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Abstract

In this work, the phase-field approach to fracture is extended to model fatigue failure in high- and low-cycle regime. The frac-
ture energy degradation due to the repeated externally applied loads is introduced as a function of a local energy accumulation 
variable, which takes the structural loading history into account. To this end, a novel definition of the energy accumulation 
variable is proposed, allowing the fracture analysis at monotonic loading without the interference of the fatigue extension, 
thus making the framework generalised. Moreover, this definition includes the mean load influence of implicitly. The elas-
toplastic material model with the combined nonlinear isotropic and nonlinear kinematic hardening is introduced to account 
for cyclic plasticity. The ability of the proposed phenomenological approach to naturally recover main features of fatigue, 
including Paris law and Wöhler curve under different load ratios is presented through numerical examples and compared 
with experimental data from the author’s previous work. Physical interpretation of additional fatigue material parameter is 
explored through the parametric study.

Keywords Fatigue · Phase-field modelling · Brittle/ductile fracture · Experimental validation · Paris law · Wöhler curve

1 Introduction

Material fatigue is a weakening phenomenon caused by 
cyclic loading whose failure state is far below the material 
strength of monotonic loading [1, 2]. This can result in a 
progressive structural damage and crack growth. Although 
fatigue has traditionally been associated with metal com-
ponents, most materials seem to experience some sort of 
fatigue-related failure. Once initiated, fatigue crack will 

steadily grow until it reaches a critical size producing rapid 
crack propagation and following a complete structural failure 
[3]. This can be schematically shown by the crack growth 
rate curve usually obtained in standardized fatigue fracture 
experiments in Fig. 1a. Such curve is regularly approximated 
by the fracture mechanics motivated Paris’ law [4], or one 
of its more complex extensions—NASGRO equation [5]. 
Furthermore, fatigue phenomena is generally divided into 
low- and high-cyclic fatigue regimes [6], as presented by the 
strain-life � − N curve in Fig. 1b. Such strain-life approach 
is suitable for the low-cyclic fatigue regime which is gen-
erally driven by a combination of material damage and 
plastic strains. It is often further accompanied by complex 
cyclic material behaviour as cyclic hardening or softening, 
ratcheting or stress relaxation. On the other hand, the stress-
life portrayed by the Wöhler curve is usually reserved for 
high-cyclic fatigue regime where the underlaying material 
behaviour is elastic. Such regime is governed by material 
degradation leading to a brittle fracture.

Fatigue failure in engineering practice is often a direct 
cause of a loss of products, services or in more extreme 
cases, life. Its prediction and prevention as well as increas-
ing component lifetime are then undoubtedly still a major 
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concern, and as such, an area of great interest to many engi-
neers and researchers.

Aside from the experimental fatigue analyses, fatigue 
phenomenon is generally quantified by (semi-)empirical 
methods, fracture mechanics-based approaches or constitu-
tive material models with included fatigue effects. The first 
often require calibration of problem-dependent parameters 
based on extensive experimental data [7, 8] and rarely allow 
for generalizations. The approaches based on classical frac-
ture mechanics, heavily relying on Paris’ law and its exten-
sions [5, 9], are not able to describe crack initiation without 
an initial notch or final rapid failure stage. Therefore, ad hoc 
criteria are often introduced to determine the crack evolu-
tion. On the other hand, several approaches exist in the lit-
erature for the inclusion of fatigue effects into constitutive 
material models, which provide a much more flexible frame-
work. See for example [10–18] and the citations therein. 
Specifically, the continuum phase-field model for high and 
low cyclic fatigue life prediction is employed within the pre-
sented contribution.

In this regard, phase-field approach to fracture has proven 
successful in solving crack nucleation in absence of stress 
singularity as well as crack propagation, merging, kinking 
or branching without introducing any ad hoc criteria. It 
originates from the variational approach to brittle fracture 
[19], as an extension of the Griffith’s energy-based fracture 
theory [20] recast as the energy minimization problem. Later 
regularization [21], enabled the efficient numerical imple-
mentation by reformulating it as a partial differential equa-
tions system completely determining the crack evolution. 
Its smooth approximation of the crack topology on a fixed 
finite element mesh circumvents the complex crack-surface 
tracking problem. This, in turn, significantly simplifies finite 
element implementation, especially in 3D settings. Certain 
challenges in the computational treatment of the phase-
field fracture method within the finite element framework 
still exist and have recently become a subject of intensive 
research, providing some great insights and innovative 

solutions. In recent years, a considerable number of brit-
tle [22–32] and ductile [33–42] phase-field fracture formu-
lations have been proposed. These studies range from the 
modelling of 2D/3D small and large strain deformations, 
various variational formulations, multi-scale/physics prob-
lems, mathematical analysis, different decompositions and 
discretization techniques with many applications in science 
and engineering, showing the great potential of this method.

The phase-field fracture framework has been very 
recently extended to the fatigue crack propagation problems. 
Unlike the fatigue models using empirical data or parameters 
with no clear physical interpretation [43–45], the extended 
phase-field fracture method is able to reproduce the main 
features of fatigue failure with fracture-based input param-
eters. Boldrini et al. [46] presented a phase-field model cou-
pling the fracture behaviour with thermal and fatigue prob-
lem, where fatigue behaviour is introduced via additional 
scalar parameter. On the other hand, Caputo and Fabrizio 
[47], as well as Amendola et al. [48] adopted the phase-field 
fracture model with Ginzburg–Landau formalism, where the 
material degradation under cyclic loadings is introduced by 
incorporating a fatigue potential. In this direction, Schreiber 
et al. [49] proposed an additional energy density contribu-
tion to account for the sum of additional driving forces asso-
ciated with the mechanism of cyclic mechanical fatigue. A 
more intuitive approach has been very recently proposed by 
Alessi et al. [50], Carrara et al. [51], Seiler et al. [52] and 
Aldakheel et al. [53] where not only the stiffness is being 
degraded due to phase-field evolution, but also the fracture 
energy on the account of strain or stress history. The mod-
els are developed under the assumption of elastic material 
behaviour, which corresponds to the so-called high-cyclic 
fatigue regime. Recently, a phase-field fatigue model with 
elastoplastic material behaviour for low-cyclic regime was 
proposed in [54].

In this work, a full range phenomenological fatigue 
fracture model able to reproduce the main features of low- 
and high-cycle fatigue is presented. It fits into a general 

Fig. 1  a Crack growth curve 
approximated by Paris law 
where C and m are material 
parameters, b strain–life curve 
where Δε is load amplitude and 
Nf is the number of cycles to 
failure
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framework also capable of recovering monotonic fracture 
without the influence of the fatigue extension. The proposed 
formulation is schematically shown in Fig. 2. Hereby, the 
contour-plot in Fig. 2a represents the number of cycles for 
both low and high cyclic fatigue cases. Furthermore, it fits 
into a general framework capable of recovering monotonic 
fracture without the influence of the fatigue extension, as 
plotted in Fig. 2a for both brittle and ductile failure. This 
model is based on the phase-field staggered scheme with a 
residual control-based stopping criterion [55]. The material 
model incorporates elastoplastic material behaviour based 
on the von Mises plasticity criterion with combined non-
linear isotropic and kinematic hardening to account for the 
cyclic plasticity phenomena. Furthermore, a new energy 
accumulation variable is introduced to account for the 
cyclic loading history while simultaneously not influencing 
the monotonic fracture analysis. Special attention is given 
to the verification of fatigue fracture examples through the 
parametric study. Main features of fatigue, including Wöhler 
and Paris law curves in low- and high-cycle regimes, are 
easily recovered without any additional criteria. The two-
part cycle skipping technique is implemented to allow for 
the calculation of a very high number of cycles on moderate 
size examples.

The paper is structured as follows. The general concepts 
of the proposed generalized phase-field fracture model are 
provided in Sect. 2. The basic relations extending the brittle 
fracture model to ductile and fatigue fracture problems are 
explained. Section 3 deals with the numerical implementa-
tion of the proposed model. Hereby, a two-part cycle skip-
ping technique to reduce computational costs is explained. 
Numerical examples including the cyclically loaded round 
bar and compact tension specimens are presented in Sect. 4. 
The results are compared to the experimentally obtained data 
from previous works of some of the authors [56] (Croatian 
group). Moreover, the parametric study is conducted show-
ing the influence of load ratio, fatigue and fracture param-
eters on material behaviour modelling. Finally, concluding 
remarks are drawn in Sect. 5.

2  Phase-�eld formulation

This section outlines a theoretical background for the vari-
ational phase-field fracture model of solid deformable bod-
ies. The model is considered isothermal and is derived 
under the assumptions of small-strain settings. The energy 

Fig. 2  Schematic representation 
of material response obtainable 
with the proposed generalized 
phase-field fracture model for a 
monotonic (proportional) load-
ing, b cyclic loading
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dissipation due to heat and sound release at the onset of 
fracture is neglected.

The general phase-field framework for monotonic fracture 
is derived first. The material behaviour is described by the 
elastoplastic material model based on the von Mises plas-
ticity criterion with combined nonlinear isotropic and kin-
ematic hardening. Lastly, the extension to cyclic fracture, 
i.e., fatigue is introduced.

2.1  Governing functional

An n-dimensional body Ω ⊂ ℝ
n , n ∈ [1, 2, 3] with its surface 

dΩ ⊂ ℝ
n−1 , evolving crack surface Γ(t) and displacement u 

is considered. Following the variational approach to fracture 
[19], the entire fracture process is governed by the mini-
mization of the internal energy functional Ψ consisting of 
the body’s stored energy and the fracture induced dissipated 
energy, as follows

According to the Griffith’s theory of fracture, the materi-
als fail upon reaching the critical value of fracture energy 
density Gc, which is a material property.

2.1.1  Fracture surface regularization

Explicit tracking of fracture surface Γ(t) can be numerically 
costly and complicated when the interactions between multiple 
cracks are considered, especially in 3D settings. Therefore, the 
basic idea of the phase-field models is to approximate this 
discrete surface Γ(t) by a crack density function �(�,∇�), 
using a phase-field order parameter � ∈ [0, 1] and length scale 
parameter l to control the width of the approximation zone. 
Parameter � describes the scalar damage field ranging 
smoothly between the broken (� = 1) and the intact (� = 0) 
material states, as proposed by Bourdin et al. [21]. That way 
the fracture surface energy Ψf can be calculated as a domain 
integral. Following the work of Miehe et al. [57] and model 

(1)Ψ = ∫Ω∕Γ

�(�)dΩ + ∫Γ

G
c
dΓ.

termed “Strain criterion with threshold model”, the crack den-
sity function is chosen as �(�,∇�) =

3

8
√

2

�
1

l
2� + l�∇��2

�
 . 

Such model shows great resemblance to AT-1 model [58]. The 
local part of the crack density function γ is represented by a 
linear term responsible for recovering the linear elastic stage 
before the onset of fracture, which is not the case for the now-
standard phase-field model with quadratic local term. The 
fracture induced dissipated energy can now be written as

where �
c
=

3

8

√

2

G
c

l
 is a constant specific fracture energy 

serving as an energetic threshold. Schematic representation 
of the sharp crack topology approximation by the phase-field 
parameter ϕ and the influence of length scale parameter l on 
the width of transition zone is clearly displayed in Fig. 3.

2.1.2  Bulk energy regularization

Correspondingly, the bulk energy term in (1) is regularized 
by the introduction of a monotonically decreasing degrada-
tion function g(�) to account for the subsequent loss of stiff-
ness caused by the fracture initiation and propagation. The 
standard quadratic form g(�) = (1 − �)

2 is chosen. For the 
detailed argumentation on the degradation function properties 
see Pham et al. [58] and Kuhn et al. [59]. The bulk energy term 
can now be written as

2.1.3  Governing equations

The energy functional for the isotropic crack topology is writ-
ten as

where Wext is the external energy potential formulated as

(2)Ψ
f
= ∫

Ω

�c

[
2� + l

2|∇�|2
]
dΩ,

(3)Ψb = ∫Ω∕Γ

�(�)dΩ = ∫Ω

g(�) ⋅ �(�)dΩ.

(4)Π = Ψ − W
ext

Fig. 3  Sharp crack topology Γ approximation represented with the parameter ϕ and the influence of length scale parameter “l” on the width of 
transition zone
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with � and � being the prescribed volume and surface force 
vectors, respectively. The regularized internal energy poten-
tial for monotonic fracture can now be written as follows

The variation of the internal energy potential (6) yields

where the Cauchy stress σ is obtained as

Accordingly, the variation of the external energy potential 
is formulated as

Implementing the small strain settings as � = 1

2

[

∇� + ∇T
�

]

 
and the divergence theorem yields the variation of internal 
energy potential as

where n is the outward-pointing normal vector on the bound-
ary ∂Ω. Corresponding strong form equations related to the 
minimization problem of the energy functional (4) can be 
now written as follows

with � as the prescribed displacement vector. The Helm-
holtz type equation (14) representing the evolution of the 

(5)W
ext

= ∫
Ω

� ⋅ � dΩ + ∫
�Ω

� ⋅ � d�Ω ,

(6)Ψ(�,�) = ∫
Ω

g(�)�(�)dΩ + �c ∫
Ω

[
2� + l2|∇�|2

]
dΩ.

(7)

δΨ =
�Ψ

��
�� +

�Ψ

��
�� = ∫

Ω

� δ� dΩ

+ ∫
Ω

�

−2(1 − �)�(�) +
8
√

2

3
�cl

��(�,∇�)

��

�

δ� dΩ ,

(8)� = g(�)
��(�)

��

(9)δW
ext

= ∫
Ω

� δ� dΩ + ∫
�Ω

� δ� d�Ω .

(10)

�Ψ = −∫
Ω

∇ ⋅ ���dΩ + ∫
Ω

{

dg(�)

d�
�(�) + 2�c

[

1 − l2Δ�
]

}

��dΩ

+ ∫
�Ω

� ⋅ ���d�Ω + 2�c ∫
�Ω

l2∇� ⋅ ���d�Ω,

(11)∇ ⋅ � + � = 0 in Ω ,

(12)� ⋅ � = � on �Ω
�
,

(13)� = � on �Ω
�

,

(14)−l
2
Δ� +

[

1 + D̃
]

� = D̃ in Ω ,

(15)∇� ⋅ � = 0 on �Ω ,

phase-field parameter ϕ is derived in terms of the crack driv-
ing state function D ̃ [57], which takes the form

It is then clear that the fracture evolution in the phase-
field monotonic fracture model is governed by the deforma-
tion energy term �(�) . Note that D̃ can be negative, leading 
to the unphysical solution � < 0 . Such behaviour is typical 
of models with linear local term in the crack density func-
tion � . A penalty function is introduced in [58]. On the other 
hand, the addition of Macaulay brackets also resolves the 
issue, as presented in [60, 61]

2.1.4  Fracture irreversibility

The rate of dissipative fracture energy Ψ̇f has to be non-neg-
ative, Ψ̇f ≥ 0 . Physically, it means preventing the crack heal-
ing after the load is removed. The basic idea is to somehow 
enforce the monotonicity of the phase-field parameter � , i.e., 
�̇ ≥ 0 . There are a few different approaches to irreversibil-
ity within the phase-field community, e.g., [32, 62]. In this 
work, the so-called implicit enforcement of the constraint is 
used. It is based on the previous observation of D̃(�) driving 
the fracture evolution (14). The irreversibility condition can 
be then imposed by introducing the history field parameter 
H(t) [22] as

thus rewriting the evolution equation (14) as

As the crack driving force is now not allowed to decrease 
upon unloading, i.e., when �(�) decreases, the constraint 
�̇ ≥ 0 is enforced. Furthermore, the introduction of history 
field parameter H(t) enables an elegant decoupling of the 
governing equation system characteristic to the staggered 
solution scheme.

2.2  Elastoplastic material model

The material behaviour is defined by the energy potential 
�(�) . In this work, the material is assumed to be elastoplastic 
to account for the ductile fracture phenomena characterized 

(16)D̃ =
�(�)

�
c

− 1.

(17)D̃ =

⟨

�(�)

�
c

− 1

⟩

+

.

(18)H(t) ∶= max
�=[0,t]

D̃(�(�)),

(19)−l
2Δ� + [1 + H]� = H in Ω .
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by an extensive plastic deformation prior to the onset of 
fracture. The energy potential �(�) can then be written as

where �e and �p represent elastic and plastic strain tensors 
additively contributing to the total strain � = �

e
+ �

p . Such 
additive decomposition implies that the elastic response 
is not affected by plastic flow. Equation (3) now directly 
follows the phase-field ductile fracture model proposed in 
Miehe et al. [33], where the coupling between the accumu-
lated plastic energy and fracture is achieved by the degrada-
tion of both elastic and plastic bulk energy.

Elastic energy density can be written as �
e
(�e) =

1

2
�tr

2(�e)

+�tr(�e)
2 with Lamé constants λ and μ. The plastic energy 

potential �
p
(�p) can be represented by a large variety of plas-

ticity models.1 In this work, the von Mises yield criterion is 
used with the combined nonlinear isotropic and nonlinear 
kinematic hardening to account for cyclic plasticity. The 
plastic energy dissipation potential can then be written as 

where �∗ is the effective (non-degraded) Cauchy stress ten-
sor and � is the backstress tensor accounting for the shift 
of the yield surface. Note that the equations are derived in 
the effective stress space, meaning that the plastic material 
behaviour is decoupled from the previously shown fracture 
part of the model. The effective plastic energy dissipation 
potential �p is convex and positive satisfying �p(0) = 0 . The 
von Mises pressure-independent yield function states

where ‖�‖ =

√
� ⋅ � is an Euclidean norm. In the cyclic plas-

ticity model with combined nonlinear kinematic hardening, 
the associated plastic flow is assumed as

where � is the plastic multiplier. The assumption of associ-
ated plastic flow is acceptable for metals subjected to cyclic 
loading if microscopic details are not of interest. In Eq. (20), 
�̇

p

eqv is the equivalent plastic strain rate whose evolution is 
defined as

The saturation type isotropic hardening �
y

(

�
p
eqv

)

= �
0
y

+Q
∞

(

1 − exp
[

−b�
p
eqv

])

 controls the size of the yield surface, 

(20)�(�) = �
e
(�e) + �

p
(�p),

(21)�p
(

�
p
)

= ∫
t

0

(�∗ − �) ∶ �̇
pdt,

(22)F =
‖‖‖

dev
[
�
∗
]
− �

‖‖‖
−

√
2

3
�y

(
�

p
eqv

)
≤ 0,

(23)�̇
p
= �

�F

��∗

,

(24)�̇
p
eqv

=

√

2

3
�̇

p
∶ �̇

p.

where �0

y
 is the elasticity limit, Q

∞
 and b are material param-

eters defining the maximum increase in yield stress due to 
hardening at saturation (when �p

eqv → ∞ ), and the rate of 
saturation, respectively.

Kinematic hardening evolution law is defined according 
to Chaboche [63] multicomponent model as

Each backstress component �
k
 is defined by the material 

parameters C
k
 and �

k
 determining the initial kinematic hard-

ening modulus and the rate of its decrease with increasing 
plastic deformation, respectively. The addition of the non-
linear term thus limits the translation of the yield surface 
in principal stress space. The total backstress tensor is then 
obtained as

When kinematic material parameters C
k
 and �

k
 are set to 

zero, the model reduces to an isotropic hardening model. 
Moreover, when only �

k
 is set to zero, the linear Ziegler 

hardening law is recovered, removing the limiting surface. 
The isotropic and kinematic hardening phenomena are sche-
matically represented in Fig. 4 in the deviatoric stress space.

The combined isotropic-kinematic model features allow 
modelling of inelastic deformation in metals subjected to the 
cyclic loads and resulting in low-cycle fatigue failure. Such 
models are able to reproduce the characteristic cyclic phe-
nomena as Bauschinger effect causing a reduced yield stress 
upon load reversal; plastic shakedown characteristic of sym-
metric stress- or strain-controlled experiments where soft or 
annealed metals tend to harden toward a stable limit, and ini-
tially hardened metals tend to soften; progressive “ratchet-
ing” or “creep” in the direction of the mean stress related to 
the unsymmetrical stress cycles between prescribed limits; 
or the relaxation of the mean stress observed in an unsym-
metrical strain-controlled experiment.

2.2.1  Modification for fracture in tension

To prevent the unphysical crack propagation in the compres-
sive state, the bulk energy term can now be rewritten as

by introducing an additive decomposition of the deformation 
energy where �+(�) = �

+
e
(�e) + �

p
(�p) and �−(�) = �

−
e
(�e) . 

The volumetric-deviatoric decomposition proposed by Amor 
[64] is used as

(25)�̇k = C
k

1

�y

(

�
p
eqv

) (�
∗ − �)�̇p

eqv
− �

k
�k�̇

p
eqv

.

(26)� =

∑

k

�
k
.

(27)Ψb = ∫
Ω

{

g(�) ⋅ �+(�) + �−(�)
}

dΩ,

1 If �p(�
p) = 0 , the model describes a pure brittle elastic material 

behaviour.
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in terms of Macaulay brackets ⟨x⟩
±
=

x±�x�

2
 . n represents the 

dimension number and �
dev

∶=

(

� −
1

3
tr(�)�

)

 stands for the 

deviatoric part of the strain tensor. Since the plastic energy 
potential is derived in the deviatoric stress plane following 
the von Mises yield criterion, only the elastic deformation 
energy contributes to �−(�) . Correspondingly, Eq. (8) for 
stress � is now rewritten as.

while the crack driving state function now includes only the 
positive energy part as

2.3  Fatigue extension

The current model is actually capable of producing some 
features of the low-cyclic fatigue regime. The plastic poten-
tial (21) is monotonic and irreversible, by definition, causing 
the crack driving state function (30) to increase during the 
loading cycles, eventually leading to the onset of fracture. 
On the other hand, it is not able to reproduce the crack initia-
tion, nor the crack growth, when the applied cyclic loads are 
below the plasticity limit in ductile materials, or the fracture 
limit in brittle materials, corresponding to the high-cyclic 
fatigue regime.

In this subsection, the phase-field model for brittle and 
ductile fracture is extended to account for the fatigue phe-
nomena. The presented extension contains only one addi-
tional material parameter ( �

∞
 , explained later), enabling it 

(28)
�+

e
∶=

1

2

�
� +

2�

n

�
⟨tr(�)⟩2

+
+ �

�
�dev ∶ �dev

�
,

�−

e
∶=

1

2

�
� +

2�

n

�
⟨tr(�)⟩2

−
,

(29)� = g(�)
��+(�)

��
+

��−(�)

��

(30)D̃ =

⟨

�+

e

�c

+

�p

�c

− 1

⟩

+

.

to reproduce the main material fatigue features. The goal is 
then to produce a generalized phase-field framework which 
can, depending on the type of loading, recover brittle/duc-
tile fracture in monotonic as well as low- and high-cycle 
fatigue regime, including the transition. The general idea 
is to introduce the fracture energy degradation due to the 
repeated externally applied loads. Physically, it would mean 
the degradation of material fracture properties during the 
cyclic loading, which eventually causes the crack initiation 
and propagation occurrence at lower loads. In a way, mate-
rial “mileage” would be introduced. To that end, a local 
energy accumulation variable �(t) is introduced accounting 
for the changes in deformation energy �(�) during the load-
ing cycles, thus taking the structural loading history into 
account. A fatigue degradation function F̂

(

�
)

 is introduced 
only affecting the fracture energy term as discussed. The 
generalised internal energy potential can be now written as

This model is in line with the phase-field fatigue fracture 
formulation for the brittle materials, proposed in Carrara 
et al. [51] and Alessi et al. [50]. In line with previous Sec-
tions, the modified crack driving state function D ̃ is now 
defined as

2.3.1  Local energy accumulation variable Ã(t)

This variable is conceived as a local measure of repeated 
deformation energy changes during the loading history. It is 
a major feature of the novel generalized phase-field fatigue 

(31)

Ψ
(
�

e, �p,�,�
)
= ∫

Ω

{
g(�)

[
�+

e
(�e) + �p(�

p)
]
+ �−

e
(�e)

}
dΩ

+ ∫
Ω

F̂
(
�
)
�c

[
2� + l|∇�|2

]
dΩ

.

(32)D̃ =

⟨

�+

e

F̂
(

�
)

�c

+

�p

F̂
(

�
)

�c

− 1

⟩

+

.

Fig. 4  Schematic representation of a nonlinear isotropic and b nonlinear kinematic hardening
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formulation. To fully fit into this framework, it should not 
affect the proportional (monotonic) loading case. To sat-
isfy this condition, in this work, the variable is introduced 
as the sum of negative differences of the total deformation 
energy during the cyclic loading. That way, the variable value 
increases only during the unloading part of the cycle, conse-
quently degrading the fracture material properties. Note that 
the plastic deformation energy �

p
(t) is dissipative, and there-

fore never decreasing. The degradation of fracture properties 
due to fatigue is then, in fact, only influenced by the repetitive 
changes in elastic deformation energy �

e
(�e).

The basic idea is explained schematically on the example 
of 1D bar subjected to the sinusoidal displacement with load 
ratio R = 0 , defined as the ratio of the minimum and maximum 
loads during the cyclic loading, and three different amplitudes 
A1 < A2 < A3. Unlike the amplitudes A2 and A3, the loading 
amplitude A1 is below the material plastic limit, characteristic 
to the high-cycle fatigue regime. The evolution of total energy 
(

�
e
+ �

p

)

 and energy accumulation variable �(t) is shown in 
Fig. 5.

The maximum deformation energy value of curve corre-
sponding to the amplitude A1 does not increase through the 
course of cycles. On the other hand, the increase of the maxi-
mum total deformation energy due to the increase of plastic 
dissipation �

p
(t) over the cycles can be clearly seen for curves 

corresponding to amplitudes A2 and A3. Furthermore, a clear 
peak shift to the left caused by the kinematic hardening plastic-
ity is observed.

The only difference distinguishing between the high- and 
low-cycle fatigue regime is the influence of increasing plas-
tic energy �

p
(t) on the crack driving state function D̃ in the 

low-cycle fatigue regime. The competition is thus introduced 
between the total deformation energy 

(

�
e
+ �

p

)

 (whose 
maximal value is constant for the case of high-cyclic fatigue 
regime, and increasing in low-cyclic for the case of constant 
load amplitudes), and the fracture resistance decrease due to 
the repetitive change in elastic energy, i.e., fatigue.

The local energy accumulation function can be then formu-
lated in the integral form as

where H
(

−�̇
e

)

 is the Heaviside function taking the value of 
1 when �̇

e
< 0 and the value of 0 when �̇

e
≤ 0 . The incre-

mental form can be written as

where N is the cycle number.
The energy accumulation variable increases only during 

the unloading, thus not affecting the proportional loading 
cases, as clearly seen in Fig. 5b.

2.3.2  Mean load effect

The energy accumulation variable description implicitly 
includes the mean load effect often expressed by a load ratio 
R . For the shown case of strain-control loaded bar, the load 
ratio can be expressed as R =

�min

�max

, with �
M
=

�
max

+�
min

2
 being 

the mean strain imposed to the bar. The deformation energy 
amplitude can then be written as Δ�

e
=

1

2
E
(

�
2

max
− �

2

min

)

= 2E�
2

M

1+R
2

(1+R)2
, for the case where maximum load value does 

not reach the plastic yield limit, and R ≥ 0 . This clearly 
proves the mean load, and the load ratio influence is implic-
itly considered in this energy accumulation variable descrip-
tion. It is further explained on the example of 1D bar loaded 
with sinusoidal displacements B1 and B2 of same ampli-
tudes, but different mean values, as presented in Fig. 6.

Loads of the same displacement amplitudes, or strain 
therefore, with different mean values, produce much differ-
ent deformation energy values. Consequently, the accumu-
lated energy variable obtained by the higher mean load case 
(B2 in Fig. 6) increases much faster than in the lower mean 
load case (B1), as predicted.

(33)�(t) = ∫
t

0

�e(t)H
(

−�̇e

)

dt,

(34)�
N
= �

N−1 − ⟨�
N
− �

N−1⟩−,

Fig. 5  a Total deformation 
energy and b energy accumula-
tion variable of 1D bar sub-
jected to sinusoidal displace-
ment-controlled loading
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2.3.3  Fatigue degradation function F̂
(

Ã

)

Following the proper definition of the energy accumula-
tion variable �(t) , the degradation of the fracture energy 
has to be defined. Herein, the fatigue degradation function 
F̂
(

�
)

∈ [0, 1] is introduced. It should be continuous and 
piecewise differentiable with the following properties

Similar degradation function properties have been used 
in [50, 51]. In this work, three functions are presented fitting 
the description

(35)

F̂
(

� = 0
)

= 1,

F̂
(

� → ∞

)

= 0,

dF̂

dt

(

0 < � < ∞

)

≤ 0.

(36)

F̂1 =

(

1 −
�

� + �∞

)2

for � ∈ [0,+∞],

F̂2 =

(

1 −
�

�∞

)2

for � ∈
[

0,�∞

]

,

F̂3 =

(

� log
�∞

�

)2

for � ∈

[

�∞, 10
1

�
⋅ �∞

]

.

Their respective semi-logarithmic graphs are shown in 
Fig. 7. In Eq. (36), �

∞
 is the newly introduced parameter 

used to bound the functions between 0 and 1, and is there-
fore included in every function. It can be seen as a fatigue 
material parameter whose physical interpretation will be 
provided through the next simple examples, as well as the 
numerical examples in Sect. 4. The parameter � embedded 
into F̂

3
 is introduced to allow for better fine-tuning. 

The following figures present the proposed fatigue deg-
radation functions in terms of number of cycles N, for 
the cyclically loaded 1D bar. Pure elastic material behav-
iour is assumed leading to a constant change of the elastic 
deformation energy Δ� between each cycle. A clear link 
between the number of cycles N, and energy accumula-
tion variable �  , can be then constructed as � = Δ� ⋅ N. 
Figure 7 shows the influence of the parameter �

∞
 in each 

function expressed as the multiples of elastic deformation 
energy increment at each cycle Δ�.

The parameter �
∞

 obviously affects the number of 
cycles at which the fatigue degradation takes off, with all 
other parameters being equal. The physical interpretation 
of this parameter will be explored through the paramet-
ric study conducted in Sect. 4. On the other hand, the 
increase in the loading amplitude would cause earlier onset 

Fig. 6  a Prescribed load, b resulting elastic deformation energy and c energy accumulation variable of 1D bar subjected to sinusoidal displace-
ment-controlled loading with different mean values

Fig. 7  Influence of parameter �
∞

 for three different fatigue degradation functions a F̂
1
 , b F̂

2
 , c F̂

3
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of fatigue degradation. Lastly, the influence of the tuning 
parameter � is observed in Fig. 8.

3  Finite element implementation

3.1  Discretization

The domain Ω is discretized with finite elements containing 
the displacement �T

i
=

[

u
i

v
i

]

 and phase-field �
i
 degrees of 

freedom (DOFs). The subscript "i" represents the node number 
while u and v represent the displacements in x and y directions, 
respectively, for the considered 2D element. For the case of 1D 
truss element, only axial displacement is considered. The same 
shape functions N

i
 interpolate both the displacement and the 

phase-field variable

where n is the total number of nodes in the element, while 
N and B are shape function and spatial derivative matrices, 
respectively.

3.2  Virtual work principle

After the substitution of the corresponding history field (18), 
the variation of internal energy can be written as

representing the weak form of the generalized phase-field 
fracture model. The history field H includes all the impor-
tant features for resolving brittle/ductile fracture in mono-
tonic loading and fatigue fracture in cyclic loading (32). 

(37)
� =

∑n

i
�

�

i
�

i
, � =

∑n

i
�
�

i
�

i
,

� =

∑n

i
N

i
�

i
, ∇� =

∑n

i
�
�

i
�

i
,

(38)

�Ψ =
�Ψ

��
�� +

�Ψ

��
�� = ∫

Ω

���dΩ

+ ∫
Ω

{

[(1 + H)� − H]�� + l
2∇��∇�

}

dΩ = �W
int,

The virtual work principle �W
ext

− �W
int

= 0 can be then 
discretized as

where

are the external force vectors. ��

int
 and ��

int
 correspond to the 

internal displacement and phase-field force vectors, respec-
tively, as follows

where � is the vector containing phase-field DOFs �
i
.

3.3  Residual vectors and stiffness matrices

Residual vectors can be now obtained as � = �
ext

− �
int

 
leading to

Correspondingly, the stiffness matrices are obtained as

where C is the degraded tangent material matrix.

3.4  Staggered solution scheme

The finite element model can be then written in terms of a 
decoupled equation system as follows

which corresponds to the staggered algorithmic approach, 
also known as alternative minimization approach. It is gen-
erally more robust than standard monolithic approaches 
[65]. However, the efficiency and convergence rate of such 
staggered systems depend on the stopping criterion [26], 

(39)
(

�
�

ext
− �

�

int

)

�� +

(

�
�

ext
− �

�

int

)

�� = 0,

(40)
�
�

ext
= ∫

Ω

�
�
�dΩ + ∫

�Ω

�
�
� d�Ω,

�
�

ext
= 0,

(41)

��
int

= ∫
Ω

��T

�dΩ,

�
�

int
= ∫

Ω

{

l
2��T

��� +
(

[1 + H]��� − H
)

��
}

dΩ,

(42)

�� = ∫
Ω

���dΩ + ∫
�Ω

��� d�Ω − ∫
Ω

��T

�dΩ,

�� = −∫
Ω

{

l
2��T

��� +
(

[1 + H]��� − H
)

��
}

dΩ.

(43)

��� = −
���

��
= ∫

Ω

��T

���
dΩ,

��� = −
���

��
= ∫

Ω

{

l
2��T

�� + [1 + H]����
}

dΩ,

(44)

[

�

�

]

n

=

[

�

�

]

n−1

+

[

���
0

0 ���

]−1

⋅

[

��

��

]

.

Fig. 8  Influence of parameter � in the fatigue degradation function F̂
3
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which usually differs between the implementations. Herein, 
the residual norm-based stopping criterion [55] is briefly 
presented. It governs the iterative process by controlling the 
residuals corresponding to the fields � and � , as presented 
in Box 1. where “tol” is a required user-defined tolerance. 
The choice of which field to solve first is usually arbitrary. 
Herein, the �kk is solved first as it more closely fits with the 
developed ABAQUS implementation framework. For a more 
detailed explanation see [66], where the presented algorithm 
source code is provided.

3.5  Cycle skipping option for high-cyclic fatigue 
analysis

The presented extension to fatigue within the phase-field 
fracture model is based on the time evolving properties. To 
properly calculate the fracture nucleation, stabilised propa-
gation and final rapid growth, one should precisely com-
pute every cycle in the analysis. However, such approach is 
exceedingly time-consuming for the analysis of high-cycle 
fatigue regime even for medium size problems.

In this work, a two-part cycle skipping technique is 
implemented and is used throughout this work, where 
applicable. Note first that the underlying phase-field model 
recovers linear elastic material behaviour stage before the 
onset of damage. For the case of high-cyclic fatigue regime 
analysis 

(

�p = 0
)

 with constant loading amplitude, the total 
deformation energy amplitude per cycle Δ� is constant. 
The energy accumulation variable �  then grows linearly as 
� = N ⋅ Δ� until fatigue degradation function F̂

(

�
)

 reaches 
the point where F̂

(

�
)

⋅ �
c
< � , thus triggering the onset of 

damage H > 0 . The first part of the two-part cycle skipping 
technique refers to this linear part. It can be easily achieved 
by calculating the cycle at which the onset of damage will 
happen for each proposed fatigue function as

After we know the cycle number N i at which 
F̂
(

�
)

⋅ �
c
< � happens, we can jump the simulation to a 

few cycles before this event, set the energy accumulation 
variable to the corresponding value � = N ⋅ Δ� , set the 
cycle number counter to the corresponding value N and thus 
ultimately skip this linear part in high-cyclic fatigue regime.

The subsequent non-linear part of the analysis can be fur-
ther accelerated by including the cycle skipping technique 
based on the idea proposed in [67] for structures with time-
evolving properties. A schematic representation of such pro-
cedure is shown in Fig. 9.

It is based on the extrapolation of the selected time-evolv-
ing solution variable, in this case the accumulation energy 
variable �  . Herein, the time duration of the cycle is assumed 
constant. The idea is to first perform a complete FE analy-
sis for a set of cycles to establish a trend line of the energy 
accumulation variable time(cycle)-evolution, as presented 
in Fig. 10.

At least three consecutive cycle data values have to  
be defined by points P1

(

N1,�
(

N1

))

,P2

(

N2,�
(

N2

))

 and 
P3

(

N3,�
(

N3

))

 . The maximum allowed number of cycles to 
skip ΔN

ip

jump
 is determined at each integration point ip 

through a control function based on the user-input allowed 
relative error q

y
 as

(45)

N
F̂1

i
=

�
∞

Δ�

(√

�c

�
− 1

)

;

N
F̂2

i
=

�
∞

Δ�

(

1 −

√

�

�c

)

;

N
F̂3

i
=

�
∞

Δ�
⋅ 10

−
1

�

√

�

�c .

(46)

|||
|
Δ�

(
N1 + ΔN

ip

jump

)
− Δ�

(
N1

)|||
|

|
||
Δ�

(
N1

)|
||

≤ qy,

Box 1. Residual control (RCTRL) staggered solution scheme [55, 66]

Fig. 9  Schematic representation cycle skipping technique



1442 Computational Mechanics (2021) 67:1431–1452

1 3

where Δ�
(

N1 + ΔN
ip

jump

)

 is the predicted, linearly extrapo-

lated difference in the accumulated energy moment after the 
jump. It can be obtained as

The allowed jump value for each variable is then com-
puted as

while the final cycle jump is computed as the minimum 
allowed jump ΔNjump = min

{

ΔN
ip

jump

}

 . Finally, the extrapo-

lated value �
(

N1 + ΔNjump

)

 after the jump is calculated in 
each integral point as

Such extrapolation method is usually most suited for 
quasi-linearly evolving systems. However, the employment 
of control function enables it to accurately solve the highly 
non-linear time evolving behaviour by automatically calcu-
lating lower number of cycles to skip or no cycle skip at all.

4  Numerical examples

The performance of the proposed generalised phase-field 
model for brittle/ductile and fatigue fracture modelling, 
according to the underlaying material behaviour and load-
ing conditions is demonstrated by means of representative 
boundary value problems. In this regard, the proposed model 
is implemented into the commercial FE software ABAQUS. 
Furthermore, it is made freely available at https:// data. mende 

(47)

Δ�

(

N1 + ΔN
ip

jump

)

= Δ�
(

N1

)

+
[

Δ�
(

N1

)

− Δ�
(

N2

)]

ΔN
ip

jump
.

(48)ΔN
ip

jump
= qy

|
|
|
Δ�

(
N1

)|||
|
|
|
Δ�

(
N1

)
− Δ�

(
N2

)||
|

,

(49)

�

(

N1 + ΔNjump

)

= �

(

N1

)

+ Δ�
(

N1

)

ΔNjump

+
1

2

[

Δ�
(

N1

)

− Δ�
(

N2

)](

ΔNjump

)2

ley. com/ datas ets/ p77ts yrbx2/4 [66], thus further promoting 
the phase-field methodology with other engineers, research-
ers and students.

4.1  Single edge notched specimen

The proposed generalized phase-field fracture model is first 
tested on the most common benchmark test used in the veri-
fication of the phase-field fracture models to show that the 
presented fatigue extension does not influence the monotonic 
analysis. The specimen geometry and boundary conditions, 
shown in Fig. 11, together with the material properties, 
E = 210 kN

/

mm2, � = 0.3 and G
c
= 2.7 × 10

−3
kN∕mm are 

adopted from Miehe et al. [22]. The length scale parameter 
is set to l = 0.0377 mm. The specimen domain is discretized 
with 18,868 finite elements with refinement in the region of 
the expected crack path evolution. Two cases are analysed: 
one with the phase-field model for monotonic fracture mod-
elling only, and the other with the proposed model with three 
different �

∞
 values. Herein, the results are shown with the 

fatigue degradation function F̂
3
 . However, the same results 

are obtained with every proposed function as the presented 
property is governed by the novel description of the accu-
mulated energy variable � .

The force–displacement curves in Fig. 12 clearly show 
there is no influence of the presented fatigue extension in the 
monotonic loading, unlike the fatigue extensions presented 
in [51]. 

Furthermore, energy accumulation variable �  and total 
energy �(�) are shown in Figs. 13 and 14 at two consecutive 
increments before and after the complete fracture.

The energy accumulation variable �  obviously increases 
at the locations where total energy, i.e., elastic energy 
decreases. The increase is negligible compared to the value 
of total energy at the corresponding points. Moreover, 
the locations with high total energy, corresponding to the 

Fig. 10  Establishing the trend line for the energy accumulation vari-
able �

Fig. 11  Single edge notched specimen geometry and boundary condi-
tions

https://data.mendeley.com/datasets/p77tsyrbx2/4
https://data.mendeley.com/datasets/p77tsyrbx2/4
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localization of damage, do not exhibit the energy accumula-
tion variable increase. Therefore, it proves that the proposed 
model can handle monotonic loading case without the inter-
ference of the extension.

4.2  Cyclically loaded homogeneous round bar

This example is used to assess the ability of the model to 
recover the full scope of fatigue domain, ranging from low- 
to high-cyclic regime. It follows the example of cyclically 
loaded round bar specimen experimentally tested in author’s 
previous work [56, 68]. The specimen is discretized by a 
truss element. The geometry and boundary conditions are 
illustrated in Fig. 15. Strain-controlled loading is used with 
load ratio R = 0. 

Fig. 12  Influence of the fatigue extension on monotonic fracture anal-
ysis force–displacement curves

Fig. 13  Total deformation energy in MPa a before and b after the formation of crack

Fig. 14  Energy accumulation variable in MPa a before and b after the formation of crack
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The material properties of nodular cast iron with nonlin-
ear isotropic and kinematic hardening are taken from [68] 
for the so-called flotret casting technique. The elastoplastic 
material properties are set as follows: E = 140 GPa, � = 0.3, 
�

0

y
= 123 MPa, Q

∞
= 95 MPa, b = 18, C1 = 22, 734 MPa,

�1 = 261.8, C2 = 136, 029 MPa, �2 = 2, 113.5. The fracture 
toughness is set to G

c
= 74N∕mm following the J-integral 

measurements taken in [56, 68]. Length scale parameter 
is chosen to be l = 0.25 mm, while the fatigue material 
parameter is set to �

∞
= 5000 MPa. First, the elastoplastic 

material model is tested and compared with the experi-
mental results for loading amplitude �

a
= 0.8% ± 0.8%. The 

stress–strain diagram in Fig. 16a shows the comparison 
with experimental measurements from [56], until the onset 
of fracture. The time evolution of stress, energetic values 
and phase-field parameter is shown in Fig. 16b. 

The results obtained with the proposed model match 
the experimental measurements well. Slight discrepancy 
can be observed in the first cycle, as expected, because 
the material properties were calibrated for the stabilized 
hysteresis loop. It can be clearly seen how the dissipated 
plastic energy �

p
 and accumulated deformation energy �  

grow with each cycle. Their respective slopes are influ-
enced by the magnitude of load amplitude, i.e., the influ-
ence of �

p
 diminishes and eventually vanishes with lower 

amplitudes, making the transition between low- and high-
cyclic fatigue regime.

Next, 35 different strain amplitudes are subjected to the 
specimen to assess the model behaviour in different fatigue 
regimes. The simulations are stopped at cycle N

f
 when 

phase-field parameter reaches � = 0.99, thus assuming a 
total failure. Figure 17 presents the � − N  curve for the 
three different fatigue functions with �

∞
= 5000 MPa, as 

well as the case without the fatigue degradation named 
“noF”. Note that each marker in Fig. 17 represents one 
full simulation obtained with a different load amplitude. 

The obtained results show great resemblance to the 
theoretical � − N  curve (Fig. 1b). Clear difference can be 
seen in the results obtained with F̂

1
 compared to the results 

obtained with F̂
2
 and F̂

3
 due to their obvious mathemati-

cal difference. Moreover, it is obvious that the fracture 
can be obtained with high loading amplitude values even 
with the model without fatigue degradation, up until the 
point where plastic energy in system becomes negligi-
ble, shown as “noF limit”. On the other hand, the present 
model does not exhibit an endurance limit usually found in 
steel like materials. Such limit could be easily introduced 
by modifying the fatigue degradation function with inclu-
sion of additional stress-like or strain-like parameters, as 
presented in [50]. It can be thus concluded that the pro-
posed generalized phase-field fracture model is capable 
of reproducing the low- and high-cycle regime and the 
transition in-between. Moreover, the strain amplitude and 
cycle number values N

f
 correspond to the values normally 

Fig. 15  Cyclically loaded round bar specimen. Geometry and bound-
ary conditions

Fig. 16  Cyclically loaded round 
bar specimen. a Stress–strain 
hysteresis loop experimental 
comparison, b time evolution 
of stress, energy variables and 
phase-field parameter

Fig. 17  Cyclically loaded round bar specimen. ε–N curve
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observed in literature thus giving even more credibility to 
these results.

G
c
= 0.74 kN/mm accordingly. The fatigue parameter is 

set to �
∞
= 5000 MPa. Following [68], the load amplitude 

is set to F = 6 kN with load ratio R = 0.1. The obtained 
crack path after various number of cycles is presented 
in Fig. 19, while the energy accumulation variable �  is 
shown in Fig. 20.

The comparison with experimentally observed crack 
propagation is now presented in Fig. 21.

It can be seen there are some discrepancies between 
the experimentally observed and the numerically obtained 
results. Although better results could be obtained by care-
fully calibrating the fracture and fatigue material parameters, 
the corresponding a–N trend shows great potential in pre-
dicting fatigue fracture.

The change in stress intensity factor can be now calcu-
lated as

according to ASTM standard [69], where ΔF is the differ-
ence between minimal and maximal load magnitude, a

i
 is 

the current crack length, while B and W are geometric quan-
tities of the specimen, shown in Fig. 18. Geometric function 
f

(

ai

W

)

 is calculated as

The crack growth rate da∕dN versus the change in stress 
intensity factor ΔK can now be constructed and is shown in 
Fig. 22 in comparison with experimental data and NASGRO 
curve calculated in [68]. 

It can be observed that there is a great overlap between 
the experimentally obtained curve, NASGRO equation and 
numerically obtained curves for lower values of stress inten-
sity factor ΔK. However, there seems to be a discrepancy for 
the higher values of ΔK. Results obtained by fatigue function 
F̂

2
 with the chosen material parameters show the best match 

in comparison with experimental results. As already men-
tioned, careful calibration of fracture and fatigue material 
parameters could lead to even better match. Nevertheless, 
the results show the great potential of the phase-field frac-
ture method in dealing with fatigue problems and capturing 
fundamental features of material fatigue. Again, it has to be 
noted that no ad-hoc criteria are added in this expansion of 
phase-field fracture model to fatigue, while only one addi-
tional parameter, �

∞
, is introduced in the expansion. How-

ever, the choice of degradation function F̂ remains an open 
question and will be considered in future works.

(50)ΔKi =
ΔF

B
√

W
f

� ai

W

�

(51)f

( ai

W

)

=

(

2 + ai

/

W
)

⋅

[

0.886 + 4.64 ⋅

(

ai

/

W
)

− 13.32 ⋅

(

ai

/

W
)2

+ 14.72 ⋅

(

ai

/

W
)3

− 5.6 ⋅

(

ai

/

W
)4
]

√

(

1 − ai

/

W
)3

.

Fig. 18  Cyclically loaded CT specimen. Geometry with thickness 
B = 0.5 W 

4.3  Compact tension (CT) specimen test—low cyclic 
regime

To further assess the proposed model’s capability in repro-
ducing fatigue crack evolution, the compact tension (CT) 
specimen subjected to cyclic loading is simulated. The 
geometry is presented in Fig. 18, corresponding to the 
experimental setup made in in some of the authors’ previ-
ous work [56].

Loading pins boundary conditions are simulated by kin-
ematically constraining nodes at the hole edge constituting 
60° angle with the reference point at the pin centreline. 
The reference point corresponding to the bottom pin is 
fixed, while the load is imposed to the top pin reference 
point. Even though force-control is imposed, standard 
Newton–Raphson solver can be efficiently used in this 
example until the complete failure point at which New-
ton–Raphson solver is unable to converge.

The elastoplastic material properties are taken for the 
nodular cast iron, as presented in the previous exam-
ple. On the other hand, the length scale parameter has 
been set to l = 0.05 mm, and the fracture parameter to 



1446 Computational Mechanics (2021) 67:1431–1452

1 3

4.4  Compact tension (CT) specimen test—high 
cyclic regime

The same specimen geometry is used to assess the influence 
of different input material parameters. However, in this 
example a different academic linear elastic material is cho-
sen with the following unchanging material properties: 
E = 210 GPa, � = 0.3 and l = 0.5 mm. The influence of load 
ratio R =

F
min

F
max

 , fatigue parameter �
∞

 and fracture toughness 

G
c
, is observed in terms of Paris law and Wöhler curves. 

First, the influence of loading amplitude on crack growth 
rate da∕dN versus stress intensity factor change ΔK is shown 
in Fig.  23 for constant R = 0, G

c
= 5 kN/mm and 

�
∞
= 50 MPa.

The curves in Fig. 23 follow well-known empirical trend, 
recovering a major fatigue fracture feature. The steady linear 
propagation stage usually described by a Paris law follows 
the same slope for every amplitude. Moreover, the fracture 
initiation and final unstable growth can be clearly observed 
as described in Fig. 1a.

4.4.1  The influence of the load ratio R

Load ratio influence is tested on R = 0, R =
1

3
, R =

1

2
, and 

R =
2

3
, while fracture toughness and fatigue parameter are 

held constant at G
c
= 5 kN/mm and �

∞
= 50 MPa. The 

load ratio influence results are presented in Figs. 24 and 25 
in terms of fatigue life, i.e., Wöhler curves where instead 
of stress, the loading amplitude is set on vertical axis, and 
da∕dN versus ΔK , respectively.

Obvious load ratio influence is observed in accordance 
with known empirical trends. Note that no additional terms 
have been set to recover the load ratio influence. The results 
prove the validity of the energy accumulation variable �  
choice where the mean load influence is implicitly included, 
as explained in Sect. 2.

4.4.2  The influence of the fatigue parameter Ã
∞

The influence of the fatigue parameter �
∞

 is tested on 
R = 0 with the fracture toughness again held constant at 
G

c
= 5 kN/mm. Three different values of fatigue param-

eter �
∞

 are tested; �
∞
= 20 MPa, �

∞
= 50 MPa and 

�
∞
= 100 MPa. The results are shown in Figs. 26 and 27 in 

terms of Wöhler curves and da∕dN versus ΔK , respectively.
An increase in fatigue parameter �

∞
 clearly shifts the 

Wöhler curves to the right by postponing the fatigue crack 
initiation and propagation. Furthermore, it shifts the crack 
growth rate da

dN
 down. Such observation leads to the conclu-

sion that the fatigue parameter �
∞

 could be undoubtedly 
associated to the fatigue material parameter C used in Paris 

Fig. 19  Cyclically loaded CT 
specimen. Crack path after a 
2000 cycles, b 7000 cycles, c 
10,000 cycles, d 13,000 cycles
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law da

dN
= C(ΔK)

m , as presented in Fig. 1a. This adds on to 
the validity of the proposed model as the parameter �

∞
 is 

the only material parameter extending the phase-field frac-
ture model to fatigue problem.

4.4.3  The influence of the fracture toughness  Gc

Following the Paris law empirical equation da

dN
= C(ΔK)

m 
where the parameter C is now linked to the parameter �

∞
, 

the slope controlled by parameter m remains unexplored. 
It seems the slope in the proposed model is implicitly 
obtained by already existing fracture material properties, 
G

c
 and l. Therefore, to examine the fracture material prop-

erties influence on the slope, fracture toughness is changed 

Fig. 20  Cyclically loaded CT specimen. Energy Accumulation variable �  in MPa after a 2000 cycles, b 7000 cycles, c 10,000 cycles, d 13,000 
cycles

Fig. 21  Cyclically loaded CT specimen. Crack length vs cycle num-
ber

Fig. 22  Cyclically loaded CT specimen. Crack rate growth versus 
stress intensity factor change
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Fig. 23  Crack rate growth versus stress intensity factor change loading amplitude influence for fatigue degradation function a F̂
1
 b F̂

2
 and c F̂

3

Fig. 24  Load ratio influence on fatigue life for fatigue degradation function a F̂
1
 b F̂

2
 and c F̂

3

Fig. 25  Load ratio influence on crack rate growth versus stress intensity factor change for fatigue degradation function a F̂
1
 b F̂

2
 and c F̂

3
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to G
c
= 1 kN/mm and Gc = 25 kN/mm, while keeping the 

�
∞
= 50 MPa constant. It has to be noted that such paramet-

ric study of fracture properties influence is purely numerical 
and hardly achievable experimentally. However, it certainly 
serves the purpose of better understanding the proposed 
model.

The results show clear fracture properties influence 
on the slope of the Paris law curve, more pronounced in 
fatigue degradation functions F̂

2
 and F̂

3
. Moreover, Fig. 28a 

shows the influence of the fracture toughness on the verti-
cal shift, i.e., the start of the fatigue propagation, which is 
not observed in functions F̂

2
 and F̂

3
 . This could be due to 

the underlying difference in the fatigue degradation func-
tions which further emphasises the remaining open ques-
tions on the choice of such function. Nevertheless, it can 
be concluded that the parameter m in the empirical Paris 
law equation can be directly linked to the fracture material 

parameters already contained in the proposed phase-field 
model for monotonic fracture. 

The Paris law slope can also be fine-tuned using the 
parameter � in F̂

3
 (36). For this example, only function F̂

3
 is 

used with constant �
∞
= 50 MPa, G

c
= 5 kN/mm and R = 0. 

The change in Paris law slope is presented in Fig. 29. Similar 
parameter can be introduced in other function as well, thus 
having the complete control on fatigue material behaviour 
described with Paris law curve.

5  Conclusion

In this work, the extension of the phase-field fracture 
approach to fatigue was presented, recovering its main 
features like � − N  and Paris law curves in low- and 
high-cycle regimes without any additional criteria. Two-
part cycle skipping technique was included for better 

Fig. 26  Fatigue parameter �
∞

 influence on fatigue life for fatigue degradation function a F̂
1
 b F̂

2
 and c F̂

3

Fig. 27  Fatigue parameter �
∞

 influence on crack rate growth versus stress intensity factor change for fatigue degradation function a F̂
1
 b F̂

2
 and 

c F̂
3
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computational efficiency. The elastoplastic material model 
with the combined nonlinear isotropic and kinematic 
hardening was included to account for cyclic plasticity. 
A fatigue degradation function was developed for the 
degradation of fracture energy. Hereby, three different 
fatigue degradation functions are proposed. These func-
tions include the structural loading history information by 
introducing the local energy accumulation variable and an 
additional fatigue material parameter.

The novel description of the energy accumulation vari-
able was discussed in detail. It implicitly includes the influ-
ence of mean load, which was first shown theoretically and 
schematically, and then proven through parametric study 
of cyclically loaded CT specimen. Such definition of the 
accumulation variable prevents the interference of the 

fatigue extension in the monotonically loaded cases. This 
was proven on the example of single edge notched specimen 
subjected to monotonic loading.

The proposed model recovers the full scope of fatigue 
domain, ranging from low- to high-cyclic regime, as pre-
sented on the example of cyclically loaded round bar. More-
over, the numerical results are compared with experimental 
data on nodular cast iron CT specimen from the author’s pre-
vious work and show great match in terms of fatigue crack 
growth and Paris law curves in low-cycle fatigue regime. 
However, further experimental validation is needed for better 
understanding of the underlying phase-field fatigue model. 
The numerical experiments are concluded with the paramet-
ric study of cyclically loaded CT specimen in high-cyclic 
regime where the influence of different fatigue functions, 
load ratios, and fracture and fatigue material parameters was 
observed. The additional fatigue material parameter is thus 
clearly linked to the well-known empirical parameters.
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2
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