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A General Performance Model for MAC Layer
Cooperative Retransmission Contention Protocols

Brett Hagelstein, Student Member, IEEE, Mehran Abolhasan, Senior Member, IEEE,
Daniel Franklin, Member, IEEE, Farzad Safaei, Member, IEEE

Abstract—Cooperative retransmission schemes can signifi-
cantly improve transmission reliability and performance over
high loss and time-varying links. However, analytically comparing
performance between retransmission strategies is challenging and
generally requires simplistic assumptions. This paper presents
a general model for the performance of distributed, slot-based
contention algorithms for opportunistic decode and forward
retransmission algorithms. The model is independent of specific
modulation or coding schemes and may be adapted to suit state-
based transmission probability models. The model is validated
through QualNet simulations.

Index Terms—cooperative retransmission, IEEE 802.11, MAC,
ARQ, DAFMAC, PRO

I. INTRODUCTION

Decode-and-forward cooperative relaying is a well-
established technique for improving wireless network capacity
[1]. Its effectiveness is strongly dependent on the choice of
relay selection algorithm, as this determines the probability
of retransmission success and also collisions between simul-
taneous retransmission attempts. Consequently, relay selection
algorithm design remains an open area of research.

A direct comparison of the performance of cooperative algo-
rithms is challenging because of the limitations and specificity
of existing analytic models. Because of this, many published
retransmission algorithms only evaluate cooperative perfor-
mance against non-cooperative ARQ retransmission schemes.
Further, evaluations frequently omit a detailed failure mode
analysis or even assume no collisions during cooperative
retransmissions [2]. Analytic evaluations typically use very
simple and invalid assumptions, such as all relays having the
same link quality [3].

There are two fundamentally different approaches to coop-
erative retransmission - firstly, either the source [4], [5] or
the destination [6] may nominate a specific node to act as
a relay; or secondly, a contending set of relays can use a
distributed algorithm to attempt to select a single relay [3],
[7]–[9]. Each approach has merit, but, as yet there is no single
analytic method to comprehensively compare the performance
of different techniques.

B. Hagelstein, M. Abolhasan and D. Franklin are with the Centre for Real-
time Information Networks, University of Technology, Sydney, NSW 2007,
Australia. e-mail: brett.hagelstein@student.uts.edu.au, {mehran.abolhasan,
daniel.franklin}@uts.edu.au

F. Safaei is with the Information and Communication Technology Research
Institute, University of Wollongong, Wollongong, NSW 2522, Australia. e-
mail: farzad safaei@uow.edu.au

This manuscript was submitted on February 19, 2013. This research was
partly supported by Australian Research Council grant DP0879507 “Novel
Architecture for Next Generation Wireless Relay Networks”

This paper proposes a general model to analytically estimate
the probability of successful retransmission in cooperative
relaying schemes, including a detailed failure mode analy-
sis. The model was designed to compare the behaviour of
distributed, slot-based contention algorithms, and additionally
is able to model all independent, slot-based retransmission
schemes, including traditional 802.11 ARQ. The proposed
model is shown to accurately predict the probability of success
or failure of individual retransmission attempts, providing
a quantitative measure of algorithm efficacy. The model is
independent of the path-loss model or specific device hardware
and only requires Received Signal Strength (RSS) and Packet
Delivery Ratio (PDR) measurements which may be obtained
from the MAC layer.

Retransmission performance is modelled by calculating the
probability of each outcome, namely: retransmission success,
or failure caused by data frame corruption, ACK frame
corruption, retransmission collision or no relay availability.
Distributed retransmission algorithms typically use a slot-
based delay scheme to arbitrate between contending nodes.
The probability of each outcome is derived as a function of
the delay time-out probabilities at the MAC time-slot scale
in Section II. Example time-out probabilities are derived for
simple ARQ [10], DAFMAC [7] and PRO [3] in Section III.
The analytic model is shown to accurately reproduce the
results of a QualNet simulation in Section IV. This section
also shows a Monte Carlo simulation converges to the analytic
result, therefore the analytic result is the mean of the Monte
Carlo simulation. Finally, Section V analytically compares the
retransmission performance of randomly placed nodes.

II. COOPERATIVE RETRANSMISSION MODEL

This section proposes a new model for performance anal-
ysis of retransmission algorithms that is applicable to any
slot-based contention algorithm. Cooperative retransmission
algorithms typically employ some extension to the distributed
timer method originally proposed in [1] to autonomously
select a relay. Nodes use channel state information available
at the MAC layer (such as RSS and PDR) to estimate the
probability of successful retransmission of a frame to its
intended destination; nodes with a high likelihood of success
will attempt to transmit first.

A. Assumptions and Nomenclature

This model does not account for any retransmission algo-
rithm computation complexity or control overhead. It also



assumes nodes external to the cooperative process do not
interrupt, which is valid for a lightly loaded network, and will
not favour one retransmission scheme over another.
Nn is the set of neighbour nodes with non-zero PDR to both

source and destination. The participating set Np defines the
neighbouring nodes that have elected to act as relays. Finally,
the contending set Nc is the set of participating relays which
receive the source frame. Hence, Nc ⊆ Np ⊆ Nn.

Potential relay node Ni may select a specific delay ti [3],
[7], or it may randomly decide whether or not to contend for
a given slot at the beginning of that slot [2]. The proposed
model accommodates both strategies.

A relay with a pre-selected timer has three possible states;
the timer expires before, during, or after a given time slot. Let
the probabilities of being in each state be:

pib(t) , Pr{ti < t} (1)

pit(t) , Pr{ti = t} (2)

pia(t) , Pr{ti > t} (3)

respectively, for relay Ni ∈ Nc in time slot t. Therefore,

pib(t) + pit(t) + pia(t) = 1. (4)

PD(a, b) denotes the probability of a successful data frame
transmission from node a to b. It is assumed that frame trans-
mission errors are i.i.d., although more complex transmission
models may be used to simulate bursty losses.

Let PA(b, a) be the ACK transmission success probability
from b to a. Analysis in [5] suggests using PA(b, a) ≈ 1,
which may be substituted into the model.

Cooperative relaying schemes frequently use RSS or his-
torical PDR values to evaluate channel quality for potential
relays. It is assumed that these values are known to the node,
and remain valid during the observation period. Channels
and device hardware are also assumed to be approximately
reciprocal; RSSa,b ≈ RSS b,a and PD(b, a) ≈ PD(a, b).

The outcome probability of the contending node set during
an attempted cooperative transmission is the sum of outcome
probabilities during each time slot t ∈ [0, Tmax − 1], where
Tmax is specific to each retransmission algorithm. Similarly,
the outcome probability of a contending node set is the sum
of individual node outcome probabilities.

Define all subsequent random variables as X ∼ U[0, 1),
which have the uniform distribution property of:

Pr{X ≤ a | a ∈ [0, 1)} = a. (5)

B. Probability of Successful Relaying

This section derives an expression for a successful frame re-
transmission by defining how a node can ‘win’ the distributed
contention phase in one time-slot and then extending to the
general result of the entire network for the whole period.

A relay wins contention if it is the only node in the set to
transmit during a slot while all other node timers are non-zero.
Consider the contending set Nc; node Ni wins contention if
all other timers expire after it, hence the probability that Ni

wins contention in time slot t is:

Pr{Ni wins, t | Ni ∈ Nc} = pit(t)
∏

Nj∈Nc,
j 6=i

pja(t)

= Wi(Nc, t) (6)

Values for pit(t) and pia(t) depend on the retransmission
algorithm used. Example values are derived in Section III.
Extending (6), the probability that node Ni wins contention
in any time slot is:

Pr{Ni wins | Ni ∈ Nc} =

Tmax−1∑
t=0

Wi(Nc, t) (7)

The probability that Ni wins contention, retransmits the data
frame to Nd and Ns receives the ACK is therefore:

Pr{Ni succeeds | Ni ∈ Nc} =

Tmax−1∑
t=0

Wi(Nc, t)PD(i, d)PA(d, s)

(8)

The probability of any contending node (from the contending
set Nc) successfully forwarding the frame is:

Pr{success | Nc} =
∑

Ni∈Nc

Tmax−1∑
t=0

Wi(Nc, t)PD(i, d)PA(d, s)

(9)

Let Sc be the set of all possible combinations of contending
relays and Nc be a specific contending set, such that Nc ∈ Sc.
The probability of a specific set Nc having received the source
frame and contending is:

Pr{Nc} =
∏

Ni∈Nc

PD(s, i)
∏

Ni∈Np,
Ni /∈Nc

(1− PD(s, i)) (10)

A participating relay may or may not receive the source
frame, so the set cardinality is |Sc| = 2|Np|. The sum of the
probabilities of all contending relay combinations is unity:∑

Nc∈Sc

Pr{Nc} = 1. (11)

From (9) and (10), the probability that any node from any
contending relay set successfully retransmits the frame to the
destination and the ACK is successfully received is:

Pr{success} =∑
Nc∈Sc

∑
Ni∈Nc

Tmax−1∑
t=0

Wi(Nc, t)PD(i, d)PA(d, s) Pr{Nc}

(12)

If Pr{success} > PD(s, d), then this cooperative retrans-
mission scheme will result in a higher probability of frame
delivery compared to the non-cooperative ARQ scheme.

C. Probability of No Valid Relays

The probability that the contending set is empty (i.e.
|Nc| = 0) because no participating relay receives the source



frame is:

Pr{no relays} =
∏

Ni∈Np

(1− PD(s, i)) (13)

D. Probability of Collision

There is no collision in time slot t if any node timer has
expired before this slot, no node timers expire in this slot, or if
only one node timer expires in this slot. Hence, the probability
of collision is:

Pr{collision} = 1−Pr{before}−Pr{none}−Pr{one} (14)

where, for a given contending set Nc and time slot t:

Pr{before, t | Ni ∈ Nc}
= 1− (1− p1b(t))(1− p2b(t)) . . . (1− p|Nc|b(t))

= 1−
∏
i∈Nc

(1− pib(t))

= 1−
∏
i∈Nc

(pit(t) + pia(t)) (15)

Pr{none, t | Ni ∈ Nc} = p1a(t)p2a(t) . . . p|Nc|a(t)

=
∏

Ni∈Nc

pia(t) (16)

The probability of one relay winning contention is given by
(7). The total collision probability for all contending sets is
therefore:

Pr{collision} =
∑
Nc∈Sc

Tmax−1∑
t=0

( ∏
Ni∈Nc

(pit(t) + pia(t))

−
∏

Ni∈Nc

pia(t)−
∑

Ni∈Nc

Wi(Nc, t)

)
Pr{Nc} (17)

E. Probability of Data Retransmission Failure

The probability of any node winning contention then failing
to successfully retransmit the data frame to the destination is:

Pr{D fail} =∑
Nc∈Sc

∑
Ni∈Nc

Tmax−1∑
t=0

Wi(Nc, t)(1− PD(i, d)) Pr{Nc}
(18)

F. Probability of ACK Retransmission Failure

The probability that the destination receives the data frame
via retransmission, but the source fails to receive the ACK is:

Pr{A fail} =∑
Nc∈Sc

∑
Ni∈Nc

Tmax−1∑
t=0

Wi(Nc, t)PD(i, d)(1− PA(d, s)) Pr{Nc}

(19)

III. EXAMPLE SLOT PROBABILITY DERIVATION

This section derives example slot time-out probabilities for
the non-cooperative ARQ system, and the DAFMAC and PRO
cooperative relaying schemes. Algorithm-specific values are
denoted with the superscripts A, D and P respectively.

A. ARQ Slot Probability Calculation

The basic Automatic Repeat Request (ARQ) algorithm
is described in [10]. ARQ is a non-cooperative retransmis-
sion strategy where only the source node retransmits; hence
NA

p = {Ns}. This is represented in the model by letting
PD(s, i) = 1 (i.e. a perfect channel) while PD(i, d) remains
scenario-specific. TA

max is the upper bound of the contention
window size from which t is randomly selected:

tAi ∼ U[0, TA
max − 1] (20)

The probability of a time-out in any given slot is:

pAit(t) = 1
TA
max

, ∀t ∈ [0, TA
max − 1] (21)

The bounds of t are enforced using:

pAit(t) = min
(

max
(

1
TA
max

, 0
)
, 1
)

(22)

The probability of retransmission timer tAi expiring before slot
t is the sum of slot probabilities less than t, such that:

pAib(t) = min
(

max
(

t
TA
max

, 0
)
, 1
)

(23)

Using (4), the probability of expiring after slot t is:

pAia(t) = min
(

max
(

TA
max−t−1
TA
max

, 0
)
, 1
)

(24)

A similar method may be applied to retransmission algo-
rithms where a single relay is preselected for cooperation, such
as CoopMAC [4] or ∆-MAC [5], with the exception that the
relay must first receive the frame in order to contend.

B. DAFMAC Slot Probability Calculation

Contending DAFMAC nodes estimate their cooperative
eligibility using RSS i,d. The participating set includes all
neighbour nodes, such that ND

p , {Nn}. For the contention
delay algorithm defined in [7], it is assumed that there is no
minimum RSS offset, there is a range of RSS rng = 16 dBm
between the lowest- and highest RSS values, and the con-
tention period TD

max = 32 time slots. The delay algorithm
simplifies to:

tDi =
⌊
TD
max −

TD
max

RSS rng
(RSS i,d − RSSmin + Xi)

⌋
(25)

with these assumptions. The timer delay is comprised of
link quality and random components. Let the link quality
component of delay ti be:

Li = 32− 2 (RSS i,d − RSSmin) . (26)

From (2), DAFMAC timer tDi expires in slot t with probability:

pDit (t) = Pr {bLi − 2Xic = t}
= Pr {Li − 2Xi ≥ t} − Pr {Li − 2Xi ≥ t + 1}

pDit (t) = Pr
{
Xi ≤ Li−t

2

}
− Pr

{
Xi ≤ Li−t−1

2

}
(27)

Using (5) and bounding the slot-time gives:

pDit (t) = min
(
max

(
Li−t
2 , 0

)
, 1
)

−min
(
max

(
Li−t−1

2 , 0
)
, 1
) (28)



Similarly, from (3), the probability of tDi expiring after t is:

pDia(t) = Pr {bLi − 2Xic > t}
= Pr {Li − 2Xi ≥ t + 1}
= Pr

{
Xi ≤ Li−t−1

2

}
pDia(t) = min

(
max

(
Li−t−1

2 , 0
)
, 1
)

(29)

C. PRO Slot Probability Calculation

The PRO algorithm is described in [3]. PRO ranks neigh-
bour nodes by RSS i,d , with RSS s,i used to resolve a tie.
Relays are added to the participating set until the cumulative
joint retransmission probability reaches a set threshold (taken
as 0.95 in this scenario). The participating set, NP

p ⊆ Nn,
is known to all neighbours from control transmissions. PRO
uses a uniform random contention period where more highly
ranked relays have a smaller contention window TP

max . Let
TP
max (i) be the contention window for node Ni:

TP
max (i) = 2min(b i+9

2 c,10) (30)

where i is the ordered participating node index (from 1 to
|Np|). The contention delay for node Ni is:

tPi =
⌊
TP
max (i)Xi

⌋
. (31)

Using (2), the probability of the PRO timer tPi expiring in
time slot t is:

pPit(t) = Pr
{⌊

TP
max (i)Xi

⌋
= t
}

= Pr
{
TP
max (i)Xi < t + 1

}
− Pr

{
TP
max (i)Xi < t

}
= Pr

{
Xi <

t+1
TP
max (i)

}
− Pr

{
Xi <

t
TP
max (i)

}
pPit(t) = min

(
max

(
t+1

TP
max (i)

, 0
)
, 1
)

−min
(

max
(

t
TP
max (i)

, 0
)
, 1
) (32)

Similarly, from (3), the probability tPi expires after t is:

pPia(t) = 1− Pr
{
tPi ≤ t

}
= 1− Pr

{⌊
TP
max (i)Xi

⌋
≤ t
}

= 1− Pr
{
TP
max (i)Xi < t + 1

}
= 1− Pr

{
Xi <

t+1
TP
max (i)

}
pPia(t) = 1−min

(
max

(
t+1

TP
max (i)

, 0
)
, 1
)

(33)

IV. MODEL VALIDATION

This section validates the analytic cooperative retransmis-
sion model through QualNet simulations and Monte Carlo
analysis. An example scenario is described and is used to
demonstrate that the analytic model accurately reproduces
an integrated PHY/MAC layer QualNet simulation [11]. The
same scenario is then repeated to show a Monte Carlo analysis
converges to the model result.

A. Link Quality Relationship

The analytic retransmission model is specifically designed
to be independent of the propagation or physical layer model.
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For model verification, the RSS to PDR relationship was
obtained from a QualNet simulation.

The simulated hardware parameters were based on the
Senao IEEE 802.11b device [12]. Data frames contained a
1400 Byte payload and were transmitted at 11 MB/s. ACK
frames were sent at the same transmission rate as data frames
to illustrate the potential influence of ACK failures. The
simulation used 105 frame transmissions for each of 103 seeds.
The transmission reliability of data and ACK frames were
measured individually. The resulting RSS to PDR relationships
are shown in Figure 1.

B. Scenario Configuration

The scenario contained between one and five relay can-
didates located as shown in Figure 2. This configuration is
a pathological case for DAFMAC because relays 2, 3 and
5 have identical RSS values which will deliberately induce
retransmission collisions. As such, this scenario should not be
taken as a reflection of algorithm performance, rather it shows
how the analytic retransmission model successfully predicts
collisions. The RSS and PDR values for all links are given in
Table I.

C. QualNet Simulation Comparison

The QualNet simulation used between one and five relays to
illustrate the changing behaviour as more relays are added to
the retransmission process, which improve the probability of a
relay being able to retransmit, but also increase the chance of



TABLE I: Scenario link RSS and transmission PDR values

Node RSS s,i (dBm) PD(s, i) RSS i,d (dBm) PD(i, d)

Ns 0 1.0 -83 0.5
N1 -72 1.0 -82 0.79
N2 -83 0.40 -78 1.0
N3 -83 0.40 -78 1.0
N4 -71 1.0 -81 0.99
N5 -73 1.0 -78 1.0
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collisions. Relays are always added to the system sequentially,
so the set of three participating relays is N3 = {N1, N2, N3}.
Each relay set configuration was simulated using 1000 random
seeds to provide a statistically meaningful result.

The analytic retransmission model produces results nearly
identical to the QualNet simulation, as shown in Figure 3.
The median QualNet result is presented as a histogram. The
error bars represent the central 90% and is typically limited
to within of 1% of the median. The diamond shaped point
represents the corresponding analytically generated result.

D. Monte Carlo Simulation Convergence

This section shows that the Monte Carlo simulation con-
verges to the predictions of the retransmission model.

The Monte Carlo simulation used the aforementioned net-
work configuration and node parameters with all five possible
relays. Frame transmission success was determined using a
random variable X ∼ U[0, 1), where a transmission is
deemed successful if X < P (a, b) and a failure otherwise.
The full Monte Carlo algorithm is shown in Algorithm 1.

Algorithm 1: Simulation of the cooperative retransmission
Input: Neighbour relay set Nn

Input: Relay RSS values RSS(s, i) and RSS(i, d)
Input: Relay PDR values PD(s, i) and PD(i, d)
Input: Destination to source ACK success probability PA(d, s)
Output: The sample rate of contention outcomes

1 Determine participating set Np

2 tmin ← Tmax

3 for m in sample size M do
4 numbest ← 0
5 for node Ni in set Np do
6 ti ← Tmax

7 if X < PD(i, s) then
8 Calculate ti
9 if ti < tmin then

10 tmin ← ti
11 numbest ← 1
12 r ← i

13 if ti == tmin then
14 numbest ← numbest + 1

15 if tmin == Tmax then
16 xnone ← xnone + 1

17 else
18 if numbest > 1 then
19 xcoll ← xcoll + 1

20 else
21 if X < PD(r, d) then
22 if X < PA(d, s) then
23 xsuccess ← xsuccess + 1

24 else
25 xA fail ← xA fail + 1

26 else
27 xD fail ← xD fail + 1

The simulation used M ∈ [104, 1010] samples to calculate
the retransmission success rate. The variation between the
analytic and simulation result for M samples is:

εM (k) =

∣∣∣∣∣Pr{outcome k} − 1
M

M∑
m=1

xk

∣∣∣∣∣ (34)

where xk = 1 if the retransmission outcome is k and
xk = 0 otherwise. Figure 4 shows the simulation converges
to the analytic result as M → ∞ for each of the ARQ,
DAFMAC and PRO models. Therefore, the proposed analytic
retransmission model is the true mean result.

The Monte Carlo simulation was tested for convergence
to the analytic result using a range of link parameters and
node layout scenarios. However, the results presented here are
limited to one input set by the available space.

V. EXAMPLE RETRANSMISSION PROTOCOL COMPARISON

This section presents a brief analytic comparison between
the ARQ, DAFMAC and PRO retransmission algorithms in a
more general scenario, obtained using the proposed model.
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Fig. 6: The retransmission success of both DAFMAC and PRO
is greater than ARQ with two or more neighbours in the area

Source and destination nodes were placed 130 m apart in
the centre of a 250 × 250 m area, as shown in Figure 5. Using
the aforementioned device parameters, the direct transmission
probability was PD(s, d) ≈ 0.5. Between zero and eight
neighbour nodes were randomly placed in the area and the
retransmission probability calculated for ARQ, DAFMAC and
PRO for 1000 node sets at each density.

The mean retransmission success probability from the ran-
dom placements is shown in Figure 6. This scenario has a sig-
nificant variation in performance from the random placements
and the mean provides the best measure. Both DAFMAC
and PRO significantly outperform ARQ when two or more
neighbours are in the area, and the performance is bounded by
the rate of ACK transmission failures. DAFMAC has a higher

collision rate than PRO and slightly trails in retransmission
performance in this scenario.

VI. CONCLUSION

This paper has proposed a general retransmission perfor-
mance model. The proposed model is suitable for evaluating
any independent, distributed, slot-based contention algorithm
for MAC layer opportunistic retransmission. The slot time-
out probabilities were derived for ARQ, DAFMAC and PRO
retransmission schemes. The analytic model is validated by a
direct comparison to a QualNet simulation and by showing
the Monte Carlo simulation converges to the analytic result as
the sample size increases. The proposed model is then used to
perform a comparison between three retransmission strategies.
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