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A General Projection Framework for
Constrained Smoothing
E. Mammen, J. S. Marron, B. A. Turlach and M. P. Wand

Abstract. There are a wide array of smoothing methods available for
finding structure in data. A general framework is developed which shows
that many of these can be viewed as a projection of the data, with respect
to appropriate norms. The underlying vector space is an unusually large
product space, which allows inclusion of a wide range of smoothers in
our setup (including many methods not typically considered to be projec-
tions). We give several applications of this simple geometric interpreta-
tion of smoothing. A major payoff is the natural and computationally
frugal incorporation of constraints. Our point of view also motivates
new estimates and helps understand the finite sample and asymptotic
behavior of these estimates.

Key words and phrases: Kernel smoothing, local polynomials, smooth-
ing splines, constrained smoothing, monotone smoothing, additive
models.

1. INTRODUCTION

Smoothing as a means of modeling nonlinear
structure in data is enjoying increasingly wide-
spread acceptance and use in applications. In many
of these it is required that the curve estimates
obtained from smoothing satisfy certain constraints;
several such examples are discussed in Section 2.
However, many of the usual formulations of smooth-
ing are not very amenable to the incorporation of
constraints. This is because it is not clear in which
sense, if any, they are a projection, that is, the
solution to a minimization problem with respect to
some norm. In this paper we develop a framework
in which a number of popular smoothing methods
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are exactly a projection with respect to a particular
norm. Our framework is a product vector space that
is larger than those usually considered for analyz-
ing smoothing methods. The benefit of this type
of geometric view of smoothing is that it reveals a
natural way to incorporate constraints, since the
modified smoother is defined as the projection onto
the constrained set of functions.
The framework that we develop encompasses

spline methods which are implicitly defined to be
projections. Arguably, this is the reason why spline
methods are considered to be the method of choice
for constrained smoothing as they seem to incorpo-
rate many types of constraints in a natural way. In
particular, smoothing splines are defined as mini-
mizers of a penalized sum of squares, so constrained
smoothing splines are easily defined as minimizers
over the constrained set of functions.
Here we show that the essence of this idea is not

restricted to smoothing splines, but applies quite
generally, for example, to kernel and local polyno-
mial methods. The key is to work with much larger
normed vector spaces than are usually considered
in the analysis of smoothers. Our framework, devel-
oped in Section 4, is a product structure, that is,
we consider “vectors of objects,” where the objects
are functions, vectors or even sets of functions or
vectors. In each case suitable norms are defined for
our product space, which correspond to the sums of
squares that are usually considered (see Section 3)
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and thus give a representation of the smoothers as
projections. By this device a much broader class of
smoothers can be viewed as projections, as shown
in Section 4, which allows a natural incorporation
of constraints for these methods.
In Section 5 our framework is seen to include

smoothing splines and other penalized methods,
through the development of Sobolev type norms on
our general vector space. A number of asides are
given in Section 6, including detailed discussion
of the case of monotone smoothing, some remarks
about loss functions, decompositions of sums of
squares, numerical implementation and asymp-
totics. Extensions to local polynomials are given in
Section 7. Application of our approach to additive
models is discussed in Section 8.
For more background on smoothing, see any of

a number of monographs: Green and Silverman
(1994), Wand and Jones (1995), Fan and Gijbels
(1996), Simonoff (1966), Hart (1997), Bowman and
Azzalini (1997), Efromovich (1999), Eubank (1999)
and Loader (1999).

2. SOME EXAMPLES

2.1 Monotone Smoothing

A constraint that is frequently imposed on a
regression curve by some physical or economic the-
ory is monotonicity. As an illustration we use part of
the “cars” data from the 1983 ASA Data Exposition.
These data are available at the StatLib Internet
site (http://lib.stat.cmu.edu/datasets/cars.data) at
Carnegie Mellon University. The use of smoothing
methods to model regression curves is illustrated
in Figure 2.1. Here fuel efficiency, in miles per gal-
lon, is studied as a function of engine output, in
horsepower, and data points �Xi
Yi� are displayed
as a scatterplot. The curve in Figure 2.1 is a sim-
ple smooth, that is, moving average, as described
in (3.1).
This smooth is not monotonically decreasing.

But since one expects that more powerful engines
consume more fuel, it is sensible to request that
the smooth be decreasing. The result of using the
sophisticated projection idea of Section 5.1 is shown
in Figure 2.2. Starting with the simple smooth in
Figure 2.1 that smooth is projected onto the space
of monotone functions using a (discretized) Sobolev
norm. Note that essentially the increasing parts of
the smooth have been “rounded off.”

2.2 Parallel Regression Curves

Ratkowsky (1983) provides data from an experi-
ment on the relation between yield of onion plants
and the density of planting. The measurements
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Fig. 2.1. Raw data and simple smooth for fuel efficiency as a
function of engine output. Smooth is Nadaraya–Watson type with
Gaussian kernel and bandwidth h = 4.

have been taken at two different locations in South
Australia, Purnong Landing and Virginia. A scat-
terplot of the data shows clear differences in yield
between the two locations.
Bowman and Azzalini (1997, Chapter 6.5) revisit

these data and investigate whether one can rea-
sonably assume that regression curves fitted to
the data from each location, using the logarithm
of yield as response variable and density of plant-
ing as regressor, would be parallel. They adapted
a two-stage method proposed by Speckman (1988)
to obtain two parallel regression smooths. This
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Fig. 2.2. Raw data and monotonicity constrained smooth for fuel
efficiency as a function of engine output. Smooth is Nadaraya–
Watson type with Gaussian kernel and bandwidth h = 4.
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Fig. 2.3. Raw data for the onions data. Circles and triangles
denote the measurements taken at Purnong Landing and Vir-
ginia, respectively. The parallel smooths are of local linear type
with Gaussian kernel, bandwidth h = 11 and α̂ = 0�332 apart.

procedure first calculates a low bias estimate α̂
of the distance α between the regression curves
using a low bias (i.e., a small bandwidth) regression
smoother. During the second step the final curve
estimates are obtained by using α̂ from the first
step and a “more reasonable” smoothing parameter
for the regression smoother.
The constraint that two (or more) regression

curves should be parallel is easily handled by the
framework developed here. First we fit separate
simple smooths to each of the groups. Next these
smooths are projected into the space of parallel
(smooth) curves. The distance between the two
curves is chosen such that the residual sum of
squares is minimized. The result of this procedure
applied to the onions data is shown in Figure 2.3.
In this case the distance between the two curves is
estimated to be α̂ = 0�332, a value similar to the
one found by Bowman and Azzalini (1997).

2.3 Support Function of a Convex Set

This example addresses a problem that arises var-
iously in medical imaging and robotic vision. Given
noisy measurements of the support function of a
convex set, the aim is to estimate the boundary of
that set. The support function m�θ�, θ ∈ �−π
π�,
is defined relative to a given origin O and a fixed
direction in the plane. More precisely, the support
function m�θ� of a convex set � , is defined as the
perpendicular distance from O to that tangent to �
that has angle θ with the given direction. This defi-
nition is illustrated in Figure 2.4. If m′′ exists and
is continuous everywhere, then a necessary and suf-
ficient condition for convexity of � is (Santaló, 1976,

O

.
(θ)m

θ

Fig. 2.4. Illustration of the definition of a support function.

page 2)

m�θ� +m′′�θ� ≥ 0
 θ ∈ �−π
π��(2.1)

A common method for constructing an estimate
of the set from data on the support function is to
assume that its boundary is piecewise linear and
fit the straight line segments comprising its bound-
ary by using a variant of constrained maximum
likelihood under the assumption of either normally
or uniformly distributed errors (see, among others,
Prince and Willsky, 1990).
Fisher, Hall, Turlach and Watson (1997) propose

to estimate m nonparametrically using a kernel
smoother. Essentially, they search for the band-
width that produces the smooth with least bias for
which (2.1) holds. This approach is quite successful
if the set does not exhibit strong eccentricity. Such
eccentricity corresponds to “peaks” and “troughs”
in the support function and the bandwidth cho-
sen by Fisher et al. (1997) could lead to serious
undersmoothing of the former and oversmoothing
of the latter. An additional complication is that
their method only guarantees finding an appropri-
ate bandwidth with probability tending to 1. For
any given data set it is possible that their method
fails.
With the approach developed in this paper such

careful calibration of the bandwidth is not neces-
sary. In fact, we are at liberty to fit an initial fit
that violates (2.1) but has low bias. This smooth is
then projected into the space of functions that sat-
isfy (2.1).
Figure 2.5 demonstrates our method on a simu-

lated data set. We chose as a convex set an ellipse
with major axes of one and four units. [Note that
for this example the method of Fisher et al. (1997)
has considerable bias problems.] Figure 2.5(a) shows
the support function together with 400 noisy obser-
vations. An estimate for the support function using
a local linear fit with bandwidth h = 0�05 and Gaus-
sian kernel is shown as the dotted line in panel (b).
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Fig. 2.5. Panel (a) shows the support function of the ellipse shown in panel (c) together with the �simulated� observed data. Panel (b)
shows the support function �solid line� together with the initial fit to the data �dotted line� and the resulting constrained fit �dashed
line�. The boundary corresponding to the constrained fit is shown as the dashed line in panel (c).

The resulting fit which satisfies (2.1) is shown as
the dashed line. Finally, the boundary obtained from
this fit is drawn as the dashed line in panel (c)
together with the original set.

2.4 Branching Curves

Steer and Hocking (1985) carried out an experi-
ment to test the effect of applying nitrogen to sun-
flowers at different stages of growth. These data
have been analyzed by Silverman and Wood (1987)
using spline smoothing techniques (see also Green
and Silverman, 1994, Section 6.2).
The experiment included five groups of sunflow-

ers. In the first group, the control, no nitrogen was
applied. To the other four groups a nitrogen com-
pound was applied at a given time after sowing, 38,

56, 63 and 70 days, respectively. At various times
the nitrogen content of plants taken from the differ-
ent groups was measured destructively.
Before the time at which the nitrogen compound

was applied there is no difference between the con-
trol group and the treatment group(s). Hence, when
fitting regression curves to these data, it is natural
to impose that for each treatment group the regres-
sion curve will coincide with the curve of the control
group up to the time of treatment.
It is straightforward to apply our framework

to this smoothing problem. The result, using a
local linear fit, employing the Gaussian kernel and
bandwidth h = 8, and using the sophisticated pro-
jection idea of Section 5.1 is shown in Figure 2.6(b).
Panel (a) shows the initial, unconstrained fits.
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Fig. 2.6. Panel (a) shows separate local linear fits to each of the
groups in the sunflower data. Panel (b) displays the resulting fits
if equality up to time of treatment is imposed.

3. SIMPLE SMOOTHING AS MINIMIZATION

Before developing our general vector space
framework, we first show how simple smooth-
ing, as shown in Figure 2.1, can be written as a
minimization problem. Then we show how this
viewpoint can be used to do constrained smoothing.
A mathematical formulation of smoothing has data
�X1
Y1�
 � � � 
 �Xn
Yn�, for example, as shown in
the scatterplot of Figure 2.1, that are modeled as

Yi =m�Xi� + εi
 i = 1
 � � � 
 n


where εi, i = 1
 � � � 
 n, are mean 0 error random
variables andm is some smooth regression function.

The dashed curve in Figure 2.1 is a “simple
smooth” of the form

m̂S�x� =
�n
i=1wi�x�Yi�n
i=1wi�x�


(3.1)

that is, a moving (in x) weighted average of the
Yi. The weights wi�x� used in Figure 2.1 are of
Nadaraya–Watson type, as discussed in Section 4.1.
See Härdle (1990) and Wand and Jones (1995) for
an introduction to the basics of this nonparametric
regression estimator.
Note that there are several points where the sim-

ple smooths shown in Figures 2.1, 2.5(b) and 2.6(a)
do not fulfill the desired constraints. An approach
to constraining this type of smooth to satisfy given
constraints is to recognize that it can be written as

m̂S = argmin
m

∫ 1
n

n∑
i=1
�Yi −m�x��2

× wi�x� ν�dx�

(3.2)

where
∫

means definite integration over the real
line, and where ν is some measure. A natural choice
is ν�dx� = dx, corresponding to Lebesgue integra-
tion. However, other measures such as some form
of counting measure might also be considered [e.g.,
ν�dx� = dFn�x� where Fn is the empirical distri-
bution]. For the unconstrained estimator the inte-
gration with respect to ν�dx� has no effect because
the minimum can be found for each x individually,
that is,

m̂S�x� = argmin
m∈�

1
n

n∑
i=1
�Yi −m�2wi�x��(3.3)

But the integral is included because it reveals that
simple smoothing is a projection as developed below.
This is the key to our natural formulation of con-
strained smoothing. If C is a set of functions satis-
fying some constraint, such as those considered in
Section 2, then a constrained version of the simple
smooth is:

m̂S
C = argmin
m∈C

∫ 1
n

n∑
i=1
�Yi −m�x��2

× wi�x� ν�dx��
(3.4)

In contrast to the unconstrained case, the weight
measure ν is now no longer negligible because the
minimizers at different points x are linked through
the constraints. To calculate the constrained smooth
in practice, one would typically choose ν to be the
counting measure on the points at which one wants
to evaluate the (constrained) smooth. For theo-
retical analysis, a natural choice would be the
Lebesgue measure. In Figure 3.1, a discretized ver-
sion of Lebesgue measure is used, that is, a grid
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Fig. 3.1. Unconstrained and constrained �monotone� smooths,
for fuel efficiency as a function of engine output, as in Figure 2�1.
The constrained smooth has “kinks” which have been smoothed
out in the more sophisticated constrained smooth of Figure 2�2.

of equidistant points was selected at which the
estimate was evaluated.
While this estimate appears natural, the mono-

tonicity constraint introduces some “kinks” in
Figure 3.1, essentially at “break points where m̂S is
not monotone.” Insight into these kinks and other
aspects of constrained smoothing comes from a par-
ticular normed vector space structure that will be
introduced in the next section. See Section 6.1 for
further discussion, and methods to “round off these
corners” as shown in Figure 2.2.

4. SIMPLE SMOOTHERS VIEWED
AS PROJECTIONS

In this section we shall introduce a normed vector
space, say �S, that contains the space of data vec-
tors and the space of candidate regression functions.
Within this vector space we shall identify the sub-
space of data vectorsY, say � Y

S , and the subspace of
candidate regression functions, say � m

S . These two
subspaces contain all the information relevant to
the smoothing problem at hand and hence reflect
the full structure of smoothing.
It will become apparent that in this space sim-

ple smoothers appear as a projection of the data
vector into the subspace � m

S . To capture all of
these aspects, it is not enough to simply work with
n-dimensional vectors or with functions. A vector
space which includes both the data vector Y and
the candidate smooths m�x� is a product space

containing n-tuples of linear objects,

�S =
→v =

 v1���
vn

 � vi ∈ V
 i = 1
 � � � 
 n

 

where V is some normed vector space. Note that
this space �S contains many more elements besides
those in � Y

S and � m
S (both defined below). However,

only elements in these two subspaces are relevant
for the smoothing problem and have direct interpre-
tations. If the vector spaceV is chosen appropriately
then �S will be a vector space that contains these
two subspaces of interest and in which the simple
smooth can be interpreted as a projection of the data
vector.
The choice of V will vary depending on the type of

smoother considered. When the result of the smooth
is a function, as in the rest of this section, and in
Section 5, V will be an appropriate space of func-
tions. But when the result of the smooth is a vector,
for example, when the smooth is evaluated only at
the design points, V is a set of ordinary vectors.
For the rest of this section, we shall consider V to

be a space of functions, so

�S =
→f =

 f1�x����
fn�x�

 � fi� �q → �
 i = 1
 � � � 
 n

 �
The data vector Y = �Y1
 � � � 
Yn� can be viewed as
an element →Y of �S, which is an n-tuple of constant
functions, fi�x� ≡ Yi, i = 1
 � � � 
 n. The subspace
of such n-tuples of constant functions will be called
� Y
S . For a candidate smooth m� �q → �, we write

→m for the n-tuple where each entry is m�x�, that
is, fi�x� ≡m�x�, i = 1
 � � � 
 n. The subspace of such
n-tuples with identical entries is denoted by � m

S .
When wi�x� ≥ 0, we may define an inner product
on �S,〈

→f
→g
〉 = ∫ 1

n

n∑
i=1
fi�x�gi�x�wi�x� ν�dx�


and its induced norm on �S is given by∥∥→f ∥∥2 = ∫ 1
n

n∑
i=1
fi�x�2wi�x� ν�dx��(4.1)

Strictly speaking, this defines only a bilinear form
and a seminorm if, for some i, wi�x� = 0 on a set of x
whose ν-measure is not zero (which happens, e.g.,
for kernel smoothing with a compactly supported
kernel). By identifying functions that are equiva-
lent under this seminorm we can view (4.1) as a
norm, that is, implicitly we work on classes of func-
tions. We shall also assume that �S is complete with
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respect to this norm (which is possible by specify-
ing an appropriate space for the fi in the definition
of �S).
This notation shows that both the unconstrained

and constrained simple smooths are projections,
because (3.2) and (3.4) can be rewritten as

m̂S = argmin
m� →m∈� mS

∥∥→Y−→m
∥∥2
(4.2)

m̂S
C = argmin
m� →m∈�mS

∥∥→Y−→m
∥∥2
(4.3)

where �mS ⊂ � m
S is the subset of n-tuples with

(identical) entries that are constrained, for example
monotone in x.
Using a Pythagorean relationship, the minimiza-

tion problem (4.3) can be substantially simplified.
This yields important computational advantages,
and also gives some important insights. In particu-
lar, for →m ∈ � m

S we have∥∥→Y−→m
∥∥2 = ∥∥→Y− →̂mS

∥∥2 + ∥∥→̂mS −→m
∥∥2
(4.4)

because →̂mS is the projection of →Y onto the subspace
� m
S , whence →Y − →̂mS is orthogonal to →̂mS −→m with
respect to the inner product; see, for example, Rudin
(1987, Theorem 4.11). Furthermore,∥∥→̂mS −→m

∥∥2 = ∫ 1
n

n∑
i=1
�m̂S�x� −m�x��2wi�x� ν�dx�

=
∫
�m̂S�x� −m�x��2w�x� ν�dx�


where w�x� = 1
n

�n
i=1wi�x�. An immediate conse-

quence of this is the following proposition.

Proposition 1. Assuming that each wi�x� ≥ 0,
the constrained simple smooth can be represented as
a constrained minimization over ordinary functions
�i.e., over m ∈ C� as

m̂S
C�x� = argmin
m� →m∈�mS

∥∥∥→̂mS −→m
∥∥∥2

= argmin
m∈C

∫
�m̂S�x� −m�x��2

×w�x� ν�dx��

(4.5)

The geometric interpretation of Proposition 1 is
that the projection of the data vector Y onto �mS ,
(in our enlarged vector space �S) is the same as the
projection (in the space of ordinary functions) of the
unconstrained smooth onto C.
The relation (4.4) and similar geometric consider-

ations give other types of insight about constrained
smoothing. It is straightforward to check that the

orthogonality used in the Pythagorean theorem (4.4)
follows from direct calculation of〈

→Y− →̂mS
 →̂mS −→m
〉 = 0�

At first glance, one might suspect that the sub-
spaces � Y

S and � m
S are orthogonal, but they are not,

because they have the intersection � C
S , the n-tuples

of constant functions that are all the same. How-
ever, even � Y

S ∩ �� C
S �⊥ (the orthogonal complement

of � C
S in � Y

S ) and � m
S ∩�� C

S �⊥ are not orthogonal, as
can be seen from direct calculation, or from the fact
that this would imply that the projection of Y onto
� m
S lies in � C

S and thus is everywhere constant.
Visual understanding of Proposition 1 is given by

Figure 4.1. The horizontal plane represents the sub-
space � m

S of �S. The diagonal line represents the
subspace � Y

S (not orthogonal to � m
S ). The set �mS

is shown as the shaded horizontal region. Proposi-
tion 1 states that the point in �mS that is closest to
Y is also the point in �mS that is closest to m̂S�x�.
Proposition 1 also suggests which statistical loss

functions are associated with choices of the weight
measure ν. In particular, if m0�x� is the “true” func-
tion, then the loss (conditional onX1
 � � � 
Xn) func-
tion

L�m̂
m0� =
∫
�m̂�x� −m0�x��2w�x� ν�dx�(4.6)

is essentially optimized by m̂S�x� over � m
S and by

m̂S
C�x� over �mS . Specifics of L are discussed in
Section 6.2.
Proposition 1 shows that the constrained estimate

can be calculated in two relatively straightforward
steps:

1. Compute the unconstrained estimate m̂S.

VS
Y

VS
m

Y

CS
m

mS
mS,C

Fig. 4.1. Diagram representing location of data and uncon-
strained and constrained smooths, in the vector space �S.
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2. Project m̂S onto the constrained set of functions.

Implementation of each of these two steps is rela-
tively straightforward and much simpler than direct
computation of (3.4). We shall come back to this
point in Section 6.4.

4.1 Some Remarks and Specific
Simple Smoothers

Representations of the type (3.2) have been used
for many purposes. For example they provide easy
understanding of how local polynomial methods,
discussed in detail in Section 7, extend conven-
tional kernel smoothers (see Fan and Gijbels, 1996).
A different purpose is the motivation of “robust
M-smoothing” as introduced in Härdle and Gasser
(1984) and Tsybakov (1986), where the square
in (3.2) is replaced by a “robust ρ function.” Appli-
cation of our approach to these smoothers will not
be discussed here.
It is straightforward to show that Proposition 1

still holds when some of the wi�x� < 0, as long as
w�x� ≥ 0. This is important in the following.
Here are some specifics to show that many types

of smoothers can be written in the form (3.1), that
is, (3.2). Much of this approach to generality was
developed by Földes and Révesz (1974) and Walter
and Blum (1979) in the context of density estima-
tion.

1. Nadaraya–Watson smoother. Here the weight
functions have the form

wi�x� =Kh�x−Xi�

where K is a nonnegative, integrable “kernel
function” or “window function” (often taken to
be a symmetric probability density), and where
the “bandwidth” or “smoothing parameter” h
controls the amount of smoothing, that is, local
averaging, via Kh�·� = 1

h
K� ·

h
�.

2. Gasser–Müller smoother. This is a somewhat dif-
ferent “kernel type” smoother, where

wi�x� =
∫ si
si−1
Kh�x− t�dt


for “in between points” si, where s0 < X1 ≤ s1 <
X2 ≤ · · · ≤ sn−1 < Xn ≤ sn. See Müller (1988)
for discussion of many properties of this esti-
mator. See Chu and Marron (1991) for compar-
ison of this smoother with the Nadaraya–Watson
smoother.

3. Bandwidth variation. Our geometric approach
extends to the case that the bandwidth h depends
on x, for example, wi�x� = Kh�x��x −Xi� in the
case of Nadaraya–Watson smoothing.

4. Orthogonal Series. For an orthogonal basis �ψj�,
for example, the Fourier basis, or a wavelet basis,
a simple class of smoothers is

m̂OS�x� =
∑
j∈S
θ̂jψj�x�
(4.7)

where the “empirical Fourier coefficients” are
θ̂j = 1

n

�n
i=1Yiψj�Xi�, and where S is some set

of “coefficients containing most of m0
” for exam-
ple, low frequency coefficients in the Fourier case
or unthresholded coefficients in the wavelet case.
Interchanging the order of summation shows
that this type of smoother is of the form (3.1)
where

wi�x� =
1
n

∑
j∈S
ψj�Xi�ψj�x��

A short description of orthogonal series esti-
mates, including wavelets, can be found in
Section 3.2 of Ramsay and Silverman (1997)
where additional references are given for partic-
ular choices of function bases.

5. Regression splines. A class of simple smoothers
with a form that is related to (4.7) is the class of
regression splines

m̂RS�x� =
∑
j∈S
θ̂jBj�x�


but the functions Bj�x� are no longer orthog-
onal. Now they take the form Bj�x� = xj, for
j = 1
 � � � 
 p and Bj�x� = �x − kj�p+ for j > p,
where the kj are some given “knot points.” The
coefficients θ̂j are computed by least squares, so
they are still linear combinations of Y. Thus this
type of smoother can be written in the form (3.1)
by interchanging order of summation as above.
See Section 7.2 of Eubank (1999) for discussion
of many properties of estimators of this form
and see Stone, Hansen, Kooperberg and Truong
(1997) for related estimators in more complicated
models.

6. Others. A variation on kernel type smoothers is
local polynomials, which are discussed in detail
in Section 7. A different type of spline is the
smoothing spline discussed in detail in Section 5.

5. EXTENSION TO SMOOTHING SPLINES

Much of the work in constrained nonparametric
regression has been done in the context of splines.
Smoothing splines are defined as minimizers of a
penalized sum of squares; see (5.1). Constraints
can be easily incorporated by minimizing over the
restricted set. Tantiyaswasdikul and Woodroofe
(1994) consider the case where the smoothing order
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parameter p [see (5.1)] is equal to 1, but most of the
work seems to concentrate on the case p = 2. Theo-
retical properties of constrained smoothing splines
are discussed by Utreras (1985), Micchelli and
Utreras (1988) and Mammen and Thomas-Agnan
(1999).
Algorithms for calculating constrained smoothing

splines typically use specially constructed bases of
spline functions. If the basis is appropriately cho-
sen then the constraints on the shape of the curve
estimate correspond to “simple” constraints on the
coefficient of each basis function. These coefficients
can then be determined by solving a constrained
least-squares problem. Thus, most algorithms are
tailored for specific shape constraints, for example,
the regression curve is supposed to be monotone
(Ramsay, 1988; Gaylord and Ramirez, 1991; Dole,
1999), convex (Dierckx, 1980; Schmidt, 1987; Elfv-
ing and Andersson, 1988; Irvine, Marin and Smith,
1986; Dole, 1999), or convex–concave (Schmidt and
Scholz, 1990).
A flexible algorithm that uses B-splines and can

be easily adapted to a variety of shape constraints
is given in Schwetlick and Kunert (1993). An algo-
rithm that starts with the unconstrained solution
of (5.1) and adaptively enforces constraints until
the smooth fulfills the desired shape constraints is
proposed in Turlach (1997). Villalobos and Wahba
(1987) consider a bivariate constrained smoothing
problem. They use a bivariate spline smoother and
enforce the constraints on a fine grid of points.
Even though this does not guarantee that the fitted
smooth will satisfy the shape constraints every-
where, one can be reasonably sure that it does if
the grid on which one imposes the constraints is
fine enough.
Applications of constrained splines smoothing are

discussed, among others, by Ramsay (1988), Kelly
and Rice (1990), and in the books by Wahba (1990)
and Green and Silverman (1994). A recent overview
on work on shape restricted splines is given in Dele-
croix and Thomas-Agnan (2000).
Despite this impressive amount of work on con-

strained smoothing splines no unified framework
has emerged. Further insight into how constrained
smoothing splines work comes from another type of
generalization of the framework of Section 3. The
basic smoothing spline of order p is usually written
as

m̂SS�x� = argmin
m

1
n

n∑
i=1

{
Yi −m�Xi�

}2
+λ

∫
m�p��x�2


(5.1)

where λ is the smoothing parameter. See Wahba
(1990), Green and Silverman (1994), and Eubank

(1999) for discussion of many aspects of this esti-
mator. It can be written in a form which generalizes
both (4.1) and (5.1) as

m̂SS�x� = argmin
m� →m∈� mS

∥∥→Y−→m
∥∥2

where the norm on �S is now generalized to

∥∥→f ∥∥2 = 1
n

n∑
i=1

�fi�x��2p
(5.2)

where � · �p denotes the Sobolev type norm

�f�x��2p =
∫
�f�x��2wi�x� ν�dx� + λ

∫ [
f�p��x�]2 dx�

The conventional smoothing spline (5.1) is the spe-
cial case where wi�x� = 1 and ν is the empiri-
cal measure of the design points X1
 � � � 
Xn. The
norm (4.1) is the special case where λ = 0�
As above, it is natural to write constrained

smoothing splines as

m̂SS
C�x� = argmin
m� →m∈�mS

∥∥→Y−→m
∥∥2

This constrained minimization is simplified, exactly
as at (4.4), using a Pythagorean relationship. Fol-
lowing the arguments of Section 4 yields the propo-
sition.

Proposition 2. The constrained smoothing spline
can be represented as a constrained minimization
over ordinary functions as

m̂SS
C�x� = argmin
m� →m∈�mS

∥∥→̂mSS −→m
∥∥2

= argmin
m∈C

∫
�m̂SS�x� −m�x��2w�x� ν�dx�(5.3)

+λ
∫ {
m̂

�p�
SS �x� −m�p��x�}2 dx�

Proposition 2 is proved in Mammen and Thomas-
Agnan (1999). There this representation of the
smoothing spline was used to study asymptotics
and algorithms for shape restricted smoothing
splines; see also Section 6.5.

5.1 Sobolev Projection of Smoothers

Motivated by Proposition 2 we propose to mix
ideas from spline smoothing and other smooth-
ing approaches. We consider the following class of
constrained smoothers. For an arbitrary (uncon-
strained) smoother m̂S that is constructed such
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that it has p derivatives we define the constrained
smoother as

m̂S
C�x� = argmin
m� →m∈�mS

∥∥→̂mS −→m
∥∥2

= argmin
m∈C

∫ {
m̂S�x� −m�x�

}2
w�x� ν�dx�

+λ
∫ {
m̂

�p�
S �x� −m�p��x�}2 dx�

This means that the constrained smoother m̂S
C is
the projection of the unconstrained estimator m̂S

onto the constrained set C. Here, the projection is
taken with respect to the Sobolev norm

�f�2 =
∫
f�x�2w�x� ν�dx� + λ

∫
f�p��x�2 dx�(5.4)

This estimate has two advantages:

1. The unconstrained estimate m̂S will only be
changed if it violates any of the constraints and
then only in the neighborhood of this violation.
In particular, for monotone smoothing m̂S will
only be changed in neighborhoods of sets where
the monotonicity was violated by m̂S. Hence,
away from such neighborhoods the constrained
estimate has the same (theoretical) properties
as the unconstrained estimator since it is iden-
tical to the latter. More important, the good
interpretability of the unconstrained estimator
carries over to the constrained estimator away
from such neighborhoods.

2. The constrained estimate m̂S
C is a smooth
function. The reason is that the penalty term
λ

∫ �m�p��x��2 dx of the Sobolev norm forces
m̂S
C to be smooth. In particular, for monotone
smoothing with a choice p ≥ 1 we get an esti-
mate that is differentiable. This means that this
estimate does not have the kinks observed in
Figure 3.1 for monotone local linear fits. This
is shown in Figure 2.2 where the constrained
smoother of Figure 2.1 is shown. That projec-
tion is calculated with respect to (5.4) where the
penalty term has been replaced by a discretized
version. This has been done for computational
reasons. For a more detailed discussion of algo-
rithms using local polynomial smoothers see
Mammen, Marron, Turlach and Wand (2001).
Delecroix, Simioni and Thomas-Agnan (1995,
1996) consider a related two-step procedure for
Priestley–Chao type kernel smoothers.

6. ASIDES

6.1 The Monotone Case

For monotone smoothing, m̂S
C�x� is a version
of the older idea of “smooth, then monotonize”

discussed, for example, in Barlow and van Zwet
(1970), Wright (1982), Friedman and Tibshirani
(1984), Mukerjee (1988), Kelly and Rice (1990) and
Mammen (1991a) (see also Cheng and Lin, 1981;
Ramsay, 1998; Mammen et al., 2001). Moreover, to
our knowledge, the fact that m̂S
C is the projec-
tion onto a constrained set has not been recognized
before.
It can be shown that for monotone (increasing)

smoothing, (4.5) implies that

m̂S
C�x� = max
u≤x

min
v≥x

∫ v
u m̂S�s�w�s� ν�ds�∫ v

u w�s� ν�ds�
�(6.1)

A proof of (6.1) for discrete measures ν can be found
in the books by Barlow, Bartholomew, Bremner and
Brunk (1972) or Robertson, Wright and Dykstra
(1988). The case of general ν is discussed in
Mammen et al. (2001). A careful inspection of
(6.1) shows that one obtains the monotone function
m̂S
C from m̂S by replacing parts of m̂S by constant
pieces. In an interval where m̂S
C is constant it is
equal to a weighted average of m̂S over this inter-
val. At the boundary of such intervals m̂S
C may
not be differentiable. This explains the kinks that
were observed for the monotone smoother of the
data in Section 3. See Figure 3.1.
Mammen (1991a) also considers other propos-

als for monotone smoothing that are of the form
“monotonize then smooth,” denoted by m̂C
S, which
is a smooth of the monotonized data denoted by
YC. Insight into how this type of smoother com-
pares with m̂S
C�x� comes from Figure 6.1. In both
Figures 6.1(a) and 6.1(b), the subspace � m

S (of ordi-
nary functions) is shown as a horizontal line, and
the subset �mS (of constrained functions) is the heav-
ily shaded portion. The subspace � Y

S (of ordinary
vectors) is shown as a diagonal line, and the subset
�YS (of vectors satisfying the constraint) is the heav-
ily shaded portion. Figure 6.1(a) corresponds to the
case that the smoother m̂C
S is “monotonicity pre-
serving” (i.e., when applied to monotone data, the
result is monotone), and Figure 6.1(b) is the case
where the smoother is not monotonicity preserving,
which can happen for example for local polynomial
smoothers, as shown in Figure 7.1.
When the smoother is monotonicity preserving,

the set �mS “covers all the area directly underneath
�YS ,” since smooths of monotone data are again
monotone. So when the data Y are first mono-
tonized (i.e., projected onto �YS ) to get YC, the
resulting smooth m̂C
S (which comes from project-
ing YC onto � m

S ), will typically be “inside �mS .” This
means that this approach will tend to “round out
the sharp corners in m̂S
C�x�.”
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Fig. 6.1. Diagram showing relation of “monotonicity preserv-
ing smoothers.” Panel (a) and “non-monotonicity preserving
smoothers.” Panel (b) in the vector space �S.

When the smoother is not monotonicity preserv-
ing, the smooth m̂C
S of the monotonized data YC,
that is, the projection of YC onto � m

S , need not be
monotone, as shown in Figure 6.1(b). Another illus-
trative example for the situation in Figure 6.1(b)
are functions that are constrained to go through
the origin. A projection of a function f onto the
constrained set is achieved by replacing the sin-
gle value f�0� by 0. This example highlights the
fact that the resulting estimate of the approach
“smooth then constrain” may not be smooth. Fur-
thermore the idea “constrain then smooth” may not
lead to a constrained estimate. The Sobolev pro-
jection method described in Section 5.1 is a way of
addressing this problem.

6.2 Remarks on Implied Loss Functions

The constrained estimate minimizes a weighted
L2 distance from the smoothed estimate. Different
choices of the weight measure ν lead to differ-
ent L2 norms. For different forms of the simple
smoother (3.1), this entails different versions of the
implied loss (4.6) .
For Nadaraya–Watson weights, w�x� = 1

n
×�n

i=1Kh�x − Xi� is a kernel density estimator, so

under reasonable assumptions (see, e.g., Silverman,
1986; Wand and Jones, 1995) w�x� is approximately
f�x� the density of X1
 � � � 
Xn, so this estimator is
approximately optimizing∫

�m̂�x� −m0�x��2f�x� ν�dx��

For situations where “f weighting” is desirable in
Nadaraya–Watson smoothing, ν�dx� = dx is appro-
priate. When “no weighting” is desired, then the
choice ν�dx� = w�x�−1 dx is natural.
For Gasser–Müller weights, w�x� = 1

n

�n
i=1×∫ si

si−1
Kh�x−t�dt = 1

n

∫ sn
s0
Kh�x−t�dt. Under reason-

able assumptions (either x is away from boundary
regions, or s0 = −∞, sn = ∞), w�x� is approxi-
mately constant, so this estimator is essentially
optimizing ∫ {

m̂�x� −m0�x�
}2
ν�dx��

Thus ν�dx� = dx gives “no weighting” and “f
weighting” can be obtained from ν�dx� = 1

n
×�n

i=1Kh�x−Xi�dx.
Next we study the effect of the weight function w

under constraints. For some constraints, the projec-
tion of the smoother onto the constraint set leads
only to “local” changes of the smoother. Consider,
for example, the case of monotone smoothing and
assume that the smoother is nearly monotone with
the exception of some local wiggles. As noted at (6.1)
one achieves the monotone smoother by replacing
the local wiggles by constant local pieces where the
estimate is taken as a local weighted average. Such
local averages do not depend strongly on the weight
function w or on the measure ν, unless the sample
size is small (careful investigation of this is done in
Mammen et al., 2001). So usually the choice of the
weight measure ν is of relatively minor importance.

6.3 ANOVA Decompositions and Model Choice

Our projection framework provides further
insight into model choice and comparison between
models. For example assume that we have a class
of nested submodels �mS
1 ⊂ · · · ⊂ �mS
k ⊂ � m

S

given. Our approach allows us to compare the cor-
responding estimates using the norm (4.1) or its
generalization (5.2). Define for j = 1
 � � � 
 k the
constrained estimates analogous to (4.3),

→̂mS
C
j = argmin
→m∈�mS
j

∥∥→Y−→m
∥∥2�

If the submodels �mS
1
 � � � 
�
m
S
k are vector spaces,

repeated application of the Pythagorean theorem
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yields∥∥→Y− →̂mS
C
1

∥∥2
= ∥∥→Y− →̂mS
C
k

∥∥2 + ∥∥→̂mS
C
k − →̂mS
C
k−1
∥∥2

+ · · · + ∥∥→̂mS
C
2 − →̂mS
C
1

∥∥2
= ∥∥→̂mS − →̂mS
C
k

∥∥2 + ∥∥→̂mS
C
k − →̂mS
C
k−1
∥∥2

+ · · · + ∥∥→̂mS
C
2 − →̂mS
C
1

∥∥2�
Unfortunately, the summands in this decomposition
are, as opposed to “traditional” ANOVA decomposi-
tions, typically not independent.
This observation holds for finite samples as well

as asymptotically. To appreciate why, suppose that
the errors ε1
 � � � 
 εn are i.i.d. with standard nor-
mal N�0
1� distribution and consider �S endowed
with the norm (4.1). It follows that →Y has a stan-
dard normal multivariate distribution on the vector
subspace � Y

S .
Consider, the next two projections, say 81→Y and

82→Y, of →Y onto orthogonal subspaces L1 and L2

of � m
S as illustrated by Figure 6.2. Specifically,

take L1 and L2 as the orthogonal complements of
�mS
j in �mS
j+1 for two different values of j, that is,
L1 = �m
⊥S
j ∩ �mS
j+1 and L2 = �m
⊥S
j′ ∩ �mS
j′+1 for
j = j′. Hence, 81→Y is →̂mS
C
j+1−→̂mS
C
j and 82→Y is

→̂mS
C
j′+1 − →̂mS
C
j′ .
With this choice of L1 and L2, neither of the two

subspaces is contained in � Y
S nor are they orthogo-

nal to � Y
S (see the discussion in Section 4). There-

fore we cannot conclude in general that 81→Y and
82→Y are independent. As an extreme case consider
the simple two-dimensional plot of Figure 6.2. Here,

→Y has a one(!)-dimensional normal distribution on

L1

L2
Π Y→2

V S
Y

Y→
CS

Y

Fig. 6.2. Diagram showing the data vector →Y lying in a one-

dimensional space � YS , and that the projections 81→Y and 82→Y
onto the orthogonal spaces L1 = �m
⊥S
j ∩�mS
j+1 and L2 = �m
⊥S
j′ ∩
�mS
j′+1 need not be independent.

the line � Y
S and 81→Y depends deterministically on

82→Y. This implies, in particular, that they are not
independent.
Furthermore, in general the summands �→̂mS
C
k−

→̂mS
C
k−1�2 do not have an (asymptotic) χ2 distribu-
tion; see for example, Härdle and Mammen (1993)
who propose using bootstrap methods to avoid these
problems. The situation is a little bit simpler for
orthogonal series estimates. For a general discus-
sion of lack-of-fit tests in nonparametric regression
see Hart (1997).

6.4 Numerical Implementation

According to Proposition 1 for the calculation of
constrained estimates we have only to calculate the
unconstrained smoother and to calculate the projec-
tion of the smoother onto the constrained set. This
yields a big computational gain. For example, if ν
is counting measure on an equally spaced grid of g
values of x, then instead of minimizing over vectors
of dimension n · g, as required for (4.3), only vec-
tors of dimension g need to be considered for (4.5).
In addition, established algorithms may be used on
the reduced problem. The reduced problem (in its
discretized form) is a constrained (weighted) least
squares problem. Algorithms for such problems are
well studied in the numerical literature. Solutions
can be iteratively calculated by active set methods
(see, e.g., McCormick, 1983), by the method of itera-
tive projections (see, e.g., Dykstra, 1983; Robertson
et al., 1988), or primal-dual methods (see, e.g., Gold-
farb and Idnani, 1983). For monotone smoothing
the pool adjacent violators algorithm, which calcu-
lates effectively projections onto monotone vectors,
can be used in the second step. For a discussion of
this algorithm and other constrained least squares
algorithms see the books by Barlow et al. (1972)
and Robertson, Wright and Dykstra (1988). General
optimization algorithms are discussed, among oth-
ers, in Fletcher (1987), den Hertog (1994) and Nash
and Sofer (1996).

6.5 Asymptotics for Constrained Estimates

Asymptotics for unconstrained kernel-type esti-
mates is quite well developed. For some examples
the asymptotic results of the unconstrained esti-
mates carry over to the constrained estimates.
Trivially, this is the case if the unconstrained esti-
mate fulfils the constraint with probability tending
to 1. This implies that, with probability tending
to 1, the constrained estimate coincides with the
unconstrained. An important example for this case
is monotone smoothing: under appropriate condi-
tions, the derivative m′ of the regression function is
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consistently estimated by the derivative of kernel
smoothers. Then, if m′ is bounded away from 0, the
constrained estimate is monotone with probabil-
ity tending to 1. So asymptotics of the constrained
estimate is reduced to the unconstrained case
(see, e.g., Mukerjee, 1988 and Mammen, 1991a).
This does not hold for monotonicity constraints of
higher order derivatives. Under such conditions the
constrained estimate can achieve faster rates of
convergence than the unconstrained estimate. This
has been shown in Mammen and Thomas-Agnan
(1999) for smoothing splines; see also the results
in Mammen (1991b) on constrained least squares
estimates. An essential mathematical tool for show-
ing rates of convergence of restricted smoothers is
given by empirical process theory; see van de Geer
(1990).

7. EXTENSION TO LOCAL POLYNOMIALS

Now we extend our projection framework for
smoothing to local polynomial smoothers. For
simplicity of notation, we assume now that the
covariables Xi are one-dimensional and that the
regression function m goes from � to �. Given a
set of weights wi�x�, such as those of Section 4.1,
a local polynomial smoother of order p, can be
written as

m̂LP�x� = β̂0�x�

where

β̂�x� =
 β̂0�x�

���
β̂p�x�

 = argmin
β

∫ 1
n

×
n∑
i=1

{
Yi −

p∑
j=0
βj�x��x−Xi�j

}2

×wi�x� ν�dx��

(7.1)

As for m̂S, the integral and the weight measure ν
play no role, because the minimization can be done
individually for each x.
To write this smoother as a projection we use

an expanded version of the normed vector space �S
which is the set of n�p+ 1� tuples of functions,

�LP=


→f=



f1
0�x�
���

f1
p�x�
���

fn
0�x�
���

fn
p�x�


� fi
j� �→�
 i=1
���
n
 j=0
���
p


�

Now the data vector YT = �Y1
 � � � 
Yn� is viewed as
an element →Y of �LP, which is an n�p + 1�-tuple of

the form →Y
T = �Y1
0
 � � � 
0
Y2
0
 � � � 
0
Yn
0
 � � � 


0�, that is, within blocks of p + 1, only the first
entries may be nonzero,

fi
j�x� ≡
{
Yi
 j = 0,
0
 j = 1
 � � � 
 p,

i = 1
 � � � 
 n�

The subspace of such n�p + 1�-tuples is called � Y
LP.

A candidate smooth now involves several functions
βj� �→ �, which are elements of �LP of the form→β ,
that are n�p+ 1�-tuples where entries are common
across i, and for each j are βj�x�, that is, fi
j�x� =
βj�x�, i = 1
 � � � 
 n, j = 0
 � � � 
 p. The subspace of
n�p+1�-tuples with entries that are identical across
i is denoted by � m

LP. The appropriate analog of the
norm (4.1) on �LP is∥∥→f∥∥2 = ∫ 1

n

n∑
i=1

{ p∑
j=0
fi
j�x��x−Xi�j

}2

× wi�x� ν�dx��
(7.2)

This notation represents local polynomial smooths
as a projection, because m̂LP�x� = β̂0�x�
where (7.1)
can be rewritten as

β̂�x� = argmin
β�→β∈� mLP

∥∥→Y−→β
∥∥2�(7.3)

Now given a set of constrained n · �p + 1� tuples
�mLP ⊂ � m

LP, for example β0�x� monotone, a nat-
ural constrained local polynomial smoother is
m̂LP
C�x� = β̂0
C�x�, where

β̂C�x� = argmin
β�→β∈�mLP

∥∥→Y−→β
∥∥2�(7.4)

This constrained minimization is simplified,
exactly as at (4.4), using a Pythagorean relation-
ship. Following the same arguments (with nearly
the same notation) as in Section 3 yields the propo-
sition.

Proposition 3. The constrained local polynomial
smooth can be represented as a constrained min-
imization over ordinary functions as m̂LP
C�x� =
β̂0
C�x� where
β̂C�x� = argmin

β�→β∈�mLP
∥∥→̂β−→β

∥∥2
= argmin
β�→β∈�mLP

∫ 1
n

n∑
i=1

[ p∑
j=0

(
β̂j�x� − βj�x�

)
×�x−Xi�j

]2
wi�x� ν�dx�

= argmin
β∈CLP

∫ p∑
j=0

p∑
j′=0

(
β̂j�x� − βj�x�

)
× (
β̂j′ �x� − βj′ �x�

)
Uj+j′ �x� ν�dx�


(7.5)
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where

Uj�x� =
1
n

n∑
i=1
�x−Xi�j wi�x� for j = 0
 � � � 
2p�

As does Proposition 1 in Section 4 for kernel
smoothing, Proposition 3 gives geometric insights,
as well as computational gains. Again, the compu-
tational problem is reduced to a constrained least
squares problem. So the remarks of Section 6.4
apply. In many cases the set of constrained func-
tions β ∈ CLP will involve constraints only on some
of the βj. For example, in monotone regression, a
simple constraint is that only β0�x� is increasing,
but it could also be desirable to assume in addition
that β1�x� ≥ 0.
Proposition 3 shows that, as for kernel smooth-

ing, constrained smoothing leads to estimates of
the form: “smooth then constrain.” Again, one
could try estimates based on the idea “first con-
strain then smooth.” For local polynomials this idea
does not work: smoothing by local polynomials is
not monotonicity preserving. This can be seen from
Figure 7.1 that shows some artificial monotone data
with a local linear fit that is not monotone. This
is in contrast to the Nadaraya–Watson smoother
that always preserves monotonicity (see, Mukerjee,
1988; Mammen and Marron, 1997). Sufficient con-
ditions for a smoother to be monotonicity preserving
are given in Mammen and Marron (1997). They also
discuss a modification of the local linear smoother
which is monotonicity preserving. A detailed dis-
cussion of monotone local polynomials can be found
in Mammen et al. (2001).
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Fig. 7.1. Monotone artificial data with nonmonotone local linear
fit.

8. ADDITIVE MODELS

We now consider smoothing estimates for addi-
tive models. For simplicity this will be done for
Nadaraya–Watson smoothing. Using the ideas from
the last section the approach can be easily gener-
alized to local polynomial smoothing. For details
see Mammen, Linton and Nielsen (1999). In this
model the additive Nadaraya–Watson smoother can
be calculated by the backfitting algorithm. Our geo-
metric point of view can be used to show that this
algorithm converges under weak conditions. Fur-
thermore, our geometric representations can be
used as essential tools to give asymptotic distri-
butions of additive Nadaraya–Watson smoothers
and additive local polynomial smoothers. We now
describe how our projection framework carries over
to this model. Our constraint on the regression
function m� �q → � is that

m�x� =m0 +m1�x1� + · · · +mq�xq�
for x = �x1
 � � � 
 xq�


(8.1)

where m0 is a constant and m1
 � � � 
mq are func-
tions from � to �. For identifiability, it is assumed
that E ml�Xi
 l� = 0, i = 1
 � � � 
 n; l = 1
 � � � 
 q. Dis-
cussion of the additive model can be found in Hastie
and Tibshirani (1990).
The constrained and unconstrained Nadaraya–

Watson smoother (or more generally simple
smoother) is defined as in (4.2) and (4.3). The
space �mS ⊂ � m

S is now the subset of n-tuples with
(identical) entries that are additive, that is,

�mS =

→f=
f1�x����
fn�x�

� fi�x�=g1�x1�+···+gq�xq�
for some functions g1
���

gq� �q→� for i=1
���
n

�
In this model we do not recommend first calcu-

lating the unrestricted estimate (and then project-
ing this estimate on the subspace �mS ). The reason
is that the calculation of the unrestricted estimate
involves many unknown parameters. If the data are
too sparse this calculation would be unstable or the
estimate may not even be defined at many locations.
A standard method to calculate the constrained (i.e.,
additive) estimate is the backfitting algorithm (see
Hastie and Tibshirani, 1990). It is based on itera-
tive minimization of �→Y−→m�

2. In each minimization
step the norm is minimized over one additive com-
ponent while letting the other components be fixed.
In each cycle of the algorithm this is done for each
component k. It can be easily seen that each step
in a cycle of the algorithm is a projection onto an
appropriate subspace of the space �mS . That means
that, in our geometry, backfitting is based on itera-
tive application of projections. This is much easier
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to understand as iterative application of smoothing
operators. In particular, it can be used to show that
under weak conditions, backfitting converges to the
minimizer with exponential speed (see Mammen,
Linton and Nielsen, 1999). This implies not only
consistency of the backfitting algorithm, it shows
also that for getting the asymptotic distribution of
the estimate it suffices to consider the result of the
backfitting algorithm after O�log n� cycles. Using
this approach Mammen, Linton and Nielsen (1999)
show that the local linear estimate for one addi-
tive component achieves the same asymptotic nor-
mal limit as the oracle estimate based on knowing
the other components. For an asymptotic result for
another additive local polynomial backfitting esti-
mate that does not achieve the asymptotic oracle
limit see Opsomer (2000) and Opsomer and Ruppert
(1997).

9. EXTENSIONS

In this paper we have only discussed constrained
smoothing of regression functions. Similar problems
arise in other settings like density estimation, gen-
eralized regression, white noise models and non-
parametric time series models. Another field of pos-
sible applications are semiparametric models where
constraints are put on the nonparametric compo-
nents.
Here, we mention other variations from nonpara-

metric regression.

• Boundary conditions. A regression function m,
that is defined on �0
1�, say, is assumed to be zero at
the boundary point 0. Or more generally, m is sup-
posed to take fixed known values in certain regions.
He and Ng (1999) note that U.S. Army Construction
Engineers use the flashing condition index (FCI)
as a measurement for roof condition on buildings.
Naturally, without interference the condition can-
not improve and at the time of construction a roof
is assumed to have an index of 100. Hence, He and
Ng (1999) consider fitting a decreasing regression
function m with m�0� = 100 and 0 ≤m�x� ≤ 100.
• Additive models with monotone components.

The regression function m� �q → � is sup-
posed to be of additive form m�x1
 � � � 
 xq� = m1×
�x1� + · · · +mq�xq� where the additive components
(or a subset of them) are monotone.
• Observed derivatives. One observes r samples

corresponding to r regression functions (as in the
last point) with now r = 2. Now it is assumed
thatm2 coincides with the derivative ofm1; see Cox
(1988).

• Bivariate extreme-value distributions. Hall and
Tajvidi (2000) study methods to estimate the depen-
dence function of a bivariate extreme-value distri-
bution. Their methods requires estimating a con-
vex function m such that m�0� = m�1� = 1 and
m�x� ≥ max�x
1− x� for x ∈ �0
1�.
• Positivity constraints. Imposing positivity con-

straints on wavelet estimators, especially if used
for density estimation is discussed in Dechevsky,
MacGibbon and Penev (1998) and Dechevsky and
MacGibbon (1999).
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