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1 ABSTRACT 
The traditional approach to worst-case static-timing analysis is 
becoming unacceptably conservative due to an ever-increasing 
number of circuit and process effects. We propose a 
fundamentally different framework that aims to significantly 
improve the accuracy of timing predictions through fully 
probabilistic analysis of gate and path delays. We describe a 
bottom-up approach for the construction of joint probability 
density function of path delays, and present novel analytical and 
algorithmic methods for finding the full distribution of the 
maximum of a random path delay space with arbitrary path 
correlations.  
 
Categories and Subject Descriptors 
J.6.1 [Computer-Aided Engineering]: Computer-aided design. 
General Terms: Algorithms 

2 INTRODUCTION 
Over the years it has been widely acknowledged that the 
uncertainty about the true design and manufacturing conditions is 
a major cause of unnecessary over-design and resulting 
underperformance of circuits [1][2]. The sources of this 
uncertainty are manifold, and are due to the limitations of the 
actual design practices, uncertainty about the environmental 
design characteristics (cross-talk noise, temperature and supply 
voltage variation), and the inherent variation of the underlying 
process parameters. With the advance of deep sub-micron 
technologies, process variability and, in particular, intra-chip 
variation, has been increasing. This is due to various processing 
and device physics factors such as random dopant placement in 
the channel, spatially correlated and proximity-caused Lgate 
variation, and interconnect metal thickness variation [2].  
    The emergence of intra-chip parameter variability as a 
dominant source of uncertainty and circuit degradation requires a 
new set of approaches to circuit timing analysis, whose role is to 
guarantee that the predicted maximum clock speed is as close as 
possible to the actual (silicon) timing behavior. Industrial 
experience shows that the gap between the worst-case timing 
constraints predicted by the tools, and the final silicon 
performance is routinely greater than what can be tolerated and is 
sometimes as high as 30% [3]. 
    What is wrong with the existing tools and approaches? Circuit-
dependent parametric yield loss is predicted to become a key issue 

in nanometer silicon technologies [4]. The fundamental problem 
is that the standard timing techniques are incapable of accurately 
predicting parametric yield of a circuit due to their non-
probabilistic formulation. One particular result of this failing is 
the well-known conservatism of traditional worst-case modeling 
techniques. We may distinguish at least two levels of 
conservatism. The first is the practice of defining the worst-case 
timing behavior of a cell by performing circuit analysis in SPICE 
that simultaneously sets all the device model parameters to their 
worst-case values. Several approaches to reduce this type of 
conservatism have been proposed [5]. When we move to the level 
of cell-based static timing analysis, an additional level of 
conservatism is created by the non-probabilistic delay 
computation of the traditional analysis. This conservatism is 
relatively new but rapidly growing in importance, and it arises due 
to the breakdown of key assumptions regarding the correlation 
between the timing responses of the various delay elements, 
implicit in the traditional worst-case timing tools. 
    In the past, several attempts have been made to introduce 
statistical computations into the domain of gate-level timing 
analysis. Hitchcock [6] describes a Monte-Carlo based technique 
for computing the distributions of gate delays. Jyu [7] proposes a 
faster approach that is capable of dealing with false paths. The 
deficiency of these techniques is that they are still 
computationally very expensive. A table look-up algorithm, 
considered by Berkelaar [8], is faster but fails to account for 
correlation between gate delays as well provide a way to compute 
the maximum of more than two variables. 
    In contrast to the earlier work, we propose an analytical 
theoretical framework for statistical timing analysis. Only the 
analytical (as opposed to computationally expensive sampling-
based techniques, such as Monte-Carlo) methodology has a 
chance to be used in the timing analysis of real-sized circuits. The 
proposed approach is entirely probabilistic, seeking to construct 
the probability distribution of an achievable clock period for a 
given circuit. We show how to construct the joint probability 
density function (jpdf) of path delays, and, specifically, how to 
form the covariance matrix of jpdf starting from the statistical gate 
models, and statistical process variation models. The most 
difficult theoretical problem that has to be solved next is finding 
the distribution of the maximum of a multivariate vector of path 
delays with arbitrary covariance structure, described by the just-
derived jpdf. We introduce a set of previously unavailable 
analytical estimates and algorithmic solutions that allow 
constructing tight upper and lower bounds on the distribution of 
the maximum. 
    We begin in the next section by motivating the need for a new 
probabilistic approach. Section 4 describes a modeling strategy 
for derivation of the joint probability density function of 
individual delay elements (both gates and wires) and path delays. 
Then, in section 5.1, the bounds for the distribution of the 
maximum of path delays, and, in section 5.2, an algorithm to 
compute them, are developed. Finally, in section 6, the circuit 
results and a set of quantitative comparisons are provided. 
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3 WHY TRADITIONAL WORST-CASE 
TIMING IS OVERLY-PESSIMISTIC 

Before we dive into the technical details of the new approach, let 
us look at why the traditional worst-case timing analysis is bound 
to result in an unreasonable level of conservatism. Let us for 
simplicity consider the gate-level static timing analysis. For the 
sake of simplicity we ignore the orthogonal issue of false paths. 
Worst-case static timing analysis proceeds by setting each gate to 
its worst-case timing value and performing a longest path 
computation to arrive at the worst-case critical path delay. The 
assumption that is implicit in this approach is that delay elements 
(gates and wires) are perfectly correlated with each other. The 
assumption of perfect correlation is reasonable only if the 
following two conditions hold: (a) intra-chip variation is 
negligible, and (b) the sensitivity of delay response of each gate 
and each wire segment to variation in every parameter is perfectly 
correlated with all the other delay elements (e.g. both gate and 
wire delays). We already know that with the rise of intra-chip 
variation the first assumption is getting less and less 
reliable. It is also known that the delay response of the different 
cells is not perfectly correlated [9]. Lastly, with the rise of the 
contribution of interconnect delay the fact of its poor correlation 
with gate delays cannot be ignored.  
     The failure to consider the validity of the assumptions makes 
the probability of finding a manufactured chip with the 
characteristics, assigned to it by the worst-case timing analysis, 
extremely small. The majority of manufactured chips exhibit a 
significantly higher performance, as confirmed by practice [3].  

4 A PROBABILISTIC FOUNDATION 
FOR TIMING ANALYSIS   

The fundamental problem of the traditional approach to worst-
case timing analysis is that it is essentially formulated in a non-
probabilistic manner. The delays of gates, and later, of the paths 
are treated as fixed numbers, not random variables. The 
inherently probabilistic problem is reduced to a purely 
arithmetical one, and once this transition is made, the ability to 
probabilistically quantify the likelihood of timing estimates is 
irreversibly lost. A different formulation of the timing problem is 
required that would do justice to the probabilistic nature of the 
problem. Such a completely general formulation is now advanced.  
 
4.1 Problem Formulation 
    The clock cycle of a chip is constrained by the maximum path 
delay, clockN1 TDD ≤}...max{ , where Di is the delay of the ith path 
in the circuit. The delay of each path is a random variable, 
described by a probability distribution. Because }...{ N1 DD  is a 
random vector, the value of }...max{ N1 DD  is also a random 
variable. Then, in order to estimate the statistical properties of the 
chip’s timing, we must find the distribution of }...max{ 1 NDD . 
The cumulative probability function of }...max{ N1 DD  is given by 

}}...{max{)( 1 tDDPtF N ≤= , or equivalently: 
                        },...,,{)( 21 tDtDtDPtF N ≤≤≤=          (1) 
where F(t) is the cumulative probability function defined over the 
path delay probability space. In general, we can find the 
cumulative probability function by direct integration:  

            N

t

N21

t
dDdDdDDDDfNtF ∫∫

∞−∞−
−= ...),...,()1()( 21        (2) 

where ),...,( 21 NDDDf  is the joint probability density function 
(jpdf) of }...{ N1 DD . Unfortunately, the direct evaluation of an N-
dimensional integral for an arbitrary ),...,( 21 NDDDf  is extremely 
difficult for large N.  
    Given that it is impractical to solve (2) directly for large N, we 
are faced with the task of finding the distribution of 

}...max{ N1 DD  by some other means. While the exact analytical 
expressions for the distribution of }...max{ N1 DD  are still not 
available, in section 5, we introduce a set of tight analytical 
bounds for the distribution of }...max{ N1 DD . But, first, we 
describe the derivation of the jpdf of path delays, and specifically, 
show how to construct the path delay covariance matrix on the 
basis of individual delay elements (gates and wires). 
 

4.2 Path Delay Distribution 
We limit our analysis to a combinational circuit containing N 
paths. The analysis can be easily extended to cover sequential 
circuits. A path is defined by a set of gates and wires that this path 
traverses, but let us for simplicity talk about gates only, with an 
understanding that the wire delays can also be covered by the 
notation introduced below. Let there be a gate set GS of gates 
belonging to a path pi: }...{}{ im

i
1
ii ggpGS = , where mi is the 

number of gates along the path i. In the presence of process 
variability and other sources of circuit variation, delay of each 
gate, and thus, each path, can be described by a random variable. 
Together, all path delays form a random vector }...{ 1 NDDD = , 
whose joint probability density function, and especially, 
covariance structure, we want to establish. 
    We assume that, as is common practice, a Gaussian distribution 
best describes the process variation. Then, under the mild 
assumptions that we consider below, the individual gate delay and 
path delay distributions are also Gaussian. The jpdf of the 
multivariate normal vector of path delays is fully characterized by 
the vector of means, }{DE , and the covariance matrix, DΣ : 

)},{(~ DDEND Σ . The mean vector of path delay jpdf is simply 
the N-dimensional vector of nominal delays of each path, e.g. 

}}{},...,{{ N1 DEDE=µ . The mean delay of a path is given by 

∑= )}({}{ idEDE gj , for )( jpGSi ∈ , where )(id g  is the delay 

of the ith gate of path j. The NxN  covariance matrix, DΣ , is fully 
characterized by the pair-wise covariance terms between path 
delays, },cov{),( jiji DD=Σ , where Di is the random delay of 
path i. 
    Path covariances ),( jiΣ can be constructively computed on the 
basis of pair-wise gate delay covariances. In the analysis that 
follows, we assume that statistical interactions between gate 
delays can be neglected in computing the total path delay response 
to process variations. This assumption is usually justified. Then, 

       ∑ ∑
= =

=
i

i

j

j

m

k

m

k
jgigji kjdkidDD

1 1
)},(),,(cov{},cov{        (3) 

where mi is the number of gates along path i, and ),( ig kid  is the 
delay of gate ki of path i. This equation can also be modified to 
account for the effect of gate delay dependence on the output slew 
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of the previous gate within the path, by propagating variance 
through a path using a chain rule.  
    We now derive gate delay covariances. First, we introduce a 
general notation that will give the ability to include a wide range 
of gate delay dependences on the design-level, and ultimately, 
layout-level parameters. Let the attributes   specifying a gate be 
contained in a vector L. Among other characteristics, L can 
incorporate the geometric properties of each gate 
(vertical/horizontal, proximity, left/right), gate sizes, threshold 
voltages, and so on. Also, let M be subset of the elements of the 
vector L that are affected by the process and manufacturing 
variations, for example, M = {Lgate, Vth}. Then, M is a random 
vector, and for simplicity we assume that it has a zero mean 
vector, ),0(~ MNM Σ . In other words, L would describe the 
nominal values of gate parameters, while M would describe the 
deviations from the nominal. 
    Let the delay of a gate be given by an arbitrary function 

)(Lfdg = . In order to establish an expression for the pair-wise 
covariances of gate delays, we assume the linearity of delay 
response to the localized variation of process parameters. In other 
words, we assume that a first order Taylor expansion of the gate 
delay function is adequate. Then,  

    MLLdd T
oogg )()( ϕ+=                   (4) 

Here )(⋅ϕ  is the Jacobian of the first-order derivatives of the 

delay function to M. For example, ),)( ( thggg VdLd ∂∂∂∂=⋅ϕ . 
Under the expansion of Eq. 4, the gate delay distribution is 
Gaussian. Letting }dim{Md = , the covariance of two gate delays 
i and j is given by: 

      ∑ ∑
= =

=
d

1i

d

1t
ttttgg t

MMjdid
j

jiji
},cov{)}(),(cov{ ϕϕ          (5) 

    Let us emphasize that our derivation has been completely 
general with respect to the particular nature of process variability 
and the types of delay elements we want to include in the analysis. 
Therefore, using this analysis, the jpdf (both the vector of means 
and the covariance matrix) of the random delay vector can reflect 
any design or layout dependence. And, again, while we talked 
only about ‘gates’, the wire delays as well as gate delays can be 
naturally accommodated into this analytical framework. 

 

5 ANALYSIS OF GENERAL 
MULTINORMAL DISTRIBUTIONS 

The probabilistic formulation of timing analysis advanced in 
section 4.1 requires us to estimate the distribution of 

}...max{ 1 NDD . The biggest obstacle to the analytical approach to 
statistical timing analysis, however, is the lack of a closed-form 
solution for }...max{ 1 NDD  of a system of random variables. 
While the various non-analytic ways of addressing this problem in 
the context of worst-case timing analysis have been explored, the 
analytic estimates have not been available for 2>N . In this 
section we derive tight analytical approximations for the 
distribution of }...max{ 1 NDD . 
     

5.1 Finding Bounds of Gaussian Processes 
It must be stated clearly that finding the exact distribution of the 
maximum of a multivariate distribution with an arbitrary 

covariance structure is an open mathematical problem. Only for 
certain types of covariance matrices such a solution can be found. 
Since the covariance of our multivariate path delay vector is 
unlikely to have any special symmetry, we can only derive bounds 
of the form UBDDfLB N ≤≤ })...(max{ 1 , where LB and UB are 
correspondingly the lower and upper bounds. We establish the 
bounds by employing the powerful results from the study of the 
general Gaussian processes.  
     A brief explanation of notation used in this section is helpful. 
For a random variable X, EX is the expected (mean) value of X, 
and )( 22 XEEX =  is the variance of X. Note also that we use 

}...max{ 1 NXX  and }max{X interchangeably. 
    The first step in approximating the distribution })(max{Xf  is 
to find the location of the expected value of }max{X  - 

}max{XE . The following theorem is the fundamental result of 
the theory of Gaussian processes, and is key to our analysis [10].  
 
Theorem 1. Let X and Y have centered multivariate normal 
distributions, such that 2

i
2
i EYEX =  for all i, j, and 

22 )()( jiji XXEYYE −≤− . Then for all real λ  

}}{max{}}{max{ λλ >≤> XPYP  
In other words, for two multivariate distributions with constant 
variance, the maximum of a more correlated distribution is 
stochastically smaller than the maximum of a less correlated 
distribution. (Note that if ≥− 2)( ji XXE  2)( ji YYE − , 

),cov(),cov( jiji YYXX ≤ , i.e. Y has a more correlated 
distribution.) The importance of this inequality lies in the fact that 
it allows to deduce inequalities for multivariate normal 
distributions with complex covariance structures by comparing 
them with simpler distributions. First, a corollary of Theorem 1 
for the relation between the expected maximums [10]: 
 
Corollary 1. Under conditions of Theorem 1 

}max{}max{ XEYE ≤  

}max{}}{max{}}{max{      

}}{max{}}{max{}max{  :
0

0

0
0

XEdXPdXP

dYPdYPYEProof

=<−>≤

<−>=

∫∫

∫∫

∞−
∞

∞−
∞

λλλλ

λλλλ

 
Corollary 2. If X and Y have centralized multivariate normal 
distributions, such that 2

i
2
i EYEX =  for all i, j, and 

0),cov( =ji XX  while 0),cov( ≠ji YY  for all i, j. Then 

}max{}max{ XEYE ≤  
The last corollary simply states that if two distributions have the 
same and constant variance, but one is a correlated distribution 
while the other is not, the expected maximum of the un-correlated 
distribution establishes an upper bound for the expected maximum 
of the correlated distribution. As we show in the next section, we 
can compute the exact value of the expected maximum of the un-
correlated distribution. Combining it with Corollary 2, we get an 
upper bound on the expected maximum of the actual correlated 
distribution. 
    Theorem 1 can be extended to cover non-centralized 
multivariate normal distributions, e.g. distributions for 
which constEX i ≠ . Due to the lack of space, we present the 
result without a proof but it can be found in [11]. 
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Theorem 2. Let X and Y have multivariate normal distributions 
such that constEX i ≠ , constEYi ≠ , and ii EYEX = . Now, if 

22
ii EYEX = 0),cov( =ji XX , and 0),cov( ≠ji YY  for all i, j, 

then 
}max{}max{ XEYE ≤  

 
    Among other results, Theorem 1 leads to the useful lower 
bound on the expected maximum of a multivariate distribution. 
While parametric yield of a circuit, the percentage of chips that 
function properly, is determined by the upper bound, the lower 
bound helps to assess the amount of conservatism potentially 
contained in the upper bound [12]: 
 
Theorem 3. Let ),...,( 1 NXXX =  have a centered multivariate 
normal distribution, and let 22)( δ≥− ji XXE , then 

N
NE

XE 2log
8

)1,0(
}max{ δ≥ ,  

where 798.0)1,0( =NE . For the sake of interpretation, note that 
222 )1(2)( δρσ ≥−=− ijXji XXE , if the variance is constant. 

Thus, the lower bound is determined by the largest correlation 
between the elements of the multivariate normal vector.  
    So far our analysis has been limited to finding the expected 
value of the maximum. Ultimately, however, we would like to get 
an estimate of the probability distribution of }...max{ 1 NXX , or, 
at least, an estimate of some higher moments of its probability 
density function. This is due to the fact that in order to accurately 
predict parametric yield we need to be able to find the value of the 
maximum at different quantiles of the clock cycle distribution. 
Another fundamental inequality that comes from the study of 
general Gaussian processes helps us establish the bound for the 
distribution of the maximum. It states that the spread of 

}...max{ 1 NXX  about its mean is no worse than the spread in the 
distribution of Xi with largest variance. Moreover, the distribution 
of the maximum above its mean value is such that the likelihood 
of a deviation is bounded from above by the probability of the 
same deviation for a centralized normal variable with the variance 
equal to the largest variance [14].  
 
Theorem 4. Let ),...,( 1 NXXX = have a centralized multivariate 
normal distribution. Let )max( iXS =  and ))max(var(max i

2 X=σ , 
then for any 0r ≥ , 

}),0({}})max{{( 2max rNPrXESP ≥≤>− σ  
While Theorem 4 is formulated for a centralized distribution, the 
claim can be extended to an arbitrary mean vector. Due to the lack 
of space, we present the result without a proof but it can be found 
in [11]. 
 
Theorem 5. Let X have a multivariate normal distribution such 
that constEX i ≠ . Then, under conditions of Theorem 4, 

}),0({}})max{{( 2max rNPrXESP ≥≤>− σ  
Using this theorem we can directly establish the conservative 
bounds for the quantiles of the distribution of }max{X . 
 
Corollary 3. Under conditions of Theorem 5, the value of 

}max{X  at the kth percentile of the distribution is: 

max}max{}max{ σkzXEX +≤  
where zk is the value of the standard normal at the kth percentile of 
the normal distribution.  
    This result finally gives us all the necessary tools to bound 

}max{X  of a general multivariate probability distribution. Later 
we provide some examples for the use of this result in estimating 
the parametric yield of a circuit.  
 
5.2 An Algorithm for Exact Evaluation of 

Expected Maximum 
In order to use the result of Corollary 3 to conservatively estimate 
the clock cycle, we first need to find }max{DE  for a general path 
delay vector }...{ 1 NDDD = . We know from Corollary 2 that the 
expected (mean) maximum of an un-correlated distribution 
establishes an upper bound for the expected (mean) maximum of 
the correlated distribution. In this section we describe an 
algorithm for exact evaluation of }max{XE  for an un-correlated 
multivariate normal distribution with arbitrary mean and variance 
vectors. 
    The algorithm to find }max{XE  is based on the following 
probabilistic idea: It is possible to find a point T1, such that in the 
repeated drawings of N standard normal random variables, on 
average, at least one random variable out of N would exceed it. 
Because T1 is the point, which is guaranteed to be exceeded by at 
least one variable, }max{1 XET ≤ . Let us now consider the 
single variable that is guaranteed to exceed T1. We know that for 
this variable it is possible to find 21 TT ≤ , such that 

2/1}}{max{}}{max{ 22 =≤=≥ TXPTXP . Then, by definition 
})(max{2 XmedianT = . Since by Theorem 4 the distribution of 

}max{X  approaches normal distribution, the median approaches 
the mean, and we finally have 2})(max{ TXE → . 
    Let us consider a point T2, and the probability pi that a random 
variable Xi, distributed as ),( 2

iiN σµ , would exceed it. Then, 
  ))((5.0}{),,( 222 iiiiiii TTXPTpp σµσµ −Φ−=>==     (6) 

where ∫ −=Φ
t

dtzt
0

2 )2/exp(21)( π  is the Laplace function. 

    For each component of the random vector ),...,( N1 XXX = , 
we create a mapping to a Bernoulli random variable, whose 
probability of success, - the probability of Xi exceeding T2, - is pi. 
Let N1 ZZNn ++= ...)(  denote the number of successes among 
N Bernoulli variables. The expected value of the number of 
successes is 

      ∑
=

=++=
N

1i
iN1 pEZEZNnE ...)}({            (7) 

since for a Bernoulli variable ii pEZ = . As was observed above, 
in order to find }max{XE , we need to find the point, at which 
the expected number of random variables exceeding it is ½. To 
find this point, T2, we must solve the equation: 

      21),,()}({ 2
1

== ∑
=

ii
N

i
i TpNnE σµ            (8) 

with ),,( 2 iii Tp σµ  given by Eq. 6. If X is a centralized 
multivariate distribution with constant variance, we have 

constpi = , and the equation simplifies to 2/1),,( 2 =⋅ σµTpN . 
In this case, a closed form solution can be found with 
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η=}max{XE , where NN 2/)12()( −=Φ η . For X with a non-
constant mean vector and/or non-constant variance, the equation 
(8) has to be solved iteratively. 
    The algorithm has been implemented in Matlab. We verified its 
accuracy by predicting }max{XE for different configurations of 
mean and variance vectors. The true value of }max{XE  was 
found by generating sufficiently large random data sets. First we 
verified accuracy across the range of mean values by varying the 
ratio of σµµ /)( minmax −=R , under fixed variance, as shown in 
Figure 1. The algorithm always generates slightly conservative 
estimates but the accuracy improves, as N gets larger. For N=50 
and N=100, the conservatism is very small 1-2%. The 
conservatism gets larger for smaller N and smaller R: for N=10 
and R=0.5, it is about 8%. Because our approach is targeted for 
use with large N, this is an acceptable behavior of the algorithm.  
    We also considered accuracy of the algorithm for three 
different variance relations among the elements of the random 
vector, as shown in Figure 2: (a) homogenous (constant) variance, 

(b) linear reduction of variance, and (c) a mixture of high and low 
variance. This time we assumed identical mean values. Accuracy 
is again very reasonable, as shown in Table 1. The values of 

}max{XE  grow roughly logarithmically with N. }max{XE  gets 

larger for the distributions with the larger number of elements 
with high variance (e.g. the constant variance distribution). 
 
Table 1. The true values of }max{XE , and the error of the 
algorithm’s prediction. The algorithm is always conservative. 

Constant Variance  Linear Variance N 

}max{XE  Error (%) }max{XE  Error (%) 
100 2.51 2.8 2.08 3.3 
500 3.04 1.4 2.60 0.9 

1000 3.24 1.5 2.81 0.7 
 

6 RESULTS AND COMPARISONS 
    We now consider a simple circuit example that will illustrate 
several features of the probabilistic framework for worst-case 
timing analysis proposed in the previous sections. To highlight the 
important features of the approach, we constructed a topologically 
simple circuit that consists of a repeated pattern of 4 uniquely 
constructed paths. The four unique paths have similar but non- 
identical mean delays, }{DE . Because paths contain different 

number and types of cells, the variance of path delays, 2
Dσ , is also 

different. (This way, path 4 whose }{}{ 14 DEDE <  may be 
stochastically slower than path 1, because 14 σσ > .) 
    We use SPICE to analyze the circuit for a generic 0.18um 
CMOS technology. To evaluate the statistical properties of the 
circuit, we superimpose a variation of the gate length (Lgate) and 
the threshold voltage (Vth) on the nominal technology values. Both 
Lgate and Vth are assumed to be normally distributed; the standard 
deviations are given by oL L15.03 =σ  and othVth V1.03 =σ . We 
assume that both inter-chip and intra-chip components of variation 
are non-negligible, but that intra-chip component dominates. This 
may be expressed by setting 3.0),(),( == jthithji VVcorLLcor . 
Equations 3-5 are used to estimate gate delay covariance, using 
SPICE-evaluated delay sensitivities. Path variance and covariance 
is then computed using Eq. 5. 
 
Table 2. We consider a set of paths with different means and 
variances. The differences are due to path compositions. 

Path Path composition # 
gates 

}{DE
(ps) 

Dσ  
(ps) 

wcD  
(ps) 

1 AND2+NAND2+XOR2 
+NOR2+NOR4 5 435 24.2 597 

2 AND2+4NAND2 
+NOR2+NOR4 7 430 18.5 580 

3 INV+AND2+NAND2 
+XOR2+ NOR4 5 424 23.6 579 

4 2XOR+NOR4 3 425 27.9 590 
    
 Path delay distribution is clearly correlated. We estimate the 
upper bound for DE max  using the exact algorithm of section 
5.2. We also estimate the lower bound on DE max  using the 
result of Theorem 3, and compare the newly derived bounds with 
the predictions of traditional timing analysis. The standard timing 
would find the average clock period given by 435ps, the largest 

}{DE  in Table 2. The results of probabilistic estimation of Tclock 
are in Table 3. For N=16, the average Tclock is predicted to be 
bounded by psETps clock 473443 ≤≤ . In this case, standard 

Figure 2. The algorithm is also accurate for distributions with
different variance profiles. The mean is assumed constant. 

Figure 1. The algorithm is reasonably accurate for different 
ranges of the mean. Variance is fixed in this example. The 
results are shown for several values of σσσσµµµµµµµµ /)( minmax −−−− . 
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timing would underestimate the mean of the correlated path delay 
distribution by 1.5-8%. For N=400, the error would be 2-15%.  
    On the other hand, standard timing overestimates the worst-
case behavior of a circuit. The standard timing analysis would 
conclude that the clock period is given by the largest worst-case 
delay ( wcD ) among the paths of Table 2, giving psT wc

clock 597= . 
The results of probabilistic timing analysis are derived for the 98th 
percentile of clockT distribution. Using the results of Corollary 3: 

Dkclock zDEkT max}max{)( σ+≤  
where zk is the value of the standard normal at the kth percentile of 
the distribution. From Table 2 we have psD 9.27max =σ . Then, 
probabilistic timing analysis would conclude, for N=16, that 

psTclk 529)98.0( ≤ . Thus, it overestimates the worst-case timing 
behavior by 6-12%, Table 3. 

Table 3. The upper and lower bounds on }max{DE  of 
correlated path delay distribution, the probabilistic Tclock, and 
the error comparison. 

Bounds on 
ps },max{DE  N 

Lower Upper 

)98.0(clkT
 (ps) 

wc
clockT  
(ps) 

wc
clock

clkwc
clock

T
TT )98.0(−

(%) 
16 443 473 529 597 11.5 
40 444 483 539 597 9.8 

100 445 492 548 597 8.4 
400 446 504 560 597 6.3 

 
The difference between the standard and probabilistic timing is 
significantly larger for circuits with more balanced mean and 
variance vectors, and with more levels of logic in the paths. In the 
analysis of another circuit example, we found the difference in the 
worst-case timing behavior to be 7-21% [11]. 
    The probabilistic formulation is vital, however, for reasons 
other than the difference in the timing estimates considered above. 
Among other things, it allows us to reveal the parametric yield 
curve. The true distribution of Tclock is tighter than given by the 
standard timing analysis, and is shifted towards the slower clock 
periods, (Figure 3). When the difference in Tclock distributions is 
mapped onto the parametric yield curve (which is just the 
cumulative distribution function of Tclock), one sees that a dramatic 
drop in parametric yield occurs at the high end of the clock 
frequency range. For example, the standard analysis predicts 50% 
yield for chips running at, or faster, than the average Tclock, while 
the probabilistic analysis shows that the yield is, at most, 8%. 

Because the manufacturers of high-speed circuits get most of their 
revenue from the top percentile of the clock speeds, even the 
small decrease in parametric yield is very significant for them.  

6 CONCLUSION AND FUTURE WORK 
The innovation of this work is to define the problem of statistical 
timing analysis as the problem of finding the distribution of the 
maximum of circuit path delays with arbitrary covariance 
structure. The distribution of the maximum was estimated via the 
theoretical estimates and algorithms, which show a very good 
level of accuracy. Preliminary results indicate that traditional 
timing fails in several respects. It underestimates the value of the 
typical clock period, and overestimates the worst-case timing 
behavior, requiring expensive redesigns. It is also incapable of 
providing accurate parametric yield information. In the future, as 
the magnitude and complexity of process variation grows, we 
expect these deficiencies of non-probabilistic timing analysis to 
become even more prominent. 
    Overall, the results are encouraging, and indicate large potential 
for use of probabilistic timing analysis. More understanding of the 
computational behavior of the proposed algorithms for the 
analysis of large circuits is required. The other direction for 
substantial improvement is to further tighten the bounds on the 
probability distribution of the maximum of an arbitrary 
multivariate space. We believe that the development of such 
tighter bounds will show that the difference between the standard 
and probabilistic timing estimates is even greater.  
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Figure 3. Traditional timing underestimates typical (mean) 
Tclock and overestimates worst-case Tclock. 
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