A GENERAL PROOF RULE FOR PROCEDURES
IN
PREDICATE TRANSFORMER SEMANTICS

~Alain J. Martin
Computer Science
California Institute of Technology

5075:TR:83

The research described in this paper was sponsored by the
Defense Advanced Research Projects Agency,
ARPA Order number 3771,
and monitored by the Office of Naval Research
under contract number N00014-79-C-0597

© 1983, California Institute of Technology



A General Proof Rule For Procedures
In

Predicate Transformer Semantics

Alain J. Martin
Computer Science

California Institute Of Technology

Abstract Given a general definition of the procedure call based on the
substitution rule for assignment, a general proof rule is derived for
procedures with unrestricted value, result, and value-result parameters,
and global variables in the body of the procedure. It is then extended
for recursive procedures. Assuming that it has been proved that the body
establishes a certain postcondition I, the "intention", for a certain
precondition J, the proof rule permitting to determine under which
conditions a certain procedure call establishes the postcondition E, the
"extension", is based on finding an "adaptation™ A, as weak as possible,
such that 4 . ==> E'. (E' is derived from E by séme substitution of
parameter variables.) It is preferable, but not essential, that the body
be "transparent" for the value parameters, i.e., that the value parameters

are not changed by the body.
Pasadena, 9 February 1983
Introduction

In programming, the procedure mechanism fulfills two roles. First,
it allows recursion; second, it provides a general abstraction mechanism.
It is the procedure as an abstraction mechanism that is studied here,
although the results will be used to prove properties of recursive

programs as well.

Apart from making recursion possible, the procedure mechanism, as we

define it, does not introduce a new semantic concept - a new "predicate



transformer", It permits to define arbitrary primitives whose semantics,
unlike those of usual primitives, are 6n1y a partial function. More
precisely, the "procedure declaration" mechanism permits to construct a
program part - the "procedure" - of an arbitrary complexity. This
procedure is designed for a certain intended net-effect: it is specified
how the procedure establishes a certain postcondition, but not how it
establishes any postcondition., The "procedure call" mechanism permits to
use the procedure as a primitive, i.e., by knowing only what it does, and
ignoring how it does it. Hence, the main issue with procedures is how to

deal with partial semantic specification.

Although we shall couch the procedure paradigm in the notation ol an
imperative programming language, the concepts of abstraction and of
partial specification that this paradigm embodies are quite general, and
can be encountered in several forms (modules, components, VLSI-cells,
ete...) in many other disciplines. We believe that the different
properties we describe (transparency of the procedure body, adaptation of
a specification to its use), and the proof rule we propose, are also
applicable in these other disciplines where an equivalent notion of

abstraction is used.

1. Definitions

We use Dijstra's guarded command language, and Dijkstra's predicate
transformer semantics [1] (preferably extended with a fixed-point

definition for the semantics .of the repetition). We are thus interested

in total correctness properties of programs.
Consider the procedure declaration
proe p(x?, y?!, z!); S. (0)
It defines a procedure named p, whose "procedure body" is the - here
unspecified - program part S. The variables x,y,z listed between

parentheses are the "formal parameters" of the procedure. They are local

variables of S that have been given a special status.



In general, S will contain other, usual local variables. S will also
contain global variables (we use the terms "local' and "global" in the
Algol 60 sense). For the sake of clarity, we shall first assume that the
procedure body does not contain global variables. We shall then show how

global variables in the procedure body can be added without difficulty.

The parameters postfixed with ? - x in the above example - are called
"input" or "value" parameters. The parameters postfixed with ! -~ z in the
above example -~ are called "output" or "result" parameters. The
parameters postfixed with ?! - y in the above example - are called "input-

output" or "value-result" parameters.

By definition, the "procedure call" p(a,b,c) is identical to the

program part
X,y := a,b; 8; b,c 1= v,z . D)

The variables a,b, and ¢ are the "actual parameters" corresponding to the
formal parameters x,y, and z, respectively. This definition allows

expressions as actual input parameters. It excludes procedures as

parameters.

In this presentation, we shall simplify notations by allowing the
formal and actual parameter identifiers to stand for multiple variables.
For instance, x may stand for the list of simple variables x1, x2, ...,
xn. In such a case, the corresponding actual parameter variable - here, a

- must stand for a list of the same length - here, al, a2, ..., an-.

We consider solved the problem of binding the identifiers a,b,c of
the actual parameters to a particular declaration in the (static or

dynamic) scope of the procedure call. We assume that the actual
parameters are uniquely defined upon procedure call. And we allow no side

effect in the evaluation of expressions, which are assumed to be

everywhere defined.



From (1) we deduce the general semantic definition of the procedure

call with input/output parameters:
.. _ b,c\\X,¥
(¥Q::wp(p(a,c,b),Q) = (WP(S'Qy,Z))a,b) (2)

Substitution rule

u
1
1 - the "lower variable" ~ for all free occurrences of u - the "upper

The notation P denotes the predicate derived from P by substituting

variable" -, If u and 1 are (necessarily matching) multiple variables, a
"simultaneous" substitution of elementary l's for elementary u's is

performed. If all upper variables are different, the substitution is

u
1
conjunctlion of all predicates obtained by performing the substitutions of

unique. If several upper variables are identical, P, is defined as the
the identical upper variables in all possible orders.

Observe that in (2) the outermost substitution is unique, sinee all
formal parameters are by definition different. But the inner substitution

is not.

2. Specification of the procedure declaration

Definition (2) gives the semantics of the procedure call as a general

predicate transformer, but it defeats the purpose of the procedure as an
abstraction mechanism since for each procedure call, one needs to use the

program text of the body S.

The problem can be defined as follows: Assume that the "designer" of
the procedure has defined its intended net effect by establishing that for
a certain postcondition I, called the "intention" of the procedure, the

"specification” :

WP(SDI) = Jd (3)

holds for a certain precondition J., How can a "user" of the procedure

derive from (3)



wp(p(a,b,c),E) ()

for some predicate E, called the "extension" of the procedure at the place
of the call p(a,b,c)?

First, since all local variables of S other than x,y,z are hidden

from the "user," the intention I should contain only x,y,z as variables.

Second, the precondition J is independent of z,
Proof: Since a variable zi of z is local to S, it has to be initialized
inside S. Hence the first statement in S involving zi is of the form
zi ;= exp, where exp does not contain zi. Ilence, whatever the

postcondition of zi := exp, the precondition does not contain zi. [
Consider the procedure declaration:
proc p(x7,y!); S: x := x+1; y := 2%x ,

with the specification: wp(S,y = 2%*x) = true. Without knowing the
structure of S, it is impossible to determine, for instance,
wp(p(a,b), b = 2%a) since it is not known in which way S modifies the

input parameter x. (This wp happens to be false.)

We must therefore add to the specification (3) some information about
how the procedure body "distorts" the input parameter x. But there is
obviously no reason for a procedure body to modify its input parameters,
and we can therefore, without loss of generality, impose that the
procedure body S fulfill the

Transparency requirement: If x is an input formal parameter of S, no

assignment to x, and no procedure call with x as an actual output or

input-output parameter, may occur in S. [J
Corollary: For S transparent, and x an input formal parameter of §

(¥X::wlp(S,x=X) = (x=X)) (5)



holds, which is equivalent to
(¥R:R independent of y and z:wlp(S,R) = R). O (6)
(Proof omitted.)
(The transparency requirement is not necessary for the validity of
the proof rule we shall now propose. The proof rule can be extended very

easily to non-transparent procedures.)

3. Proof rule for procedure call

Consider the general procedure declaration (0), for which the

specification (3) and the transperency of the body have been proved.

For a given extension E, and a given procedure call p(a,b,c). we want

to determine a precondition pre as weak as possible such that
pre => wp{(p(a,b,c),E) .
We would like to investigate under which conditions
(¥x,y,z :: I =>E") 7

where E' is the predicate E?'; .
In general, (7) does not hold because I is a predicate in x,y,z, whereas
E' is independent of x since E is independent of x. Hence, we have to

look for a predicate A, the "adaptation", such that:
(¥%x,v,z 1t A A1 =>E') . (8)

In view of our intention to apply the wp(S,)-transformation to (8), we

require that A be independent of v and z, since I is the only predicate in

y and z for which wp(S,I) is known.



Assume such an A has been found:
(8)
==> {properties of weakest preconditions}
(¥x,v,z % wip(S,A) ~ wp(S,I) => wp(S,E"))
==> {transparency of S, and A independent of y and z}
(¥x,v,2 22 A ~ J => wp(S,E"))
==> {universal quantification}
w3 => up(S,E ) 1Y
==> {definition (2)}
(A,\J)::g => wp(p(a,b,c),E) .

(Observe that the quantification ¥z has disappeared because A,J, and

wp(S,E') are independent of z.) Hence the

Proof rule Let A, the "adaptation", be the weakest predicate independent

of y and z, such that

_ b,e
A.I_>Ey’z. (9)
Then
(A ~ J)i*g => wp(pla,b,e),E) . O (10)
Remarks

1) There exist always at least two predicates A satisfying (9): the

strongest: false, and the weakest: (I => E'). But the former is not very

interesting, and the latter is in general not independent of y and z.



2) The closer the extension is from the lntention, the weaker the
adaptation will be. If I => E', the édaptation is true. It may also
happen that cxtension and intention are so different that the weakest
adaptation is false. In this case, the intention is said to be
"nonadaptable™ to the extension. It does not mean, however, that
wp(p(a,b,c),E) = false, but that it is just impossible to derive it from

the given intention.
3) In many cases, the adaptation need not be the weakest solution of (9).
A stronger predicate may be easier to establish, and sufficient for the

particular case.

L) In many cases, A will just be a relation between the different

constants of I and E' - in example 4.3, for instance.

4. Examples

In all the examples, the procedure bodies are obviously transparent
due to Theor. 1. It will not be specified any longer. All parameters are
of type integer. '

4,1 Procedure declaration:

roc inci(x?,y!) 1 v = x+1 .
proc

Specification: wp(S,y=x+1)

true .
Establish pre(inct(a,a), a = ao+1), as weak as possible, for a free
constant ao - pre is a precondition such that pre(S,P) => wp(3,P). The
weakest A such that

A~y =3x+l =>y = ao+l

is X ao.



Proof rule (10) gives the precondition
(x = ao)* . true
a ~ ==
i.e. a=ao . [
4,2 For the same procedure and the same specification, es?ablish
pre(inci(a,b), b = 3%*a) .
The weakest A such that
A .y =3x+1 =>y = 3%g
is x+1 = 3%*a,
Proof rule (10) gives the precondition
(x+1 = 3*a)§ ~ true
i.e., 2%z = 1,
For a of type integer, the precondition is false. [
4,3 Procedure declaration:
proc swap(x?!,y?!) ; X,y $= y,x .
Specification:
wp(S,x =X ay =Y) = (¥ =Y .y =X)
for any free constants X and Y. Establish

pre(swap(a,b), Q(a,b))



10

for a given predicate Q, and the actual variables a and b. The weakest A
such that '

A Aax=XaAay=Y =>Q(a,b)
is QX,Y) .
Proof rule (10) gives the precondition
- - X,Yy
Q(XvY) ~ (y - X A X = Y) a'b
i.e., Q(X,Y) ab=XaAra=YX

which is equivalent to Q(b,a) since X and Y are free. [J

5. Global variables

Consider the procedure declared:
proc p(x?,y?!,z! ; glo u?,v?!) ; S

the body of which contains the global variables u and v. (The variables

X,¥,z listed before the reserved word glo are usual formal parameters.)

Among the global variables that S contains, we distinguish the ones
that are not assigned to inside S (neither directly in an assignment
statement nor as the actual parameters of a procedure call), from the
others. We call the former.input global variables, and denote them by
postfixing the identifier by "?" - here, u? ~; we call the latter input-
output global variables, and denote them by postfixing the identifier by

"2 — here, v?!-,

By definition, the body is transparent to input global variables.



11

Let us consider the extension E for a ecall p(a,b,c,u,v). In the

specification:
wp(S,I) = J ,
I is now a function of x,y,z,u,v; J is a funetion of x,y,u,v.

As adaptation A, we are now looking for the weakest pfedicate

independent of y,z, and v, such that

(¥ x,v,z t: A . I =>E") .

The same derivation as in Section 3 leads to the same proof rule. Hence
the

General proof rule: Given the procedure declaration

proc p(x?,y?!,z!; glo u?, v?!) ; 8
(S ﬁransparent to x and u) and the specification
wp(S,I) = J ,

let A, the "adaptation," be the weakest predicate independent of y,z,and v
such that

A .1 =>EP°
v,z

for the extension E and the czll p(a,b,c,u,v). Then
(A . ) z’g => wp(p(a,b,c,u,v),E). [
Example:

Procedure declaration:



12
proc ined{(x?,y!; glo d?); y := x+d .

Specification: wp(S,y = x+d) = true .

Establish pre(ined(d,d,d), d=D) for a free constant D.
The weakest A such that:
A~y = x+d => y=D
is x+d = D .,
The proof rule gives the precondition:

(x+d = D)g ~ true

i.e., 2d = D. [

Which global variables should be declared in the procedure heading
cannot always be decided by a simple inspection of the program text of the
body. In the case a global variable is of a structured type - array,
list, ete...-, whether the whole structured variable or only some
components should be declared depends on how the net effect of the body on
the variable is specified. This will be illustrated by the following

simple example.

Consider a procedure p whose net-—effect is to swap two elements B(i)
and B(j) of an array B(i:0<i<N) of integers. B is not passed as
parameters, but only i and j (input parameters). The body S is:

if 0 < i,j < N —> B(i), B(J) := B(J), B(i) fi .

We can define the specification of S as:

wp(S,B = X) = (0 < i,j < N cand Biswap(i,j) = X)



13

where X is a free constant array isomorphic to B, and B:swap(i,j) is the

array derived from B by swapping B(i) and B(j).

Such a specification defines the net effect of S on the whole array
B. And thus B as a whole must be declared as an input-output global
variable., Then, if we want to determine

pre(p(m,n,B), P(B)) ,

the adaptation A may not contain B. But this will not be a problem since

the intention is defined on the whole B. For
A . (E:XS => P(B)

we find A P(X) ,

which gives the precondition

(P(X) . (0 <i,j <N cand B:swap(i,J)

1))

i.e., P(X) ~ (0 < myn < N cand B:iswap(m,n) = X) .

Which, for a free X; is equivalent to
0 < myn < N cand P(B:swap(m,n)) .
We can also define the specification of S as:
wp(S, (B(i),B(j§) = X,¥)) = (0 < i,j < N cand (B(j),B(i) = X,Y))
for X,Y free integer constants. Now, only the elements B(i) and B(j) need
to be declared as global input-output variables. For the same call, an

adaptation A satisfying

A . (B(i), B(J) = X,Y)} => P(B)



. B(1i),B(J)
is P(By 'Y Y.
Which leads to the precondition

B(m),Bn)

B(n),Bm))

0 < myn < N cand P(B

i.e., 0

I A

m,n < N cand P(B:swap(m,n)) .

Hence, the choice of the variables in terms of which the
specification of the body is expressed dictates the choice of the global

variables to be declared in the procedure heading. (This is not a problem

since the declaratlon of global variables is for specificatlon purposes

only.)

6. Proof rule for recursive procedures

Consider a recursive procedure "rec" for which we want to prove that

the specification

SP : wp(S,I) =4

holds for the body S. Since S contains at least one call of rec, we need
to use SP in order to establish the truth of SP. This obviously calls for

mathematical induction.

Let us use the most general definition of mathematical induction,
based on well-founded sets, and sometimes called "Noetherian induction”.
(We borrow the following formulation from [2]. An equivalent one can be

found in [6] under the name "struetural induction®.)

From the input formal parameters, and possibly some constants, of S,

let us construct a well-founded set U, i.e., a set with a partial order
relation (<), such that any descending chain u0 > ul > ,.. is of finite
length. Then

(¥u:ueU:SP(u)) = (¥u:ueU:SP(u) v { 3 v:iv<u:=SP(v))) (11)



15

(SP(u) means "SP considered as a predicate in u.") Hence, in order to
prove that the specification SP holds, we can prove the right-hand side of

(11)., But that is a predicate on predicate transformers, which makes it

unpractical to manipulate. We shall therefore partition the proof in two:
I) The "base step":

Prove SP(um) for any minimal element um of U
II) The "induction step":

Prove that if SP(v) holds for all v < k, for an arbitrary constant k,
then SP(v) holds for v=k. For this part of the proof, we have to
determine (at least once) pre(rec,E) for a certain postcoﬁdition E. (The
well-founded set has been chosen in such a way that that is not necessary

for the base step.)

Applying the proof rule, we have to determine an A independent of y

and z such that
A I =>E'.

But in order to apply the wp(S,)-transformation to the above relation, we
must assume that v < k holds for this instance of S. Hence the above

relation has to be extended as:
(v <k) ~ A A I==>E"

which gives the precondition

X,¥Y
(v <k) ~A A0 ab *

This minor extension of the proof rule makes it possible to prove

specifications of recursive procedures.



16
7. Example

(The example chosen, McCarthy's "91-function”, is quite artificial,
and the proof rule is applied in quite a "brute-force" way. Most likely,
anotﬁer example will be used in the final version. But this one presents
the advantage of being far from trivial, and yet with a simple program and

parameter structure.)

Consider the procedure declaration

proc p(x7,y!),
S:begin if x » 100 —> y = x-10

O x < 100 —> T:begin y':local ;
px+11,y"); p(y',y)

end

end.
We Vant to prove that
wp(S,I) = true (13)
holds, I being the predicate
x > 100 .y = x-10 ‘v x <100 .y =91.

From the semantics of the alternative construct and a little predicate

calculus, we derive:
wp(S,I) = x > 100 v wp(T,y=91)
Hence, proving (13) is equivalent to establishing the truth of

x > 100 v wp(T,y=91) . (14)



17
For x > 100, (14) obviously holds. We shall prove that if (14) holds for
x > k, it holds for x=k. 1In order to evaluate pre(T,y=91), we proceed
backwards and first evaluate pre(p(y',y), y=91). The adaptation A must be
such that

A AT =>y=91

(The same identifier y is used for the actual and formal parameter.)

Which gives for 4 : x < 101 .
The proof rule now gives the precondition:
(x>k.xg1o1);,
i.e.: (k < y' <101 .
The second step is now to evaluate
pre(p(x+11,y"), (k < y' < 101)) .
The adaptation A must be such that
A LI =>k<y(<101,
which gives for A :
k < x-10 ~ 100 < x < 111 v k < 91 . x < 100,

The proof rule gives the precondition

X

x>k A8 |4y

which is, after simplification

kK < x+1 A 89 < x < 100 v k < 91 ~ k-11 < x £ 89.° (15)



18

On the cother hand

x =k ~ x <100

= {predicate calculus}

X =K A8 <x<100vzx=kax<389

==> {arithmetic}

k < x+1 ~ 89 <x <100 vk <91 ~ k-11<x <89

==> {since (15) => wp(T,y=91)1}

wp(T,y=91).

Hence, x=k ==> (x > 100 v wp(T,y=91)). [

8. Concluding remarks

As we said before, the transparency requirement for the procedure
body can be removed. If one adds to the specification of the body some
extra information on how the body "distorts"™ the input parameters - by
computing wlp(S,x=X), for input parameters x and a free constant X -, the
extended proof rule for the case the adaptation A& is transformed by the
body is of the form (A'AJ);‘:g with A' => wip(S,A).

The proof rule can also easily be extended to procedures with
reference parameters and to functions. We can easily prove that reference
parameters are eqiuvalent to input-output parameters provided that all
actual reference parameters are different from each other and from other
actual parameters and global variables. With these restrictions the rule
can be applied to reference parameters as if they were input-output
parameters, And it is easy to transform functions into procedures in the

way we have done it for the 91-function.



19

Hence, the proof rule proposed is quite general, since it allows
unrestricted use of input and output parameters with or without global
variables in the body. It allows a restricted form of reference

parameters, and can deal with recursive procedures and functions.

The most closely related work is C.A.R. Hoare's adaptation rule as
proposed in [5], and later refined by David Gries in [3] and [41.
Translated into our framework the Hoare-Gries rule consisté in taking as
adaptation A the predicate (¥x,y,z::I=>E'). We have found this rule

difficult to apply even in simple cases.

Observe that the only postulate in this paper is (2), giving the
general semantic definition of the procedure call. The proof rule itself
is proved to be valid., Since (2) is based on the substitution rule for
the assignment statement, the inclusion of our proof rule in a logical
system already containing assignments (or other implementations of the
substitution rule) does not add new issues concerning the logical

soundness of the system.
References

[1] Dijkstra, E.W., A Discipline of Programming. Prentice-Hall, 1976

{2] Dijkstra, E.W., On Mathematical Induction. EWD803-22, Nov. 1981

[3] Gries, D, and G. Lecvin, Assignment and Procedure Call Proof Rules,

TOPLAS 2 (Oct. 1980), 564-579

{41 Gries, D. The Science of Programming, Springer-Verlag, 1981

[5] Hoare, C.A.R. Procedures and Parameters: An Axiomatic Approach. 1In

Symposium on Semantics of Programming Languages. Springer-Verlag,
1971, 102-116.

{61 Manna, Z. Mathematical Theory of Computation. McGraw-Hill, 1974




