.

1. Closure of continuity equations

To compute Cion
i and Crec

n , the ionization and recombina-

tion rate parameters arising in Eqs. (13) and (14) must be

specified. For hydrogenic atoms, an approximation for the

ionization rate parameter in terms of electron temperature

(which may be assumed, e.g., to be equal to the ion tempera-

ture) is supplied by McWhirter.25 As discussed by Meier,20

hrionvei for the first 28 elements can be determined with the

fitting formula and associated data given by Voronov.26 An

approximation for the radiative recombination rate parameter

in terms of electron temperature is presented by

McWhirter.25 Goldston27 provides a useful discussion of

these rate parameters.

2. Closure of momentum equations

In Sec. III A, the resonant CX-related terms are defined,

but the functional dependence of rcxðVcxÞ on Vcx is not speci-

fied. An appropriate form for the hydrogenic CX cross-

section, based on CX data from Barnett,28 is rcx;H ¼ 1:09

�10�18 � 7:15� 10�20lnðVcxÞm2. This formula matches the

Barnett data to within 10% for relative ion-neutral particle

speeds between 4:8� 103 m/s and 1:4� 106 m/s (i.e.,

between 0.12 eV and 10 keV for hydrogen).

The stress tensors P and Pn may be replaced with

standard formulas. For example, assuming isotropic unmag-

netized plasma viscosity and neglecting compressibility

effects, P ¼ �n½rvþ ðrvÞ>�, where n is the isotropic

dynamic viscosity coefficient given by Braginskii.1 Simi-

larly, the neutral fluid stress tensor may be approximated as

Pn ¼ �nn½rvn þ ðrvnÞ>�. The neutral dynamic viscosity

coefficient may be calculated using a rigid elastic sphere

model as presented in Chapman and Cowling.18

In many cases, the terms Rin
i and Ren

e are negligible.

Goldston27 shows that neutral-charged particle collisions are

unimportant compared to Coulomb collisions for plasmas

that are “even a few percent ionized.” If the model is applied

to a problem in which interesting physics occurs in regions

of very low ionization, these terms should be addressed

and included. Schunk and Nagy29 propose treating neutral-

charged particle interactions as Maxwell molecule collisions.

See also the related astrophysical work of Leake et al.,30 in

which the plasma-neutral model of Sec. III C is employed to

simulate the weakly ionized solar chromosphere.

3. Closure of generalized Ohm’s law

The electron-neutral scattering term Ren
e should be

treated appropriately, as discussed in Sec. III D 3 on the mo-

mentum equation closures. The terms j� B=ðenÞ (the Hall

term) and r �Pe=ðenÞ (the diamagnetic term) may be

retained if electron fluid effects are of interest. Several sour-

ces1,31,32 provide detailed discussion of the range of validity

for these assumptions. A particularly important requirement

is that length scales of interest should be much larger than

the ion gyroradius.

The frictional drag term, �Rie
i =ðenÞ is generally aniso-

tropic with drag forces perpendicular to the magnetic field

being a factor of two stronger than those parallel to the field.

Braginskii1 provides details for computing this drag term

with anisotropic resistivity (e.g., ĝ � j, where ĝ is a tensor re-

sistivity) or with isotropic resistivity (e.g., gj, where g is a

scalar resistivity). In some cases, it may be appropriate to

include anomalous effects in resistivity, e.g., Chodura resis-

tivity; see the dissertation by Meier.20

4. Closure of energy equations

Several reaction-related terms in the energy equations

are as yet unspecified. The resonant CX-related terms in the

energy equations are defined in Sec. III A. The resonant CX

cross-section, rcxðVcxÞ, can be specified as discussed in the

preceding discussion regarding closure of momentum equa-

tions. Formulas for Qion
n and Qrec

i are defined in composing

Eqs. (32) and (35), respectively. As discussed with regard to

Eq. (36), the conversion of electron thermal energy is defined

as Qrec
e � 1=2meni

Ð
ferrecw3dv. Parameterization of this in-

tegral in terms of Te seems feasible, but Qrec
e can be

neglected if electron thermal energy loss in radiative recom-

bination is not expected to play an important role in the

energy balance. (Note that in formulating Eq. (66), the elec-

tron kinetic energy transfer due to recombination is dropped

in the me ! 0 limit. Because Qrec
e involves thermal energy,

however, it should be evaluated prior to applying the

me ! 0 limit.)

The terms containing factors of Rin
i and Ren

e are

neglected here for the same reasons that these charged-

neutral friction forces are neglected in the momentum equa-

tions. The charged-neutral particle scattering terms, Qin
i and

Qen
e , are dropped for the same reasons. The stress tensors, P

and Pn, can be approximated as discussed for the momen-

tum equations.

Under the assumption that scattering collisions domi-

nate the species Boltzmann equations, heat flux closures

can be taken from prior work, specifically Braginskii1

(for the plasma heat flux), and Chapman and Cowling18

(for the neutral heat flux). The plasma-neutral heat fluxes

are

h ¼ �½jkb̂b̂ þ j?ðI� b̂b̂Þ� � rT � cpej

nqeðc� 1Þ (68)
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and

hn ¼ �jnrTn: (69)

In the plasma heat flux, h, the jk and j? account for the

effects of ion and electron thermal conductivity parallel and

perpendicular, respectively, to the magnetic field direction,

which is given by the unit vector b̂ � B=jBj. The part of the

plasma heat flux proportional to the electron pressure, pe,

accounts for the convection of electron thermal energy. In

the neutral heat flux, hn, jn is the thermal conductivity. The

conductivities jk and j? are given by Braginskii.1 The neu-

tral heat flux is derived by Chapman and Cowling18 using a

rigid elastic sphere model.

If the CX collision frequency is higher than the neutral-

neutral scattering frequency, it can be desirable to adopt a

different closure for neutral heat flux. The form of the neutral

thermal conductivity under the assumption of strong scatter-

ing is

jn;hs /
nnTn

�hs
; (70)

where �hs is the neutral-neutral scattering frequency, defined

as �hs � �Cpd2nn, where �C is the mean neutral velocity

defined by ð �CÞ2 � 8k Tn=ðpmnÞ, and d is the diameter of a

hard sphere representing the relevant atom. An alternative

form is

jn;cx�hs /
nnTn

�cx�hs
; (71)

where �cx�hs � �cx þ �hs. The CX frequency is defined as

�cx � �Cnrcx, where n is the plasma number density and rcx

is the CX cross section. While this approximation is ad hoc,

it approximates the perpendicular thermal transport intui-

tively expected in regions where CX competes with scatter-

ing to determine the neutral mean free path, such as, for

example, the edge of a magnetically confined plasma. As dis-

cussed by Meier,20 when CX dominates scattering, the con-

ductivity given by Eq. (71) closely resembles the heat flux

derived by Helander et al.17

IV. CONCLUSIONS

The derivation of Sec. III offers an extension of the deri-

vations by Braginskii1 of two-fluid and single-fluid plasma

models to include a reacting neutral species. In Sec. III B, a

reacting and interacting three-component electron-ion-neu-

tral model is derived from Boltzmann equations with elastic

scattering collisions and three inelastic reacting collisions:

resonant charge exchange, electron-impact ionization, and

radiative recombination. Moments of the reaction collision

terms are described in detail. The three-component model is

then reduced to a two-component plasma-neutral model in

Sec. III C. Suggested closures are discussed for the plasma-

neutral model in Sec. III D.

In future work, the plasma-neutral model could be

extended to a general multi-fluid plasma model: multiple

plasma and neutral species could be accommodated; multiply

charged ions could be allowed; excited states could be

tracked; radiation effects could be included; as discussed in

Sec. III D, the successive approximation technique employed

to determine the local distribution functions could be general-

ized to more accurately close the plasma-neutral model;

charged-neutral elastic collisions could be included, and

should be included in problems where the ionization fraction

is low; and additional reactions could be included such as

non-resonant charge exchange, three-body recombination,

polarization ionization, etc. With so many possibilities, future

model development efforts should target the extensions that

are most important and useful for the anticipated applications.
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