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A General Purpose Sampling Algorithm for
Continuous Distributions (the t-walk)

J. Andrés Christen∗ and Colin Fox†

Abstract. We develop a new general purpose MCMC sampler for arbitrary con-
tinuous distributions that requires no tuning. We call this MCMC the t-walk. The
t-walk maintains two independent points in the sample space, and all moves are
based on proposals that are then accepted with a standard Metropolis-Hastings
acceptance probability on the product space. Hence the t-walk is provably con-
vergent under the usual mild requirements. We restrict proposal distributions, or
‘moves’, to those that produce an algorithm that is invariant to scale, and ap-
proximately invariant to affine transformations of the state space. Hence scaling
of proposals, and effectively also coordinate transformations, that might be used
to increase efficiency of the sampler, are not needed since the t-walk’s operation
is identical on any scaled version of the target distribution. Four moves are given
that result in an effective sampling algorithm.

We use the simple device of updating only a random subset of coordinates at
each step to allow application of the t-walk to high-dimensional problems. In a se-
ries of test problems across dimensions we find that the t-walk is only a small factor
less efficient than optimally tuned algorithms, but significantly outperforms gen-
eral random-walk M-H samplers that are not tuned for specific problems. Further,
the t-walk remains effective for target distributions for which no optimal affine
transformation exists such as those where correlation structure is very different in
differing regions of state space.

Several examples are presented showing good mixing and convergence charac-
teristics, varying in dimensions from 1 to 200 and with radically different scale and
correlation structure, using exactly the same sampler. The t-walk is available for
R, Python, MatLab and C++ at http://www.cimat.mx/~jac/twalk/.
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1 Introduction

We develop a new MCMC sampling algorithm that contains neither adaptivity nor tun-
ing parameters yet that can sample from target distributions with arbitrary scale and
correlation structure. We dub this algorithm the “t-walk” (for “traverse” or “thought-
ful” walk, as opposed to a random-walk MCMC). Unlike adaptive algorithms that at-
tempt to learn the scale and correlation structure of complex target distributions (An-
drieu and Thoms 2008), the t-walk is designed to be invariant to this structure. Because
the t-walk is constructed as a Metropolis-Hastings algorithm on the product space it is
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provably convergent under the usual mild conditions.

Application areas are in sampling continuous densities with unknown scale and cor-
relation structure. In applications where a change of variables could be applied to
improve sampling from distributions with correlation, the t-walk will sample with ade-
quate efficiency in most cases. Indeed, because the t-walk is not adaptive (e.g. in the
sense of Bai et al. 2008, in our case the t-walk is a homogeneous Markov chain), it can
efficiently sample from distributions that have local correlation structure that differs in
different parts of state space. On the original state space the step size and direction
appear to adjust continuously to the local structure. Hence the t-walk is excellent for
initial exploration as it overcomes the need to tune proposals for scale and correlation,
which is typically the first difficulty encountered when applying MCMC methods. We
expect that for a large number of problems the t-walk will allow sufficiently efficient
sampling of the target distribution that no recourse to further algorithm development
is required.

There is an increasing interest in using Bayesian methods in a number of scientific
and engineering applications that may require the use of sophisticated sampling methods
such as MCMC (Firmani, Avila-Reese, Ghisellini, and Ghirlanda 2007; Jeffery, von
Hippel, Jefferys, Winget, Stein, and DeGennaro 2007; Bavencoff, Vanpeperstraete, and
Le Cadre 2006; Symonds, Reavell, Olfert, Campbell, and Swift 2007; Emery, Valenti,
and Bardot 2007; Laine and Tamminen 2008; Watzenig and Fox 2009, just to mention
some recent examples). Therefore, developing a generic and easy to use MCMC method
like the t-walk will help non-statisticians who are looking to use Bayesian inferential
methods in their research fields.

Because the t-walk is useful as a black-box sampling algorithm it allows researchers
to focus on data analysis rather than MCMC algorithms. Even though it may be not
quite as efficient as a well-tuned algorithm, its use significantly reduces the time from
problem specification to data analysis in one off research jobs, since the only input
required is the log of the target distribution and two initial points in the parameter
space. Also, the t-walk will prove useful in multiple data analyses where details of the
posterior distribution depend sufficiently on a particular data set that adjustment would
be required to the proposal in a standard Metropolis-Hastings algorithm, allowing for
automatic use of MCMC sampling.

We show that the t-walk performs well with several examples of dimension from
1 to 200. Good results are obtained, always simulating from the objective function
successfully for all examples that range across different scales and dimensions. We also
report on several other examples where the t-walk has been used successfully, with
dimensions of up to 576.

Even though the t-walk is not adaptive, it is useful to compare it to existing adap-
tive algorithms, since the purpose is similar. A review of adaptive MCMC algorithms
was given by Warnes (2000, chap 1) who classified adaptive algorithms under two broad
groups as follows: those MCMC samplers that aim at updating tuning parameters using
information of the chain and/or of the objective function (see, for example, Gilks et al.
1998; Brockwell and Kadane 2005; Haario et al. 2001; Andrieu and Thoms 2008), and
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the adaptive direction samplers (ADS) that maintain several points in the state space
(see, for example, Gilks et al. 1994; Gilks and Roberts 1996; Eidsvik and Tjelmeland
2004) including the “evolutionary Monte Carlo” that combines ADS with moves from
genetic algorithms to speed up a Metropolis coupled MC (Liang and Wong 2001). The
t-walk may be viewed as an adaptive sampler of the second type, since it maintains a
set of two points in the state space and moves them with some structure. However,
several important differences should be noted. Firstly, computational effort in the ADS
scales poorly in problem dimension since the number of points maintained scales super-
linearly (Gilks, Roberts, and George 1994). Consequently, even if an ADS achieves a
constant integrated autocorrelation time (IAT, see Geyer 1992) per dimension (which is
optimal, see, e.g. Roberts and Rosenthal 2001) the computation time and storage scales
super-quadratically. In contrast the t-walk maintains two points, independent of dimen-
sion, and achieves constant IAT per dimension in standard examples (see Section 4).
Hence the computational effort required to achieve a given variance reduction in esti-
mates scales linearly in problem dimension. Secondly, by focusing on invariance of the
sampler, rather than adaptivity, we have proposed a sampler that operates efficiently
across a wide range of target distributions, without further problem-specific work. The
invariance property means that demonstrating the effectiveness of the t-walk for a suite
of canonical stylized test problems (as we do in Sections 3 and 4) demonstrates effec-
tiveness for all problems that differ by a coordinate transformation. We are unaware
of successful applications of adaptive MCMC schemes to a comprehensive suite of ob-
jective functions, and note that ADS has been shown to be inefficient in many cases
(see, for example, Gilks, Roberts, and George 1994). Further, the ADS requires specific
mathematical calculations to be made for each objective function and in many cases
the regularity conditions for convergence are complex. In contrast, the t-walk has mild
convergence requirements since it mixes a set of standard Metropolis-Hastings kernels,
and only requires evaluation of the target density.

The paper is structured as follows: in Section 2 we explain the t-walk and establish
its ergodic properties (based on standard results for M-H algorithms). In Section 3.1
we present several two dimensional examples and in Section 3.2 we present a more
complex example involving a mixture of normals. In Section 4 we compare the t-walk
with optimally-tuned M-H MCMC algorithms in a suit of standard examples. Finally
a discussion of the paper is given in Section 5.

2 The t-walk design

For an objective function (posterior distribution, etc.) π(x), x ∈ X (X has dimension
n and is a subset of Rn), we form the new objective function f(x, x′) = π(x)π(x′) on
the corresponding product space X × X . While a general proposal has the form

q{(y, y′) | (x, x′)},
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we consider the two restricted proposals

(y, y′) =

{
(x, h(x′, x)), with prob. 0.5
(h(x, x′), x′), with prob. 0.5

(1)

where h(x, x′) is a random variable used to form the proposal. That is, we change
only one of x or x′ in each step. Note, however, that we are not considering two
independent parallel chains in each X ; instead the whole process lies in X ×X . We will
randomly choose from four different proposals, to be defined below, each characterized
by a particular function h(·, ·). We will first choose an option in (1) and second create
the proposal (y, y′) simulating from the corresponding h function.

Within a Metropolis-Hastings scheme, we need to calculate the corresponding ac-
ceptance ratio. Denoting the density function of h(x, x′) by g(· | x, x′), the ratio is equal
to

π(y′)
π(x′)

g(x′ | y′, x)
g(y′ | x′, x)

for the first case in equations 1 and

π(y)
π(x)

g(x | y, x′)
g(y | x, x′)

for the second case. Note that restriction to proposal 1 implies that only a single
evaluation of the target density is required, in either case.

It is straightforward to show that if the random variable h is invariant to affine
transformations, i.e. h(φx, φx′) = φh(x, x′) for any affine transformation φ, then so are
the proposals 1 and the resulting MCMC sampler. We formalize this in Theorem 1.
Design of an invariant sampling algorithm then rests on the question of whether it is
possible to find one or more random variables h that give an effective sampling algorithm.
We have found that the four choices for h, given below, give adequate mixing across a
wide range of target distributions of moderate dimension.

For high dimensional problems we select a random subset of coordinates to be up-
dated at each step, as follows. In each of the four moves below we simulate a Bernoullian
sequence of independent indicator variables Ij ∼ Be(p), j = 1, 2, . . . , n. If Ij = 0 coordi-
nate j is not updated. The probability p of updating a given coordinate is chosen so that
np = min(n, n1) and we set nI =

∑n
j=1 Ij . That is, the expected number of parameters

to be moved at each iteration is n1 for n ≥ n1, while for n ≤ n1 all coordinates are used
in each move (we use n1 = 4, see Section 2.5).

2.1 Walk move

In many applications, particularly with weak correlations, we find that mixing of the
chain is primarily achieved by a scaled random walk that we refer to as the walk move.
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The walk move is defined by the function

hw(x, x′)j =

{
xj +

(
xj − x′j

)
αj Ij = 1

xj Ij = 0,

for j = 1, 2, . . . , n, where αj ∈ R are i.i.d. r.v. with density ψw(·). Consider-
ing the second case in (1), g(y|x, x′) =

∏
Ij=1 gj(yj |xj , x

′
j), where gj(yj |xj , x

′
j) =

ψw

(
yj−xj

xj−x′j

)
/|xj−x′j |. It is straightforward to verify that if α = yj−xj

xj−x′j
, then gj(xj |yj ,x′j)

gj(yj |xj ,x′j)
=

ψw

(
xj−yj

yj−x′
j

)

ψw

(
yj−xj

xj−x′
j

)
∣∣∣xj−x′j

yj−x′j

∣∣∣ =
ψw( −α

1+α )
ψw(α)

∣∣∣ 1
1+α

∣∣∣.

If α > −1 then
∣∣∣ 1
1+α

∣∣∣ = 1
1+α and this proposal is symmetric ( gj(xj |yj ,x′j)

gj(yj |xj ,x′j)
= 1) when

ψw

( −α

1 + α

)
= (1 + α) ψw(α).

We achieve this by setting

ψw(α) =





1
k
√

1 + α
, α ∈

[ −aw

1 + aw
, aw

]

0, otherwise,

for any aw > 0, with normalizing constant k = 2
(√

1 + aw − 1/
√

1 + aw

)
. This density

is simple to simulate from using the inverse cumulative distribution as

α =
aw

1 + aw

(−1 + 2u + awu2
)

where u ∼ U(0, 1). Consequently, the Hastings ratio for the second case is

gw(x | y, x′)
gw(y | x, x′)

= 1,

and similarly for the first case. Hence the acceptance probability is simply given by the
ratio of target densities (we set aw = 1.5, see Section 2.5).

2.2 Traverse move

A typical difficulty experienced by samplers using random walk moves is with densities
with strong correlation between a few, or several, variables. A typical solution is to
rotate and scale coordinates of the state variables or, equivalently, the proposal distri-
butions. However, that is not feasible with distributions where the correlation structure
changes through state space. (An example of such a distribution may be found in
Figure 3(b).)



268 The t-walk

For those applications, efficiency of the sampler is greatly enhanced by the ‘traverse
move’ defined by

ht(x, x′)j =

{
x′j + β(x′j − xj) Ij = 1
xj Ij = 0,

where β ∈ R+ is a r.v. with density ψt(·).
The case β ≡ 0 is similar to Skilling’s leap-frog move (see MacKay 2003, sec. 30.4)

restricted to two states, and a subset of coordinates. Since the t-walk maintains just
two states, the traverse move does not have the random selection of states required in
the leap-frog move. As noted by MacKay (2003, p. 394), this move has similarities
to the ‘snooker’ move used in ADS. The traverse move is therefore much simpler than
either leap-frog or snooker, and like the leapfrog move, is more widely applicable than
the snooker move since calculation of conditional densities is not required.

Since just one random number is used in this proposal it is not possible to make
both the proposal and the acceptance ratio independent of the dimension of state space,
n, except for the case β ≡ 1. However, by setting ψt(1/β) = ψt(β), for all β > 0, the
ratio of proposals is simplified to βnI−2 (see below). By direct calculation it is easy
to see that a density of this kind may be obtained by using a density ν(·) on R+ and
defining ψt(β) = C{ν(β−1− 1)I(0,1](β)+ ν(β− 1)I(1,∞)(β)}, for a normalizing constant
C (assuming

∫ 1

0
ν(β−1 − 1)dβ < ∞). A simple and convenient result is obtained with

ν(y) = (at − 1)(y + 1)−at , for any at > 1, in which case

ψt(β) =
at − 1
2at

{(at + 1)βatI(0,1](β)}+
at + 1
2at

{(at − 1)β−atI(1,∞](β)},

which is a mixture of two distributions and may be easily sampled from with the fol-
lowing algorithm

xβ =





u

1
at + 1 , with prob.

at − 1
2at

u

1
1− at , with prob.

at + 1
2at

,

(2)

where u ∼ U(0, 1). We want steps to be taken around the length of ||x − x′||, thus a
good idea is that P (β ≤ 2) > 0.9. We set at = 6 giving P (β < 2) ≈ 0.98, see Section 2.5.
A plot of ψt(β) with at = 6 is presented in Figure 1.

Following the above transformation, it is clear that

gt(y | x, x′) = ψt

( ||y − x′||
||x− x′||

)
||x− x′||−1.

A note of caution is prudent here, regarding calculation of the acceptance probability
for this move. Since the range of ht is a subspace of X it is most convenient to use the
reversible jump MCMC formalism (Green and Mira 2001) for evaluating the acceptance
ratio. The corresponding Jacobian determinant equals βnI−2, and since ψt(1/β) =
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Figure 1: ψt(β) with at = 6 giving P (β < 2) ≈ 0.98.

ψt(β) the acceptance ratio is
π(y′)
π(x′)

βnI−2 or
π(y)
π(x)

βnI−2, for the first and second cases

in (1), respectively.

The discussion in MacKay (2003) of why Skilling’s leapfrog method works largely
applies to the traverse move. In particular example 30.3 of MacKay (2003), and its
solution, shows that applying these moves to a Gaussian distribution in n dimensions
with covariance matrix proportional to the identity results in an expected acceptance
ratio of e−2n. Hence this move has a very low acceptance ratio when applied to a large
number of uncorrelated variables. In examples with correlation as high as 1 − 10−7,
or higher, (typical of examples from inverse problems) the traverse move is effective
in mixing along the principal axis of the distribution, but is very slow in mixing in
directions perpendicular to this axis. Then combining the traverse move with the other
moves in the t-walk results in an effective sampling algorithm.

2.3 Hop and Blow moves

The walk and traverse moves are not, by themselves, enough to guarantee irreducibility
of the chain over arbitrary target distributions. It is therefore necessary to introduce
further moves to ensure this. Further, both the walk and traverse moves can lead to
extremely slow mixing for distributions with very high correlation (say 0.9999 or higher),
as mentioned above. We find that these difficulties are somehow cured if we try to avoid
x and x′ collapsing to each other. Note that the walk and traverse moves simply do
not work if x = x′. We employ two further moves that make bold proposals, precisely
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for avoiding x ≈ x′, but are chosen with relatively low probability (see below). We call
these moves the hop and blow moves. We have at least one bimodal example in which
switching between modes is improved substantially by choosing the hop and blow moves
10% of the time.

A hop move is defined by the function

hh(x, x′)j =





xj +
σ(x, x′)

3
zj Ij = 1

xj Ij = 0,

with zj ∼ N(0, 1), where σ(x, x′) = maxIj=1 |xj − x′j |. For this proposal

gh(y | x, x′) =
(2π)−nI/23nI

σ(x, x′)nI
exp



−

9
2σ(x, x′)2

∑

Ij=1

(yj − xj)2





∏

Ij=0

δxj (yj).

Note that this move is centred at x.

Finally we consider the blow move defined by

hb(x, x′)j =

{
x′j + σ(x, x′)zj Ij = 1
xj Ij = 0,

with zj ∼ N(0, 1). We thus have

gb(y | x, x′) =
(2π)−nI/2

σ(x, x′)nI
exp



−

1
2σ(x, x′)2

∑

Ij=1

(yj − x′j)
2





∏

Ij=0

δxj (yj).

Note that, as opposed to the walk and hop moves above, this move is centred at x′.

2.4 Convergence

Let Km(·, ·) be the corresponding M-H transition kernel for proposal qm, where m ∈
{w, t, h, b}. Strong aperiodicity is ensured by the positive probability of rejection in the
M-H scheme. (For example, when n 6= 2, in the traverse move there is always a positive

probability that nI 6= 2 and β <
(

π(x)
π(y)

) 1
nI−2

, resulting in an acceptance probability of
less than 1. If n = 2, and if π(·) is locally constant so that the walk and traverse moves
produce acceptance probabilities equal to 1, in such case there is a positive probability
that either the blow or hop moves will produce an acceptance probability less than 1.)
It may be seen, using the properties of the M-H method, that each Km satisfies detailed
balance with f(x, x′). We form the transition kernel

K{(x, x′), (y, y′)} =
∑

m∈{w,t,h,b}
wαKm{(y, y′) | (x, x′)},
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where
∑

m wm = 1, which consequently also satisfies the detailed balance condition
with f . Assuming that also K is f -irreducible (note that hop and blow moves ensure
f -irreducibility), then f is the limit distribution of K (see Robert and Casella 1999,
Chapter 6, for details).

2.5 Parameter settings

In our implementation of the t-walk we set the move probabilities ww, wt, wh, wb =
0.4918, 0.4918, 0.0082, 0.0082 (move ratios of 60:60:1:1). These values were chosen to
give the minimum integrated autocorrelation time (IAT, see Section 4), i.e. roughly the
number of iterations per independent sample, across the two-dimensional bi-modal ex-
amples presented later in Section 3. Interestingly, these values were close to optimal for
each of the example target distributions considered, and little compromise was required.

The other three important parameter settings required are n1, aw and at, the ex-
pected number of parameters to be moved and the Walk and Traverse moves proposal pa-
rameters, respectively. Based on many examples, those shown here and many more, we
established reasonable test ranges for each parameter, namely n1 ∈ [2, 20], aw ∈ [0.3, 2]
and at ∈ [2, 10]. We performed an optimization of these parameters by calculating the
IAT’s for many examples across dimensions from n = 2 to n = 150 (we utilized the
examples presented in Section 4 running the t-walk in 500 runs of a Latin Hypercube
Design within the parameter ranges). The rounded optimal results are n1 = 4, aw = 1.5
and at = 6.

Indeed, we cannot consider all possible objective functions. However, we have seen
the t-walk to succeed in sampling in many examples already (see the Discussion Sec-
tion 5). Our intention is that the above parameter settings are left as default and the
user does not need to alter them to achieve a reasonable performance.

2.6 Properties

We consider that the most important property of the t-walk is that it is invariant to affine
transformations. All moves were developed with that in mind. Given a transformation
of the space X , φ(z) = az + b, where a ∈ R, a 6= 0 and b ∈ Rn, that generates the
new objective function λ(z) = |a−n|π(φ−1(z)), one may generate a realization of the
t-walk either by applying the t-walk kernel with λ as objective function, with starting
values (x0, x

′
0) ∈ φ(X )×φ(X ), or by applying the t-walk kernel to π with starting values

(φ−1(x0), φ−1(x′0)), and then transforming the resulting chain with φ. The following
Theorem states that the t-walk is invariant to changes in scale and reference point.

Theorem 1. Let V ∈ X ×X and A ⊂ X ×X (a measurable set). The t-walk transition
kernel using objective λ(z) = |a−n|π(φ−1(z)), Kλ, and the t-walk kernel using objective
π, Kπ, have the invariance property

Kλ(φ(V ), φ(A)) = Kπ(V, A). (3)

Proof: Let W ′ = (y, y′) ∈ φ(X )×φ(X ). Elementary calculations show that |a−nI |qm(
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φ−1(W ) | V ) = qm(W | φ(V )) for m = w, b, h and |a−1|qt(φ−1(W ) | V ) = qt(W | φ(V ))
(in this case the transformation is univariate, that is, along the line xj−x′j , and therefore
the necessary Jacobian is simply |a−1|; in what follows we will take in this case n′I = 1
and n′I = nI for the other moves). It is clear that the M-H acceptance probability
considering proposal m for λ is (let f ′(W ′) = λ(y)λ(y′))

ρλ
m(φ(V ),W ′) = min

{
1,

f ′(W ′)
f ′(φ(V ))

qm(φ(V )|W ′)
qm(W ′|φ(V ))

}
.

Equivalently for π

ρπ
m(V, φ−1(W ′)) = min

{
1,

f(φ−1(W ′))
f(V )

qm(V |φ−1(W ′))
qm(φ−1(W ′)|V )

}
.

Since f(φ−1(W ′)) = |a2n|f ′(W ′) and f(V ) = |a2n|f ′(φ(V )), and the above relation
on the qm’s, we see that ρλ

m(φ(V ), W ′) = ρπ
m(V, φ−1(W ′)). It is clear then that the

probabilities of accepting a jump have the property

rλ
m(φ(V ), φ(A)) =

∫
φ(A)

ρλ
m(φ(V ),W ′)qm(W ′ | φ(V ))dW ′ =∫

φ(A)
ρπ
m(V, φ−1(W ′))|a−n′I |qm(φ−1(W ′) | V )dW ′ =∫

A
ρπ
m(V, W )|a−n′I |qm(W | V )|an′I |dW = rπ

m(V,A).

Since the t-walk kernel is a mixture of the individual kernels for m = w, t,b,h, and
together with the fact that the probability of not jumping in either case is the same
(1− rλ

m(φ(V ), φ(X × X )) = 1− rπ
m(V,X × X )), establishes the result. ¥

It is immediate that the above result also holds for n steps into the t-walk and
therefore Kn

π (V,A) = Kn
λ (φ(V ), φ(A)) and since also f(A) = f ′(φ(A)) we have that

||Kn
π (V, ·)− f(·)||TV = ||Kn

λ (φ(V ), ·)− f ′(·)||TV .

The above establishes the following characteristic of the t-walk; its performance
(speed of convergence, autocorrelations, etc) remain unchanged with a change in scale
and position as given by φ. More importantly, for many applications, the t-walk is
effectively invariant for more general classes of transformations. When all components
are selected, i.e. nI = n, Theorem 1 remains valid for the t-walk limited to the traverse
and walk moves with the more general change in scale using a = diag(aj), a diagonal
matrix, with aj ∈ R \ {0}. While the hop and blow moves are not invariant under this
transformation, the operation of those moves is effectively unchanged. Further, when
a represents a rotation, the traverse move is invariant while the remaining moves are
effectively invariant. In particular, the density over the walk move is invariant. When
a is allowed to be any nonsingular matrix, i.e. φ is a general invertible affine transfor-
mation, the traverse move remains invariant. The simple form of coordinate selection
that we employ for high dimensional problems means that these further invariances do
not actually hold in general, however the operation of the sampler does not suffer and
it appears that the beneficial consequences of the invariances are preserved.
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Although the t-walk contains random walk type updates, it may not be reduced
solely to a random walk MCMC in the usual sense. Since xn and x′n both have π(·)
as limit distribution, then ||x(t) − x′(t)|| is a property of π and in the limit has the
distribution of the distance between two points sampled independently from π. Hence
the “step size” (in some loose sense) cannot actually be manipulated or designed in any
way. However, when viewed as a sampler on the original space, the step size appears to
adapt to the characteristics of shape and size of the section of π that is being analyzed.

3 Numerical Examples

3.1 2-dimensional examples

We present some simple examples with two parameters. First we experiment with a
bimodal, correlated, objective function that has the form

π(x) = C exp

{
−τ

(
2∑

i=1

(xi −m1,i)2
)(

2∑

i=1

(xi −m2,i)2
)}

, (4)

for some (m1,1,m1,2) and (m2,1,m2,2) that approximately locate two modes (on R2), and
scale parameter τ (C is a normalization constant). In Figure 2 we present an illustration
of the t-walk sample paths over quite different choices of the above distribution, and
also on a correlated bivariate normal istribution.

We present two further quite extreme two dimensional examples. Figure 3(a) shows
a mixture of two rather contrasting bivariate normals, one flat, oval highly correlated
mode and one peaked low correlated, forming an objective function with two modes.
Figure 3(b) shows a strongly correlated hook shape objective function with thin edges
and a thicker mid section where the mode is (see Figure 3 for more details).

Note that we have run the t-walk over seven quite different objective functions,
varying radically in scale, correlation, modes, etc. The t-walk performed well and more
or less similarly in all cases. Next we present a more complex example of dimension 15.

3.2 Higher dimension example

In this section we demonstrate the usefulness of the t-walk in a high dimension example,
that arises as the posterior distribution over a semiparametric age model for radiocarbon
calibration in paleoecology. In that work, cores taken from peat bogs are sectioned and
then subject to radiocarbon dating, from which we wish to build a model for age as a
function of depth. See Blaauw and Christen (2005) for details.

For a single core we have a series of radiocarbon determinations with standard errors
yj±σj taken at depth dj for j = 1, 2, . . . ,m. Hence {yj , σj , dj}j=1,2,...,m are the (known)
measured data. We follow Blaauw and Christen (2005), who take the measured values
of σj and dj to be the true values, and use a piecewise linear model for the relation
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Figure 2: Sample paths for one component in the t-walk. Upper left quadrant: Bivariate
normal distribution with correlation 0.95. Other quadrants, counterclockwise from the
lower left: distribution in (4) with τ = 0.01, 0.1, 0.001, 1000 (for τ = 1000 the scale is
such that the distribution shape can not be distinguished and is reduced to a point). In
all cases we had an acceptance ratio of 40 to 50%, the starting points where x0 = (0, 0)
and x′0 = (1, 1), with a sample of 5000 iterations.

between the (unknown) true age of peat and depth, d,

G(d;x) = x1 +
i∑

j=2

xj∆c + xi+1(d− ci) if ci ≤ d < ci+1

where the uniformly spaced depths ci = c1 + (i − 1)∆c, i = 1, 2, . . . , n − 1 are fixed,
given (known) c1, ∆c, and n, while x1 (the age-depth model abscissa) and x2, . . . , xn−1

(the age-depth model accumulation rates) are parameters to be inferred. The usual
normal likelihood model is assumed, yj | σj , dj ,x ∼ N(µ(G(dj ;x)), σj), where µ(·) is
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Figure 3: Sample points for one component in the t-walk (a) mixture of bivariate
normals, low mode with weight 0.7, µ1 = 6, σ1 = 4, µ2 = 0, σ2 = 5, ρ = 0.8, high mode
with weight 0.3, µ1 = −3, σ1 = 1, µ2 = 10, σ2 = 1, ρ = 0.1. We took 100,000 iterations
with an acceptance rate of around 45%. (b) “Rosenbrock” (Rosenbrock 1960) density
equal to π(x, y) = C exp

[−k
{
100(y − x2)2 + (1− x)2

}]
(for some normalizing constant

C), with k = 1/20. We used 100,000 iterations. This is quite a difficult density to plot
and we needed to chop off the two tips of the hook so the corresponding algorithm in R
could plot the contours correctly. In this case we obtained an acceptance ratio of about
13% with 100,000 points, lower than all other examples presented in this Section 3.1.

the radiocarbon calibration curve, see Blaauw and Christen (2005) for details.

Additionally, a (prior) model is proposed for the (peat accumulation) rates xj =
wxj+1 +(1−w)zj , where w ∼ Beta(αw, βw) and zj ∼ Gamma(αz, βz). Here αw, βw, αz

and βz are known (representing the prior information available on accumulation rates,
see Blaauw and Christen 2005). Therefore, the unknown parameters to be sampled
by the t-walk are x1, . . . , xn−1, and w that we denote xn thus the unknown set of
paremeters may be written as the n-vector x.

A simple program (in C++) is used to calculate − log f(x|{yj , σj , dj}j=1,2,...,m).
Restricted support of parameters (eg. w ∈ [0, 1]) is enabled in most implementations
of the t-walk by providing a ‘Supp’ function that returns True or False according to
whether or not the input x is in the support of the objective function (in the MatLab
implementation the function providing the log target density returns the value -Inf for
arguments outside its support). The other inputs required are the starting values for x
and x′.

In this example we set xn = w = 0.4, x′n = w′ = 0.1, draw xn−1, x
′
n−1 ∼

Gamma(αz, βz), and take xj = wxj+1 + (1 − w)zj and x′j = w′x′j+1 + (1 − w′)z′j for
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Figure 4: (a) MAP estimator (red) and two sample age-depth models for core EngXV.
For each of the m = 57 radiocarbon determinations a sample of 25 calendar ages were
simulated and plotted (small dots; calendar ages measured in ‘years Before Present’
(BP), where ‘present’ is AD 1950). (b) Histogram for the marginal posterior distribution
of w.

j = n− 2, . . . , 2 drawing zj , z
′
j ∼ Gamma(αz, βz). Finally, we draw x1, x

′
1 ∼ N(y1, σ1).

This provides initial, random, values for x and x′ that are in the support of the objective
function.

We used the data set called “EngXV” with m = 57 determinations (Blaauw, van
Geel, Mauquoy, and van der Plicht 2004), using n = 71 (70 parameters for the age-depth
model plus w) and ran 300,000 iterations of the t-walk (taking 1 minute on a MacBook
Pro lap top). Two sample age-depth models and the MAP estimator are presented in
Figure 4(a), and a histogram approximating the marginal distribution of w is presented
in Figure 4(b).

4 Comparisons with optimally-tuned M-H MCMC

Roberts and Rosenthal (2001) present a review of optimal scaling for a random-walk
Metropolis Hastings (M-H) algorithm applied to some simple models. For minimum
integrated autocorrelation time (IAT), the proposal window must be tuned to give an
acceptance rate of 0.234, for the type of models considered by them. In particular,
they consider the objective π(x) =

∏d
j=1 Cjg(Cjxj), where g is the standard Normal

distribution, with the values Cj = 1 (model 1), C1 = 2 and Cj = 1; j = 2, 3, . . . , n
(model 2), and C1 = 1 and Cj ∼ Exp(1); j = 2, 3, . . . , n (model 3). Also we consider
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Cj = 10 (model 0). We have already mentioned that a finely tuned MCMC for a par-
ticular objective function should be more or equally efficient than any generic method,
including the t-walk. However, fine tuning a M-H MCMC constitutes significant effort
in applying the method. While very flexible and very general indeed, a M-H MCMC
can be extremely ineffective and, in high dimensions, very difficult to tune. Avoiding
this difficulty is the idea behind adaptive methods (see Andrieu and Thoms, 2008, for
a recent review), and the t-walk.

Roberts and Rosenthal (2001) argue that IAT divided by the dimension of the pa-
rameter space is a good measure for comparing convergence rates, or efficiency, among
MCMC samplers across space dimension. In all cases we calculate the IAT for x1, as
done in Roberts and Rosenthal (2001). We fine tune a random walk M-H algorithm for
model 1 for n = 10 to an acceptance rate of 0.234. In this case, the variance for the
normal distribution in the random walk should be 2.38/

√
10 as explained by Gelman,

Roberts, and Gilks (1996). We use that same sampler in the four models above at
dimensions n = 2, 5, 10, 25, 50, 75, 100, 125, 150, multiplying the corresponding jumping
variance by

√
10/

√
n to obtain the expected correct rescaling (Gelman et al. 1996). The

results are presented as dashed lines in Figure 5. Moreover, the random walk Metropolis
Hastings algorithm was also run with a slightly suboptimal variance of 2.0 instead of
0.75 = 2.38/

√
10, with rescaling as before for models 1, 2 and 3. Also, no rescaling was

applied, using just the optimal scaling for n = 10, with results shown by dotted lines in
Figure 5. We also ran the t-walk for all models with the results shown in Figure 5 as
solid lines.

For the random walk M-H with the correct scaling, IAT/n remains low, as expected
by the theoretical results of Gelman et al. (1996), at least for models 1, 2 and 3, and once
it is tuned at the optimal scaling. However, exporting this sampler to model 0 does not
work as well, particularly for low dimensional cases. Indeed, without the correct scaling
the sampler fails radically, as seen in the dotted lines in Figure 5; this failing is a very
well known fact by any dedicated practitioner of MCMC. Note for example, for n=100,
the correct scaling is 0.238 = 2.38/

√
100 whereas we are using 0.75 (= 2.38/

√
10) and

the resulting IAT/n is already around ten times the optimal. Even more interesting is
to see that a slight (within the same order of magnitude) change in the variance of the
random walk M-H algorithm leads to a clear under performance, that gets worse with
increasing dimension. This occurs even when using the correct rescaling

√
10/

√
n, and

leads to an IAT/n well above 20 in most cases (results shown only for model 3, dotted
and dashed line in Figure 5, where it fails radically).

Note that in the case of the t-walk, for all models the IAT increases more or less
linearly with n and thus IAT/n remains in most cases below 15. (It is the case that
IAT/n remains bounded by 30 for all the examples presented in the previous sections,
including the high dimension n = 71 in Section 3.2.) Only in the very ideal, and artificial,
case of knowing the exact optimal scaling does the random walk M-H outperform the
t-walk for models 1 and 2, and even in those cases the t-walk remains very competitive.
It is worth mentioning that the same t-walk algorithm is used in all examples (in this
Section and elsewhere in the paper), requiring no tuning parameters, no rescaling of
any sort, and only needing as input the (log of the) objective function and two initial
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points in the sample space.
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Figure 5: Integrated Autocorrelation Times dived by the dimension, over various di-
mensions for the t-walk, solid lines. A random walk Metropolis Hastings was used, with
the correct rescaling, dashed lines and with a fix scaling (optimal at n = 10), dotted
lines. The optimal scaling performs slightly better than the t-walk for models 1 and 2
and is already comparable in the case of model 3. A random walk M-H with a slightly
wrong rescaling was also run, obtaining IAT/n well above 20 in most cases. This rescal-
ing completely fails for model 3, see dotted and dashed line. The models are taken from
Roberts and Rosenthal (2001), see text.

5 Discussion

The t-walk has unique performing characteristics, sampling efficiently from target dis-
tributions with radically different scales, correlations, and across several dimensions,
with no tuning parameters. The very same sampler was used in all the examples shown
here considering dimensions from 2 to 200.

However, we have found an example in which extremely high correlations in a high-
dimensional problem lead to very slow mixing of the t-walk. Examples of posterior
distributions with many highly correlated parameters arise, for example, in the field of
inverse problems such as conductivity imaging. We intend to work on this problem to
extend the applicability of this approach by developing moves that depend on a few
more than two points in state space, such as those employed by ter Braak (2006). We
also look to develop a version of the t-walk that may cope with a mixture of discrete
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and continuous parameters.

We believe that the t-walk is already a useful improvement on existing attempts
at creating automatic, generic, self adjusting, MCMC’s. The current design results in
a simple, mathematically tractable algorithm that lends itself to use as a black-box
sampler, since only evaluation of the objective function is needed; there being no need
to calculate any conditional distributions, etc. nor some prior knowledge of the number
of modes, tails etc. As presented in the numerical examples, we have evidence that
the t-walk will perform satisfactorily with common densities (posterior distributions in
common Bayesian statistical analyses). For these problems the t-walk can be used as a
black-box simulation technique, either for exploratory analysis of the objective density
at hand or for final MCMC simulation.

Besides the examples we have already mentioned, we and other colleagues have
implemented the t-walk in a series problems. Indeed, we now treat the t-walk as our
sampler of first choice and have been pleasantly surprised to find that it always provides
useful output, and avoids several of the difficulties seen in standard MCMC. These
examples include a reliability example (n = 2), reservoir effects in radiocarbon dating
problems (n = 3− 6), a bacterial horizontal gene transfer model (n > 50, Zenil-López
2008), electrical capacitance tomography using polygonal representations (n = 32−128,
where not having to calculate Jacobians for subspace moves was very liberating), pixel-
based impedance imaging (n = 576), and in fitting analytic models to groundwater
pump tests (n = 2− 15). We have also combined the t-walk kernel with Gibbs kernels,
when the full conditionals for some blocks of parameters have known distributions and
the rest have full conditionals that are difficult to sample from. Such examples arose
in fitting spatial Gaussian (n = 2) processes and other in an Econometric time series
model (n = 9, Lence, Hart, and Hayes 2009).

The t-walk is available as an R (R Development Core Team 2008) and Python
http://www.python.org/ packages (and is also available in MatLab and C++) at
http://www.cimat.mx/~jac/twalk/ and will soon be included in the PyMC package
at http://code.google.com/p/pymc/.
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279

Acknowledgments

J Andrés Christen was partially founded by grant SEMARNAT-2004-C01-0007 (Mexico). We
thank Sergio Lence, Rosana Zenil, Patricia Bautista, José Miguel Ponciano and Sergio Pérez
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