
WHO DID IT? IDENTIFYING FOUL SUBJECTS AND OBJECTS

IN BROADCAST SOCCER VIDEOS

Chunbo Song, Christopher Rasmussen

University of Delaware, Dept. Computer & Information Sciences

songcb@udel.edu, cer@cis.udel.edu

ABSTRACT

We present a deep learning approach to sports video under-

standing as part of the development of an automated referee-

ing system for broadcast soccer games. The task of identify-

ing which players are involved in a foul at a given moment is

one of spatiotemporal action recognition in a cluttered visual

environment. We describe how to employ multi-object track-

ing to generate a base set of candidate image sequences which

are post-processed to mitigate common mistracking scenar-

ios and then classified according to several two-person inter-

action types. For this work we created a large soccer foul

dataset with a significant video component for training rele-

vant networks. Our system can differentiate foul participants

from bystanders with high accuracy and localize them over a

wide range of game situations. We also report reasonable ac-

curacy for distinguishing the player who committed the foul,

or subject, from the object of the infraction, despite very low-

resolution images.

Index Terms— video activity recognition, multi-object

tracking

1. INTRODUCTION

Computer vision is becoming ubiquitous for sports video

analysis, with applications that include broadcast enhance-

ment; real-time, in-depth player and team performance

measurement; and automatic summarization of key events.

Across analysis tasks there are several common visual skills

such as ball tracking [1, 2]; player segmentation [3, 4, 5],

recognition [6], and pose estimation [7]; and recognition of

formations, plays, and situations [8, 9, 10, 11].

Video-based assistance with officiating, in particular, is

proliferating. The metric accuracy of high-speed, multi-

camera ball tracking systems (e.g., [12]) is relied upon in

many sports including tennis and volleyball for line calls,

baseball for balls and strikes, and soccer for so-called “goal

line technology.” In soccer, the Video Assistant Referee

(VAR) [13] is commonly used for close and controversial

decisions surrounding goals, major fouls, and player expul-

sions. However, despite the appearance of high technology,

it is really nothing more than an off-field human who flags

Fig. 1: An image sequence is compiled for each tracked per-

son and their activity is classified as foul-related or not. Three

samples of foul participant detections are shown here with

maximum likelihood candidates in red, over threshold in yel-

low, and non-participants in green (each row spans 2 seconds

and the images are cropped to highlight the detections)

situations that deserve further review by the head referee via

video replays in slow motion from multiple angles.

As deep learning enables more sophisticated understand-

ing of sports video imagery, one can imagine a future auto-

mated refereeing system, running live or on stored video, that

blows a virtual whistle when it detects infractions. Using the

sport of soccer as an example, such a system would classify

what kind of violation occurred—e.g., handball, offside po-

sition, tripping or pushing, dangerous high kick, or another

misdeed outlined in the FIFA rule book [15]—and who was

involved in the foul. Foul events occur at a location in time

and space, and they involve at least one player participant.

The player who committed the foul is the foul subject and the

action performed is the foul type. Some fouls can be commit-

ted by a single player in isolation (such as touching the game

ball with one’s hand), but here we focus on events that involve

an opposing player, whom we refer to as the foul object.

This paper describes work toward a video-based auto-

matic refereeing system. Here we assume that an oracle

tells us that a two-player foul has occurred at a certain mo-
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Fig. 2: A sample two-person foul with 2-second temporal context around the foul moment at t = 0. The foul subject is denoted

with a green bounding box (track 5 in the last column) and the foul object is marked with a yellow box (track 3).

ment, leaving these two questions: Who was involved in the

foul, and who specifically committed it? For a full, live sys-

tem, temporal event detection and foul severity classification

would of course be crucial, and we will discuss in a moment

how the work here overlaps with (and is therefore usable

for) that task. But we argue that the foul oracle assumption

is reasonable because several non-video shortcuts can sim-

ulate it—from audio detection of whistle sounds that signal

fouls [16]; or, for recorded games, from mining text or audio

commentary for key words (as we describe for our dataset

generation in Sec. 3).

Static image analysis has a certain utility for this prob-

lem based on player poses and formations, but we assert

that player movement patterns can be exploited to identify

and differentiate foul participants. Here we describe an ap-

proach to recognizing telltale motions associated with soccer

fouls such as slide tackles, pushing and gesturing, and falling

to the ground via a three-stage pipeline. First, players are

detected and tracked by a state-of-the-art multiple object

tracking (MOT) method which we trained to perform well

on broadcast soccer videos. Second, raw tracks are cleaned

and augmented to account for common tracking errors that

could result in crucial players not being covered by a com-

plete track. Finally, processed tracks are fed to two video

activity recognition networks to classify whether each per-

son is (a) doing “normal” soccer things vs. exhibiting signs

of being involved in a foul, and (b) if they do seem to be

involved in a foul, to attempt to discriminate between the

person committing the foul and the object of the foul. The

results demonstrate that our method can achieve promising

performance.

2. RELATED WORK

Person detection is one of the main topics in the area of the

object detection. It typically applies similar network archi-

tectures as standard object detection models like Faster R-

CNN[17] and Mask R-CNN[18] with some specific modifi-

cations for improving localization[19, 20].

Thanks to the advantages of deep neural networks, great

improvements have been made in action recognition, action

detection, human-object interaction (HOI), and multi-object

tracking [14]. Action recognition could either apply 2D con-

volutions on per-frame input followed by another 1D mod-

ule for aggregating the features[21, 22] or apply stacked 3D

convolutions to model temporal and spatial features [23, 24].

[25] uses two different pathways to operate on different frame

rates for capturing both spatial semantics and temporal mo-

tions. Recently there has been more focus on interactions

[26, 27, 28] with the goal of identifying {human, verb, ob-

ject} triplets in static images and videos.

[29] demonstrates high-quality spatial-temporal activity

detection in a surveillance video scenarios, and more and

more state-of-the-art methods have been utilized in the area

of sports. [30] introduces a multi-tower temporal 1D con-

volutional network to detect events in ice hockey game and

soccer game videos. [31] constructed their model based on

deep reinforcement learning that shows only part of people’s

activities have impacts on the entire group and tests their

model on volleyball videos. [32] use self-attention models to

learn and extract relevant information from a group of soccer

players for activity detection from both trajectory and video

data. [11] try to “spot” three soccer event categories: goal,

card, and substitution.

3. DATASETS

Our foul dataset is built upon SoccerNet [11], which com-

prises 500 complete soccer games from six European profes-

sional leagues, covering three seasons from 2014 to 2017, en-

coded mostly at 25 fps with a total duration of 764 hours. The

footage is from broadcasts, so it includes camera pans and

zooms, cuts between cameras, graphics overlays, and replays.

Both high-definition and lower-resolution (224p) versions are

available; here we use the low-resolution version for all learn-

ing, evaluation, and paper figures.

442 SoccerNet games have text transcripts of audio com-

mentary on game events which are timestamped by half and

game clock with one-second precision. A sample foul is

shown in Fig. 2 (and in more detail in Fig. 3) which corre-

sponds to the following comment: 1 - 15:33: This yellow card

was deserved. The tackle by Aranguiz (Bayer Leverkusen)

was quite harsh and Christian Dingert didn’t hesitate to show

him a yellow card. We roughly located fouls by searching

all transcripts for relevant words and phrases such as: “foul”,

“violate”, “trip”, “bad challenge”, “rough challenge”, “hand-



Tight tracker ROI sequence for subject (top), object (bottom) in Fig. 2

Medium context ROIs on same subject and object

Fig. 3: Sample tight and context ROI sequences derived from

tracker output as input to the action recognition network

ball”, “blows [...] whistle”, and “offside.” Video frames in the

temporal neighborhood of each candidate’s timestamp were

then manually examined to determine a precise foul moment.

Clues from the commentary about which player committed

the foul were used to resolve any visual ambiguities about

the placement of the foul subject and object bounding boxes

(green and yellow, respectively, in Fig. 2).

In all, 6492 foul events were labeled, of which 4862 were

two-player fouls, as well as 1507 offside offenses and 123

handball offenses. Almost all of these events occurred in “far”

camera views such as shown in Fig. 2, but some were in close-

ups or “near” views.

MOT subset 85-100 frame bounding box sequences (tracks)

for all people (n = 309) present in 17 randomly-selected per-

son detection frames (16 far, 1 near) were annotated over 4-

second temporal windows ([-1, +3] s) surrounding the foul

moment. Tracks were manually trimmed at any shot bound-

aries (e.g., near/far transitions).

Action recognition subset Complete 50-frame tracks for the

foul subject and object were annotated over 2-second tempo-

ral windows ([-1, +1] s) surrounding 833 randomly-selected

two-person foul moments (all far views with no shot bound-

aries). Furthermore, 50-frame tracks for people (n = 5006)

not involved in the foul, whom we call bystanders (e.g. other

players, coaches, and referees) were obtained from CTracker

[14] tracks that spanned the entire clip and did not overlap the

ground truth subject or object bounding boxes.

4. METHODS

For identifying the player actions “committing a foul” and

“being fouled,” we adopt the SlowFast network [25] for video

recognition. To adapt this network for our spatiotemporal

task, we stabilize the video around each candidate player by

Fig. 4: Example of CTracker mistracking: Track 5 disappears

when the two players come together, and when they separate,

track 3 follows the wrong player. Our post-processing cor-

rects this: One candidate track is created via a join of the

truncated 5 and the “wrong” ending of 3, and another track is

made via a branch from the middle of 3 to the new track 16.

The complete, erroneous track 3 also remains as a candidate.

assembling image sequences from tracker bounding boxes de-

rived from an MOT tracker’s output. Here we use Chained-

Tracker (CTracker) [14], which combines object detection,

feature extraction, and data association in a single end-to-end

model that chains paired bounding box regression results es-

timated from overlapping nodes, of which each node covers

two adjacent frames. CTracker achieves fast tracking speed

(30+ Hz) and a Multiple Object Tracking Accuracy (MOTA)

on MOT17 online of 66.6, which is highly competitive with

other state-of-the-art algorithms.

As an example, the foul subject and object in Fig. 2

(indicated by the green and yellow bounding boxes, respec-

tively, at t = 0) are followed in tracks 5 and 3, respectively,

produced by CTracker. Synopses of the sequences resulting

from this tight tracking box, cropped and scaled to SlowFast’s

224× 224 input, are shown in the top two rows of Fig. 3.

Raw tracker output can be noisy, exhibiting sudden shifts

and scale changes that present challenges for video recog-

nition, especially when the source ROIs are on the order of

∼15×30 pixels. Moreover, the entire player might not be

shown, losing valuable information about leg and hand mo-

tion, and certainly any depiction of interactions with nearby

players is lost. Therefore, we expand the spatial context

around each tracked bounding box on the hypothesis that it

will aid the video recognition task. We define context ROIs

as squares with sidelength proportional to the median max

dimension of all tracker bounding boxes over an entire clip

(1.5× scaling for medium). Samples are shown in Fig. 3.

Track post-processing Tracks may be incomplete. In order

to supply the video recognition network with sequences that

span the full temporal context T and to mitigate mistracking

and track merging and splitting (see Fig. 4 for an example),

we transform CTracker’s output to create a modified set of

candidate tracks. First, tracks with small “gaps” of up to 5

or 6 frames are patched with linear interpolation between ad-

jacent bounding boxes. In a second pass, tracks which end

near another viable track are joined to them in order to extend

them. Also in this pass, branches may be created between

continuing tracks and new tracks that start nearby, increasing
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Fig. 5: Precision-recall curves for SlowFast action classifiers

the overall number of tracks. In clips with high player densi-

ties, this may result in enlarged sets of candidate tracks with

subsections in common.

Inference Two SlowFast networks are used. SF PvB clas-

sifies each candidate track video as either a foul partici-

pant (without regard to subject or object) or bystander, and

SF SvO classifies each candidate track video as a foul sub-

ject or a foul object. Because of the oracle assumption, we

know that there is exactly one subject and one object per clip,

transforming detection into a maximum likelihood problem.

However, as seen in Fig. 4, there is not necessarily a one-

to-one correspondence between tracks and people – we must

always allow for the possibility that two players are being

tracked by one box.

Participant detections are the bounding boxes at the foul

moment from those tracks with the highest likelihood accord-

ing to SF PvB. There may be a tie due to floating point preci-

sion and the network output saturating; these are broken first

by voting in the case that multiple maximum likelihood tracks

share the same foul moment bounding box, and second ran-

domly. Subject and object detections are maximum likelihood

classifications according to SF SvO, but they are only consid-

ered if already recognized as participants.

5. EXPERIMENTS

5.1. Training Details

CTracker A CTracker network with a ResNet-101 backbone

pre-trained on the MOT dataset [33, 14] was fine-tuned on

10 4-second clips (9 far, 1 near) from our dataset in which

all player tracks were manually annotated, with standard data

augmentation.

SlowFast We used the ResNet-50 8 × 8 variant of the

network, pre-trained on the Kinetics dataset, for both of

our video action classifiers. 666 48-frame, 2-second clips

(with ground truth for 666 subjects and objects and 7996

bystanders) were randomly selected from our foul action

recognition subset and SF PvB and SF SvO were fine-tuned

for 10 and 40 epochs, respectively.

5.2. Results

CTracker’s basic tracking performance on our data was as-

sessed on 6 test video clips (all far views), resulting in a

MOTA of 88.6.

The classification performance of SF PvB and SF SvO

were measured on a test set of 167 clips (with ground truth

ROI sequences for 167 subjects and objects and 1008 by-

standers). Precision-recall curves for each network trained

on tight tracker ROIs vs. the looser context ROIs discussed

in Sec. 4 are plotted in Fig. 5. For both training regimens,

SF PvB is nearly perfect, with an average precision (AP)

of 0.997 for tight ROIs and 0.999 for context ROIs after 10

epochs. The subject vs. object task seems harder, as blame is

hard to assign to two tussling players, and while foul objects

often wind up sprawled on the ground, so do the foul subjects

whether intentionally or not. This assessment is borne out

by SF SvO’s lower performance after 40 epochs of training,

with an AP = 0.749 for tight ROIs and 0.861 for context ROIs.

The context variant of SF PvB successfully detected

64.24% of foul participants @ 0.5 IoU threshold at the foul

moment over a test set of 167 clips (vs. 52.51% for the tight

variant with the same tracks). Fig. 1 shows three examples of

such detections. The second row demonstrates the detector’s

ability to pick out one anomalous motion in a crowd (in this

case the foul object sinking to the ground). Subjects and

objects were detected at the same IoU threshold with 30.15%

and 45.21% accuracy, respectively (16.39% and 30.06% for

tight). The detection accuracy is considerably higher at lower

IoU thresholds (e.g. 84.34% @ 0.1 IoU), indicating that this

approach locates the rough foul area quite robustly.

6. CONCLUSION AND FUTURE WORK

We report strong performance on a sports-motivated spa-

tiotemporal video activity recognition task. There are a

number of immediate directions to take before removing the

foul oracle assumption and working on the scale of entire

games, including extending the system to near-view clips

with more training examples, dealing with shot boundaries

automatically, and incorporating foul-relevant information

outside of subject/object bounding boxes. On this last point,

filtering subject/object hypotheses by making sure candidate

pairs are on opposite teams could boost performance, but

require a per-game learning of jersey colors and patterns us-

ing, for example, deep image clustering [34]. Leveraging

the high-resolution versions of the game videos would en-

able further analysis such as ball tracking and reading player

names/jersey numbers to correlate with roster data and/or

commentary. Finally, continuous camera pose estimation

and parsing of field line features [35] would help with video

stabilization, filtering of off-field person detections, and in-

tegration of player positions and game situations to better

understand foul dynamics.
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