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A General Orthogonalization Technique
With Applications to Time Series Analysis

and Signal Processing*

By George Cybenko

Abstract. A new orthogonalization technique is presented for computing the QR factorization
of a general n X p matrix of full rank p (n > p). The method is based on the use of
projections to solve increasingly larger subproblems recursively and has an 0(np2) operation
count for general matrices. The technique is readily adaptable to solving linear least-squares
problems. If the initial matrix has a circulant structure the algorithm simplifies significantly
and gives the so-called lattice algorithm for solving linear prediction problems. From this
point of view it is seen that the lattice algorithm is really an efficient way of solving specially
structured least-squares problems by orthogonalization as opposed to solving the normal
equations by fast Toeplitz algorithms.

1. Introduction. The QR decomposition (also called the orthogonal decomposition,
factorization, and triangularization) of an n X p matrix, Xin > p)

(1.1) X=QR,
where Q is n X p with orthonormal columns and R is p X p and upper triangular has
proven to be useful in solving a number of linear algebraic problems [2], [10], [18], [19].
The standard algorithms for computing this QR decomposition include reductions
by orthogonal transformations (Householder and Givens methods) and Gram-
Schmidt orthogonalization (including the modified Gram-Schmidt method) [18]. All
these methods use 0(np2) arithmetic operations.

In this paper, a new method of computing the QR decomposition is described.
This algorithm in fact explicitly computes a Q with only orthogonal columns and the
corresponding /?"', which represents only minor differences with the standard
algorithms since Q can be easily normalized while R~x is of interest in many
applications, and R is computable from R'x in Oip3) operations. The method is
based on the recursive solution by projection to least-squares problems involving
contiguous blocks of columns of X, and as such, bears resemblence to the construc-
tion of forward and backward innovations processes as described by Kailath in the
context of time series and signal processing [13]. This method is also closely related
to a novel method of matrix inverse triangular decomposition [7] in that the method
described in that work is the normal equations analogue of our algorithm for
orthogonalization.
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324 GEORGE CYBENKO

Time and space complexities of this method for general matrices, X, are of the
same order of magnitude as the above-mentioned standard algorithms, but with
larger constants. In light of this fact, the algorithm presented here is not recom-
mended as a means of computing QR decompositions of general matrices with
conventional computing machinery. However, it will be seen that if the matrix X has
a Toeplitz structure with "zero boundaries" (to be explained in the following) or
more generally, is circulant, the algorithm reduces to an extremely efficient Oinp)
method taking full advantage of the circulant structure. In the special Toeplitz case,
it will be shown that the streamlined algorithm is precisely the so-called Itakura-
Saito-Burg lattice method recently popularized in the study of linear predictive
coding of speech and deconvolution of seismic data [4], [12], [14]. That algorithm was
independently derived by De Meersman in [8]. Another possible advantage is the
degree of parallelism to which the algorithm seems amenable.

In a sense it is unfair to measure the complexity of this method with other
algorithms computing the QR decomposition, since this algorithm explicitly com-
putes the orthogonal decompositions of all subblocks of contiguous columns of the
matrix X and as such gives much more. Potential application of this aspect towards
the problem of subset regression [9], [1] demands attention, although no significant
results are available now, save the observation that [9] uses a branch-and-bound
method on the partial order of all regression subsets so that a significant amount of
pruning may be done early given the large number of computed subset least-squares
solutions obtained by our algorithm.

Section 2 contains a description of the algorithm for a general matrix together
with a time and space complexity analysis. In that section, a method for solving
least-squares problems is presented also. In Section 3, the algorithm is refined to
deal with special matrix structures, where columns are unitarily related. It will be
seen there that the algorithm simplifies significantly, but when the unitary operator
is given by the circular shift, the economization is even more dramatic. The case of
the circular shift operator, which gives rise to the circulant structure alluded to
above, is taken up in Section 4 which describes the application to the linear
prediction of stationary time series. That section contains a brief comparison with
respect to conditioning and complexity between this method and the autocorrelation
method for solving linear prediction and Wiener filtering problems. Section 5 is a
summary.

2. An Algorithm for Computing QR Decompositions. Let X be an n X p matrix of
full rank p in >p) with columns x,,x2,...,x . The matrix consisting of the
j — i + I columns (/'</') x,,x;+,,...,x, in that order is denoted by Xii, j). The
span of the columns of a matrix M is denoted by L(M).

From the theory of least-squares approximation, it is well known that the
following two problems have identical solutions:

-Determine aj — i + 1 vector a so that

(2.1) Xii,j)a + xj+x

is orthogonal to Li Xii, j)).
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A GENERAL ORTHOGONALIZATON TECHNIQUE 325

-Determine aj — i + 1 vector a so that the 2-norm of

(2.2) Xii, j)» + xJ+x
is minimal over all such vectors a.

Since the vector a simultaneously solves both problems uniquely, both characteri-
zations will be used without further explanation in the following.

Now define tk+x as the vector in (2.1) and hence (2.2), with f, = x,. We then have
that

tkGL(X(l,k)),       tk±L(X(l,k-l)),

and so f, J. f. providing i ¥=j.
Thus the matrix

ß = (f„...,f.)

has orthogonal, but not necessarily orthonormal, columns.
Furthermore defining the upper triangular matrix T as

1
0       1
0      0

0

1,1 '2.2

'2.1

*P-1,P-1

2p-\,p-2

0

where a = (ak k, ak k_x,... ,akXf is the solution to (2.1) and (2.2) with i = 1 and
j — k, it is evident that

(2.3) XT=Q
or, equivalently,

(2.4) X=QTX.
This last equation shows that Q and T~x yield a QR decomposition of X once the
columns of Q are normalized and T"1 is scaled appropriately. This discussion has
shown that the QR decomposition is intimately associated with least-squares prob-
lems involving contiguous blocks of columns of X. The basis of the method
described here rests on the ability to piece together solutions to such least-squares
problems to form solutions to larger least-squares problems.

In particular, it will now be shown that by considering a larger class of least-squares
problems, a class containing (2.2), the entries of T and the residuals ik are easily
computable. In order to delay the introduction of indices and subscripts, we shall
present the basic idea in the form of a general theorem.

Theorem. Suppose that A is an n X k real matrix and that b and c are n-vectors so
that the augmented matrix (b, A, c) has full rank k + 2. Let x and w be k-vectors such
that the n-vectors r and s given by

r = Ax + b   and   s = Aw + c
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326 GEORGE CYBENKO

are the residuals in solutions to the least-squares problems

rninMx + b||2,       minll^w + c||2,

respectively, i In case A is vacuous, we let r = b and s = c.) Defining

rrs „ rrs

r r s s

we have that

solves the least-squares problem

(2.5)
while

x + ßw
V=[      ß

solves the least-squares problem

min\\iA,c)\ + b\\2.

The residuals for the above two least-squares solutions are

s + ar   and   r + ßs,

respectively.

Proof. Notice that (b, A)z + c = ar + s. Since r and s are residuals in least-squares
solutions involving A, both r and s are orthogonal to LiA) and so the residual
ar + s is also orthogonal to LiA). Thus in order that ar + s be the residual in the
least-squares solution to (2.5), it is only necesssary to show that ar + s is orthogonal
tob.

This is the case, providing

b^s
brr

Noting the definition of r and the fact that r is orthogonal to LiA) shows that

ifr = rrr   and   b^s = rrs,
thereby establishing the result for the augmented matrix (b, A). The same argument
gives the result for the augmented matrix i A, c).    D

It is straightforward to see now how the method of the above theorem fits into our
computation of the factorization XT = Q. As observed before, T and Q are obtained
from least-squares solutions to problems of the type

min\\X(l,k)v + xk+x\\2.

The theorem tells us how to use solutions to

min\\ Xii, j)u + xJ+x\\2   and   min 11 Xii, j)\ + x,_, ||2

to compute solutions to

minllXii — 1, y')w + xy.+ 1||2    and    min||Xii, j + l)y + xi_ij\\2.

z=\     a     1Lw + axj

min||(b, A)z + c||2,
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The algorithm essentially consists of sweeping across the columns of X solving the
least-squares problems involving single columns of X (this is the initialization). These
solutions are then combined according to the theorem to give solutions to the
least-squares problems involving pairs of contiguous columns of X, and these in turn
are used to construct solutions to problems involving triples of contiguous columns
of X and so on.

In order to make the algorithm's formal description more meaningful, we shall
describe the roles of the various quantities in it first.

For each pair of integers (/', j) with 1 <i<j<p there are two least-squares
problems determined by the columns of X.

-The (/', j) backward approximation. This is the least-squares problem of ap-
proximating x, by a vector from Li Xii + I, j)). Specifically, we wish to find
coefficients ß^J> so that the residual

V'-J> = x, + ft'-J>x,+l + -"+$Lfxj
has minimal 2-norm (or equivalently, is orthogonal to Li Xii + 1, j))).

-The (/, j) forward approximation. This is the least-squares problem of approxi-
mating Xj by a vector from Li Xii, j — 1)). Specifically, we wish to find coefficients
<J>^,-/) so that the residual

t(i,j) = off>Xi+---+$'»XJ_x+XJ

has minimal 2-norm (or equivalently, is orthogonal to L(X(i, j — 1))).

The algorithm described below is based on the properties and observations
detailed above. The computation of the coefficients ß^'J), ^;j) and residuals f (,,-/),
\f''j) is then summarized as follows:

Initialization: f(M) = Uu) = x, for / = 1,... ,p.
For k = 1 ,...,/> — 1

For i = 1,... ,p — k
f(i+\.i + k)T\Ji,i + k-l)

£(i,i + k) — i_!£_
f yfi,i+k-Yfyf.i,i+k-l)'

t(i+\,i + k)Tyii,i + k-\)
j^(i,i + k) _      J_?i_

* f(i+l,i+k)T*(i+l,i+k) '

f(i,i+k) — f(/+!,/+*) _j_ g(i,i+k)tfi,i+k-l)

y.i,i+k) — y,i,i+k-l) _j_ g(i,i+k)yfi+l,i+k)

For m = 1,..., k — 1
¿(1,/+*) _ ó(i+\,i+k)   ,   K(i,i+k)o(i,l+k-l)
Tm T'm '   "/ Hk — m '

ß(i,i+k) — o{i,i+k-l)   i    jf(i,¡+ty¡+l,i+i)
^Pm Pm T Äfe 9k-m >
¿U+k) = K«.,+k)t

ß(i,i+k) JrVd+k)
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328 GEORGE CYBENKO

The complexity analysis of this algorithm is straightforward. In order to solve the
problem determined by a pair (i, k) using solutions to the "smaller" problems
(i +1,/ + k) and (r, i + k — 1), a total of 5« multiplications and 2 divisions are
required, independently of the indices i and k > 2. Thus the operation count for
finding the orthogonal columns of Q is obtained by summing over the number of
such problems to be solved, giving

Snpip — l)/2    multiplications
pip — 1) divisions.

The computation of the coefficients is easily seen to involve about pip — l)ip — 2)/3
more multiplications. In cases where n » p, as is common in least-squares problems,
the computational complexity is dominated roughly by a term of the form 5np2/2.
By comparison, classical methods for orthogonalization have complexities of cnp2 +
(lower order terms), where c < 1. Once again, it is important to note that the above
algorithm actually computes QR factorizations of all contiguous subblocks of
columns of the matrix X, so that comparisons of the complexity should seriously
weigh this point.

In terms of the quantities computed in this algorithm, we have the factorization

ti» </>2U)

</>V,3)
Yp-\

= (f('',>,f<1'2),...,f <'•">)

and the factorization

ß0,P)

ß?-? ß\p
Up)

p, p) tlp.p)t    ^ \fp ,p)\

In terms of space requirements, it can be readily seen that a total of 2«(/? — 1) +
pip — 1) locations are sufficient for computing and storing the QR factorization.
More location is required, of course, for keeping all the factorizations.

It is interesting to note that this algorithm has a simple and in fact, very tempting,
recursive description which could be easily programmed. That is, the solution to a
block of k contiguous columns is easily obtained from solutions to two subblocks of
k — 1 columns. Unfortunately, such a recursive algorithm would result in repeating
the solution to a number of subproblems and thereby significantly increase the total
operation count.

At this point we suggest an approach for using this algorithm to solve linear
least-squares problems of the type

minll Xa — zll,.
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The described method explicitly computes a factorization

XT=Q,

where Q has orthogonal but not necessarily orthonormal columns. The matrix
P = QiQTQTx/2 will have orthonormal columns, so the minimization is solved by

(2-6) a = TiQTQYlQTx.

Now one of the basic discoveries about solving least-squares problems by ortho-
gonalization was that the computed Q in the QR decomposition is not guaranteed to
have orthonormal columns and that one should not use the formula (2.6) for solving
the problem (this is the case for Gram-Schmidt and modified Gram-Schmidt
algorithms, but not for orthogonalization using Householder or Givens' transforma-
tions). In spite of this, it has been shown that it is possible to obtain an accurate
solution by the modified Gram-Schmidt orthogonalization applied to the augmented
matrix ( X, -z). The details of this are in [2] while a brief discussion and summary
can be found in [18].

We suggest the same method for using the orthogonalization method of this paper
in solving linear least-squares problems. That is, we suggest forming the augmented
matrix X' = iX, -z) and computing the factorization X'T = Q' as above. The last
column of T will then determine the least-squares solution to the original problem.
Equivalently, we could adjoin -z to the right of X to form (-z, X) and then use the
lower triangular decomposition to obtain the solution, since this factorization is
explicitly computed also. An intriguing composition is to apply the described
method to (-z, X, -z) and thereby obtain two explicit computed solutions and then
combine them by say averaging. At present, we have no results or suggestions in this
direction apart from these observations.

3. Orthogonalization of Matrices With Special Structure. Since the algorithm
presented in this paper builds the QR factorization of a given matrix from QR
factorizations of submatrices of that matrix, it is reasonable to expect that the
algorithm simplifies if the submatrices were in some way related by some structure
imposed on the full matrix. In the spirit of greatest generality, it will now be seen
how the method simplifies if the columns of X are unitarily related. This yields an
algorithm with the same structure as that given by De Meersman in [8], but we
expect that our method has better stability properties. A further specialization is
presented in the next section, showing that this method also gives the well-known
Itakura-Saito lattice algorithm for linear prediction.

Suppose that X has columns x,,x2,...,x/, with xy = UJ~xxx, where U is an
orthogonal transformation onü". This structure imposes the following simplifica-
tion on the solution to the subproblems:

Lemma. Let X be a matrix as described above. Let r and s be k-vectors which are
solutions to

(3.1) ||Xij, j + k — l)r + xJ+k\\2 = minimum,

(3.2) || Xij + 1, j + k)s + x -112 = minimum.
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330 GEORGE CYBENKO

Then r and s are independent off and, furthermore, if

t=(rx,...,rk)T,       s=(sx,...,sk)T,

then in fact ri — sk_i+x.

Proof. We begin by noting that

7V = X(j, j + k- l)TXij, j + k-l) = X(j +1,7 + k)TX(j + 1, j + k)
and that these matrices are independent of j. Furthermore, these matrices are
Toeplitz, symmetric and positive-definite. These facts follow from the observation
that for orthogonal U we have

T xf([/'-') Um~xxx = xxU'-mxx = xxU"

Now if E is the A: by A: exchange matrix, that is

E =

0 •••
0 •••

0 1    0
1 0   0

0
1

then we have similarly

c = Xij, j + k- l)TxJ+k = EX(j +\,j + k)TXj.

Thus the normal equations for (3.1) and (3.2) are respectively
Nt = c   and   Ns = £c.

Since E2 — Ik, the k by k identity, and ENE = N for Toeplitz TV, we actually have
that s satisfies

ENs = ENEEs = NEs = E2c = c,
so that ¿is = r which is precisely the final claim of the lemma.    D

One of the immediate consequences of this lemma is that

K(,,,+k) = Ko,,+k) _ Ky.i+k) - Kk

where these are the quantities occurring in the algorithm of Section 2, and from the
definition of these quantities it follows that

(33) f(U+*)rf(M+*) = f(i,i+*)rf<i,i+*)

_ y.i.i+kyTYf>,i+k) — tfi.i+kfy},i+k)
which is a relation that can be used to reduce the multiplication count. There is
however substantial evidence [6] indicating that a more stable version of this
algorithm uses the denominator

Jf(i,i+*)7f(i,i+*)fl(i,i+*)7"lJ(i,i+*)

in the computation of the coefficient Kk.
Furthermore, we note that

,«,,+*) _ rji-ifoj+k) _ u'-ltk   and   b<'-''+A:) = u'-xlfx'x+k) = U'-]bk,

as a simple calculation shows.
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Clearly all of the required inner products involving the residuals, f(W+*) and
tí'',+k), are computable from the basic residuals fk and ok according to

, (,-+i. ;+*)>■,,+*-1) = (t/'f^^V-V, = fe-iU-\
The final columns of Q = (q,,... .q^) are then

**-i-

where we define f'1'1' = x, qi
Hence the algorithm for computing Q and T for such a structured X may be

summarized as follows:

Initialization: x, = f0 = b0
For k = 1,... ,p — 1 do

K„ iUh-if\
{Hi-A-xtk-ih-i) 1/2 '

h=utk_] KkK-i>
-i + KkUfk_

For k= 1 ,...,/> — 1
For / = 1.k — 1

*-i  i  K nk-\a"

,* = ^

Then with Q = (f0,f,,...,f    ,)and

*p-\
1
0

fl i

1

p-\

the desired factorization is obtained.
A similar algorithm was derived in [8] but using a less general approach. The

above method has more promising stability properties as will be discussed in the
next section.

In the complexity analysis of this specialized algorithm it is assumed that the first
column x, of X and the orthogonal U are the only quantities given at the start, and
therefore the vectors Utk need to be computed as they are required by the algorithm.
In general an evaluation of Ui will require n2 multiplications, but we shall simply
assume that Ui requires w(n) multiplications. Thus the operation count is

m(n)(/> - 1) + 5nip - 1)    multiplications,
p — 1 divisions,
p — 1 square roots.

By comparison, the computation of the columns of X one by one from x, and U
would alone require w(«) ip — 1) multiplications. If a general purpose algorithm
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for computing the QR factorization is then used, it would involve another Oinp2)
operations so that savings are felt only in lower order terms. In the next section, the
case where Uis the circular shift operator is discussed in which case m(n) = 0 since
U involves reindexing only. We postpone discussion of least-squares problems of this
type to the next section where this particular structure is commonly used in
applications and is usually referred to as Wiener filtering.

4. Applications to Time Series Prediction. The most important application of this
specialized structure and specialized algorithm is fortunately a case where U is
extremely simple. If U is the circular shift operator defined by

Ux = (si_litoodn)),       x = (s,),

then the computation of Ux involves no arithmetic computations but only reindex-
ing of the arrays, and the matrix X is circulant vertically. In that case the algorithm
requires only

Snip ~ l) multiples and/? — 1 divisions

to compute Q and the Kk coefficients. The computation of the entries of T involves

1/2 ip — l)ip — 2) multiplies.
The situation where U is the cyclical shift operator is precisely the situation
encountered in the linear prediction of stationary time series. Let ($,-) be a time series
with only finitely many nonzero terms, say s¡, # 0 for 1 < i < n. Then the linear
prediction problem of orderp for the series (s,) is to find the coefficients ax,...,ap
which minimize the mean-squared prediction error

(4.1) Ep = 2isi + axsi_x + ---+apsi_pf.
i

This may be formulated as a matrix least-squares problem by writing X' =
ixx,-..,xp)

xo = (*,)>       i=l,...,n+p,

x,. = i/'Xn,        / = I,...,p.

This special form is clearly circulant, but, furthermore, has zero boundaries in the
obvious sense. A descriptive name for such a structure would therefore be "Toeplitz
with zero boundaries." The problem then becomes

(4.2) minimize Ep = || A"a - x01|\.

By the previous comments the desired coefficients ax,...,a appear in the last
column of the unit upper triangular matrix T defined by the condition that XT have
orthogonal columns, where X = (x0, x,,... ,x ) = (x0, X') and

1     «l.i     «2,2     •     •     •     ap

T=   0     !  ■-—*2¿*     '     '     ap-¡
0 ~~~~~~~~—-- 1     a,

.0    0 1
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The algorithm for computing XT and T is then:

333

The Lattice Algorithm [4], [8], [12].
Initialization: f0 = b0 = x0.

For i = 1,... ,p do

K, = - Zjfi-ij-A- 1,7

(2X-,,A¿1,J1/2

For y = l,...,n + pdo

Ji,j+\ ~fi-l,j "+■ ^lA-l.y+l»
bi,j+\ - Kifi-l,j + bi-l,j+l>

fi,\ = ̂ A-i,i»
¿>,,i =*(-i,i-
For ¡' = 1,... ,p do

For y = 1,...,/ — 1 do
aij ~ ai-i,j + Kiai-i,i-j,

^a,,, = K,.

At the end of the computation

1       01,1       «2,2

0     1        a2>1

0    0        1

0

•p,p
*p,p-i

with a ■ = a    as desired. Furthermore,

(4.3) XT=(f0,...,ip) = Q

has orthogonal columns.
It is interesting to note that the Itakura-Saito-Burg algorithm has its historical

roots in the construction of difference schemes and continuity conditions for the
one-dimensional wave equation in a nonhomogeneous medium. (The name " lattice"
comes from the algorithm's flowgraph which resembles a lattice or ladder.)

The projection coefficients K, are precisely the partial correlation coefficients and
as such are extremely significant in testing hypotheses concerning the order, p, of the
autoregressive process fitting the series (s(i)) [3], [16]. In some applications, such as
data compression for speech transmission [17] only the K, coefficients are used. Note
that from (3.3), and the Cauchy-Schwartz inequality, it follows that | K,\< 1. (The
strict inequality follows from the fact that X has full rank p.)

Furthermore, since

\f,\ b/ll2 = £„
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it follows that

(4.4) E¡+l = \\tI+x\\2=\\Uf¡ + Kl+xb[\\2

= \\Ui,\\2 + 2K1+xiUi,)TbI + KI+x\\bI\\2

= ||f,||2(l-tf2_0 = ¿?,(l-tf2+1)

by (3.3) and (4.2).
Thus E has a simple recursive form convenient for computation:

E, = E^x{l-K2).

A classical result [11] is that
p

àe\(XTX) = \\E,
I=\

and that the eigenvalues of XTX are contained in the range of the power spectral
density of the series {s(/)} so that the singular values of X are contained in the
square root of the range of this power spectral density. Furthermore, as was shown
in [5], the 2-condition number of XTX satisfies

K(X-X)-PUUl + lKil)-C

so that the 2-condition number of X satisfies

(4.5) K2(X)<{C.
It is well known that least-squares problems are better solved by orthogonalization
than by passing to covariance matrices [10], since the error analysis of the former
reflects closer the perturbation theory of the least-squares problem itself [18]. This is
a point much overlooked in the arguments for using this lattice method. Most
arguments center on the method's computational convenience and robustness [14],
while the accuracy properties are extremely good both empirically [15] and analyti-
cally [6].

Solutions by solving the covariance normal equations are usually discouraged [3],
and it is evident that this lattice method offers an alternative.

By way of an error analysis, it can be shown that if Q is the computed version of
Q in (4.3), then

(4.6) \\Q-Q\\2^npx/2{C

which compares favorably with the condition number bound (4.5). Inequality (4.6)
holds only for the algorithm in which the partial correlation coefficients K¡ are
computed according to the form in the Lattice Algorithm, even though (3.3) suggests
there are algebraically equivalent forms which involve fewer computations and no
square roots. If the square root formulation is not used, the forward stability as
expressed by (4.6) is lost [6].

If s¡ is replaced by some other series y¡ so that the object is to minimize

Ep = 2{yi + bls,_l + ---+bps,_pf,
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the problem is called the discrete-time Wiener filtering problem. This least-squares
problem can be solved exactly as in Section 2, that is, by adjoining the vector

y = in)
to matrix X'. In this way, the structure of the problem can be exploited in the
solution of all subproblems except for subproblems involving the column y. This
approach would result in an operation count with a leading term of %np.

5. Summary. This paper has presented an orthogonalization technique based on
projections which computes orthogonal factorizations of all contiguous subblocks of
columns of the matrix. The algorithm uses fewer computations than required by
updating factorizations otherwise. This general orthogonalization procedure sim-
plifies significantly when the underlying matrix has a circulant structure, a structure
important in time series and engineering applications. The streamlined algorithm
thus obtained is the known " Lattice Method" for linear prediction. This shows that
the Lattice Method is a legitimate orthogonalization algorithm for solving the
least-squares problem arising in linear prediction of time series. Together with the
previous work of the author in [5], this shows that for small residual linear prediction
problems, the lattice algorithm is to be much preferred over solving the covariance
equations since the condition number of the underlying matrix is on the order of the
reciprocal of the residual sum of squares.
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