
A general quantitative theory of forest structure
and dynamics
Geoffrey B. Westa, Brian J. Enquista,b,1, and James H. Browna,c,1

aSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; bDepartment of Ecology and Evolutionary Biology, University of Arizona,
Tucson, AZ 85721; and cDepartment of Biology, University of New Mexico, Albuquerque, NM 87131

Contributed by James H. Brown, December 5, 2008 (sent for review October 1, 2008)

We present the first part of a quantitative theory for the structure
and dynamics of forests at demographic and resource steady state.
The theory uses allometric scaling relations, based on metabolism
and biomechanics, to quantify how trees use resources, fill space,
and grow. These individual-level traits and properties scale up to
predict emergent properties of forest stands, including size–
frequency distributions, spacing relations, resource flux rates, and
canopy configurations. Two insights emerge from this analysis: (i)
The size structure and spatial arrangement of trees in the entire
forest are emergent manifestations of the way that functionally
invariant xylem elements are bundled together to conduct water
and nutrients up from the trunks, through the branches, to the
leaves of individual trees. (ii) Geometric and dynamic properties of
trees in a forest and branches in trees scale identically, so that the
entire forest can be described mathematically and behaves struc-
turally and functionally like a scaled version of the branching
networks in the largest tree. This quantitative framework uses a
small number of parameters to predict numerous structural and
dynamical properties of idealized forests.

allometry � size spectra � metaboic scaling theory � plant ecology �
competitive thinning

A longstanding goal of ecology has been to discover the
mechanistic processes that underlie pervasive macroeco-

logical patterns (1–3). Body size distributions, in particular, have
long been of interest (3–8), and one of the most prevalent is the
inverse relationship between size and abundance (6, 8). In plant
ecology and forestry, size–frequency distributions are perhaps
one of the most general patterns (6, 9) and have been used to
infer roles of competition and life history in structuring com-
munities (for example, see refs. 10–12) and for estimating
biomass content, wood yield, carbon fluxes, and productivity of
ecosystems (13, 14). In perhaps the first attempt to quantify
community size distributions, De Liocourt (15) suggested that
many woody plant communities exhibit regular inverse relation-
ship between size and number of individuals. Recently, it has
been suggested that the pattern described by De Liocourt may
be self-similar and that self-similarity may be a general property
of forests across the globe (16).

Here, in the first of two articles, we develop a zeroth-order
theory showing how tree size affects resource use, growth, and
death, and how these individual-level processes determine the
coarse-grained structure and dynamics of forests. The theory
builds on previous approaches (17, 18) and is complementary,
but yet different, to past work on ‘‘self-thinning’’ literature (19,
20) and ‘‘demographic theory’’ (21, 22) where, respectively,
emphasis has been placed on the role of scaling plant architecture/
geometry and demographic processes on the structure and
dynamics in plant communities. Our theory provides a quanti-
tative, predictive framework for understanding the structure and
dynamics of an average idealized forest. Consequently, it pro-
vides a baseline for incorporating additional details and devia-
tions due to site- and taxon-specific phenomena. The theory
deliberately makes simplifying assumptions. In particular, the
forest: (i) can be modeled as a stand with no recruitment

limitation, where recruitment begins with seedlings, and the size
distribution is determined by the dynamics of growth and
mortality (22); (ii) is in resource (23) and demographic steady
state (22), so that, on average, the total rate of resource use
equals the rate of resource supply, birth rates equal death rates,
and a stable distribution of ages and sizes exists; (iii) comprises
‘‘allometrically ideal’’ individuals that obey previously derived
quarter-power allometric scaling laws (24) that govern how they
use resources, occupy space, and grow.

Given the above assumptions, the theory shows how scaling
constraints at the individual level (23–26) determine rates of
growth, mortality, and recruitment within the forest. As a
consequence, phenomena such as size distributions and spacing
patterns emerge at the population, stand, and ecosystem levels
(23, 27–30). The generality of our theoretical approach can be
attributed to its focus on two fundamental biological phenom-
ena: metabolism and allometry. This framework differs from,
but is not in conflict with phenomenological ‘‘demographic
theory’’ (12, 21, 31), in which structural and dynamical properties
of forests are empirical manifestations of observed growth,
mortality, and recruitment, rather than derived from general
principles.

The Model
We begin by considering a forest plot of area, APlot, containing
a large sample of trees. The stand is characterized by a size
distribution. This distribution can be visualized by apportioning
individuals into (K � 1) size classes, where the kth class contains
�nk individuals of similar size. Within each size class individuals
are characterized by stem or trunk radius, rk. Size classes range
from the smallest, k � 0, to the largest, k � K (Fig. 1). In this
theory, stem radius is the primary quantity characterizing size,
because it is a major determinant of both biomechanical stability
and the flux of resources from roots to leaves (24).

Since there is a functional relationship between size, rk, and
age, t, as determined by a growth equation for rk(t), the size
distribution could also be expressed in terms of the age profile
of the stand. Thus, the kth size class represents a time interval,
�t, of an average individual’s lifespan as determined by the
growth equation. So �nk is the number of plants whose age is
between t and t � �t and whose size is between rk and rk � �rk
where �rk is the size of the bin used to visualize the size
distribution. Specifically, �rk � rk�1 � rk [see supporting infor-
mation (SI) Text and Tables S1 and S2]. In steady state, �nk does
not change with time so growth and death rates are not inde-
pendent but inextricably linked (18). As individuals grow and
transition from the kth to the (k � 1)th size class, an equal
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number in the (k � 1)th class must die, so we can define the
change in the number of individuals per class as �nk � �nk�1 �
�nk

died. The steady-state assumption is consistent with dynamical
data from several old-growth tropical forests (32, 33).

We assume that physiological and morphological character-
istics of individuals obey allometric scaling relationships. These
are typically expressed as

Y � Y0r�, [1]

where Y is a dependent variable such as metabolic rate or leaf
area, Y0 is a normalization constant, � is the allometric
exponent, and r is stem or trunk radius (26). Based on
theoretical models and supporting empirical observations (23,
24), for simplicity, the following are assumed for within and
between individual trees of radius, rk: (i) Whereas leaf anatomy
and physiology vary within and across individuals (34, 35), they
are independent of plant size, so, for example, the surface area
of an average leaf, aL � rk

0.* (ii) The total number of leaves, nk
L,

and total leaf area per plant, ak
L � nk

LaL, both scale as r1/a. (iii)
Individual rates of metabolism or energy use, Bk � B0rk

1/a,
where B0 is a normalization constant; so, Bk � nk

L � ak
L � rk

1/a

(36). (iv) The average total mass of a tree, mk scales as
mk � rk

(2a�b)/a � lk
a/b so that rk

a � lk
1/b

, where lk is the length of the
trunk that is proportional to the total tree height, hk (see ref.
37). The values of a and b ref lect biomechanics and the
geometry of the plant branching network and their values may
vary across taxa (see ref. 38).

Relationships ii–iv were previously derived by optimizing plant
hydrodynamics and biomechanics subject to hierarchical space-
filling geometry and the invariance of terminal units (24).
Although the theory can be recast straightforwardly by using
empirical values of a and b (24, 38, 39), for the idealized case (24)

we use a � 1/2, b � 1/3, so that � � 1/(2a � 2b) � 3/4 and thus,
Bk � nk

L � ak
L � mk

� and lk � rk
2/3 (37). The theory predicts, and

empirical observations confirm, that typical trees in the size
range considered here � � 3/4 (see refs. 24, 38, and 40). Plants
such as palms, seedlings, vines, etc., with architectures that do
not conform to the above assumptions (24, 38, 39, 40) may have
different values of a and b so their values of � and corresponding
size distributions and growth and mortality rates will change
accordingly. Violations of assumptions i–iv will also lead to
calculable deviations from the idealized predictions. For exam-
ple, parameters characterizing variation in leaf-level properties
could be included in our model (36). We now show how these
attributes of individuals scale up to the stand level to determine
the structure and dynamics of forests.

Scaling Canopy Dimensions and the Importance of Space-Filling. We
define the canopy of a tree as the smooth Euclidean surface
enveloping all leaves and branches†—this to be contrasted with
the actual fractal-like structure defined by the leaves and
branches or the surface area of all of the leaves themselves.
Combining an assumed isometric Euclidean scaling of the can-
opy with relationship iv above, we can equate the radius of the
canopy to the trunk radius as rk

can � lk � hk � rk
2/3, where hk is the

height of the tree. Consequently the surface area of the canopy
scales as ak

can � rk
4/3. These relationships are in general agreement

with data (see figure 1c of ref. 41 and figure 3 in ref. 42).
Now consider how leaves are distributed within the canopy.

The ratio of total leaf area (ak
L � rk

2) to canopy area (ak
can �

rk
4/3) for an individual is ak

k/ak
can � rk

2/3 reflecting the greater than
linear increase of the fractal-like surface area of all of the leaves
relative to the Euclidean surface area of the canopy. Notice that,
from our earlier work (24, 39, 40), the fractal-like leaf area, ak

L,
and the Euclidean canopy volume vk

can scale identically, ak
L �

vk
can � (rk

can)3 � rk
2. The number of leaves scales similarly, nk

L � rk
2

� vk
can, so the average density of leaves in the canopy, nk

L/vk
can, is

independent of tree size. The fractal-like space-filling branching
vascular architecture that terminates in leaf surfaces confers an
effective additional spatial dimension to the scaling properties of
the network (43).

Space-filling implies that the total number of leaves of all
individuals within any size class, �nkak

L, equally fills the same
amount of area, independent of k. Specifically,

�nkak
L � �nk�1ak�1

L [2]

for any k. Consequently, �nk � 1/ak
L �1/rk

2. The steady-state size
distribution therefore approximates an inverse square law with
many small individuals and few large ones (16). Assuming that
individual leaf area, aL, is invariant and that each leaf is supplied
by an equal number of xylem elements, this implies that the total
number of xylem elements of all individuals within each size class
is approximately the same. Note that the concept of space-filling
is expressed in terms of both leaf surface area and trunk
cross-sectional area.

The above features have important and nonintuitive implica-
tions for the structure and function of the entire stand. It has
been shown previously that the total hydrodynamic resistance of
each microcapillary xylem ‘‘tube,’’ composed of sequential xylem
elements running from root to leaf, is approximately indepen-
dent of tube length (24). Consequently, the volume flow rate
through any tube in any tree is approximately independent of
tree size, so the total f lux of fluid through all trees in each size
class is approximately equal. The trunk of each tree and the total

*For our notation we use superscript L to represent properties of a leaf and not an
exponent.

†The surface area of the canopy, acan, is essentially akin to the surface area that results from
loosely wrapping the entire tree in a plastic sheet à la Christo and Jeanne-Claude (see
www.christojeanneclaude.net/wt.shtml).

Fig. 1. Summary diagram showing how several of the main parameters of
our model are related to plant size and how the discrete size distribution is
characterized in our model. Size distributions can be characterized as discrete
or continuous functions. Here, the size distribution is visualized by binning the
data into k discrete size classes. The size of each bin is �r, where �r ��rk�1 �
�rk. The stem radius increases as trees grow (dashed line) from the smallest
sizes, where k � 0 and the stem radius is r0, to the largest size class, K with stem
radius rK. The predicted steady-state size distribution is �nk � rk

�2 (solid line
function shown). Note that, here, bin size is chosen to be a constant, reflecting
linear binning as discussed in ref. 54.
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conducting tissue of the entire stand can therefore be viewed as
composed of a very large number of elemental vascular tubes of
varying length, each transporting water and nutrients at the same
rate but to leaves at different locations in the canopy. Therefore,
the size structure and spatial arrangement of trees in the entire
stand are emergent manifestations of the way that functionally
invariant xylem ‘‘tubes’’ are bundled together within trunks of
individual trees, connecting them from the trunks, through
branches, to the leaves.

Stand Energetics, Size Structure, and Spatial Packing. Since leaves
are assumed to be invariant units, the fluid flux, Q̇k, through any
individual tree in the kth class is proportional to the number of
leaves. Whole-plant metabolic rate is proportional to fluid flux,
so Bk � Q̇k �ak

L � rk
2. However, the number of individuals in a size

class, �nk, decreases as rk
�2. Consequently, all plants in a size class

collectively use resources at the same rate,

Bk
tot � �nkBk � rk

0. [3]

This prediction, reflecting the invariant number of vascular tubes
in each size class, is the analog of the energy equivalence relation
shown empirically for animal populations and parameterized in
terms of mass by Damuth (4, 23). Furthermore, both the total
canopy volume of all trees in a size class, �nkvk

can, and their total
leaf areas, �nkak

L, are also independent of size.
Building on our previous work (23), each individual is assumed

to grow until it is resource limited. Consequently, trees compete
for resources, and the total rate of resource use by all of the trees
in the stand is equal to and limited by the total rate of resource
supply, Ṙ, so that BTot � ṘTot � ṘAPlot (23). All of these
stand-level ‘‘invariants’’ follow from general principles of space
filling and optimal hierarchical branching operating jointly at
both the individual and stand levels. From energy equivalence,
the total rate of energy use for the entire stand,

Btot � � Bk
tot � �K � 1	Bk

tot � �K � 1	�nkBk [4]

valid for any k, where K � 1 is the total number of size classes.
The corresponding whole-community flux, Btot/APlot � (K �
1)�kBk, where �k � �nk/APlot is the population density. As we now
show and further develop in our second article (42) these
equations provide the basis for predicting the generic structure
and dynamics of the entire stand and provide a basis for
understanding deviations from predictions in terms of additional
site- and taxon-specific details.

First, however, it is convenient to translate the above discrete
formulation into a continuum notation (see SI Text). The
distribution function representing the number of individuals per
unit trunk radius, �nk/�rk, becomes, in the continuum limit,
f(r) � dn/dr. When size classes are characterized by linear
binning of radii, corresponding to a constant infinitesimal �rk,
independent of k, Eq. 4 gives

f�r	 �
1
r2 . [5]

Since r � m3/8, this is equivalent to f(r) � m�3/4 reflecting the 3⁄4
power scaling of metabolism (26). Note, however, that if the
distribution is expressed in terms of mass, which is a derived
quantity from a length measure, g(m) � dn/dm, the number of
individuals per unit tree mass rather than per unit trunk radius,
then g(m) � f(r)(dr/dm) � m�11/8 leading to the curious �11/8
exponent as recently reported (44). We discuss this result as well
as issues of binning and viewing size spectra scaling in terms of
discrete and/or continuous distributions in further detail in the
SI Text (See Eqs. S7 and S8).

Our theory also makes explicit predictions for the spacings of
individuals within the forest. Since the density of individuals in a
size class, �k, decreases as the square of stem radius, �k � rk

�2 the
average distance, dk, between individuals of a given trunk radius is

dk �
1

�k
1/2 � rk. [6]

Fig. 2. Elevation of a tropical forest taken from Davis and Richards (45, p 368). The spatial position of each tree stem and canopy are shown. Note, as predicted
by our model, the forest is characterized by a given distribution of tree sizes and spatial position of canopies. Specifically, our model predicts that, for a generic
case, crown dimensions should overlap until they reach a certain size (�20 m) and then canopies should become increasingly separated as shown in this diagram.
The horizontal line is the predicted tree height, based on observed scaling data for tropical tree crown dimensions, where, on average, canopies no longer
overlap.
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Thus, the average distance, dk, between the trunks of individuals
of the same size scales linearly with radius: dk � c1rk, with c1 a
scaling constant reflecting how individuals fill space.

Additionally, the theory predicts canopy overlap. The average
distance separating the edges of canopies of trees of the same
size is dk

can � dk � 2rk
can. Since rk

can � c2rk
2/3, where c2 is a constant

reflecting the geometry of the canopy,

dk
can � c1rk� 1 � � 2c2

c1
� rk

�1/3� . [7]

This predicts that the canopies of larger trees overlap less than
those of smaller trees, with the degree of overlap depending on
the values of c1 and c2. There is a critical value of rk where
canopies just touch, dk

can � 0, given by rk� � (2c2/c1)3. Therefore,
Eq. 7 can be expressed as,

dk
can � c1rk
1 � �rk� /rk	

1/3� . [8]

In general, the canopies of smaller trees overlap until rk � rk� .
Thus, the values of c

1
and c2 determine both the distance between

trunks and the separation or overlap of canopies, thereby
predicting the overall generic spatial configuration of the stand,
as illustrated in Figs. 1 and Fig. S1. For example, for a Costa
Rican forest where c1 � 70 and c2 � 95 cm1/3 (42) the theory
predicts that, on average, only the canopies of trees larger than
�30 cm in radius and 20 m in height are separated. Another
tropical forest (45) exhibits qualitatively similar stand structure
and canopy separation (Fig. 2).

The Forest is the Tree
An interesting implication of our theory is that the distribution
of sizes and resource fluxes among trees within a stand scales

identically to the distribution of sizes and resource fluxes of
branches within a tree (24). Our model shows how the number
of trees in a size class, �nk, decreases with trunk radius, rk, as �nk
� rk

�2 � mk
�3/4, mimicking the decreasing number of branches

within an individual tree, �Ni, with increasing branch radius, Ri:
�Ni � Ri

�2 � Mi
�3/4 (26), where, i is a branch size class within a

given tree, so that, for example, Shinozaki et al. (46) measured
the size distribution of branches and roots for 10 trees of 6 species
and reported the discrete size distributions. Analysis of the
branching size distribution reveals an exponent of �2.14 (95%
CI � �2.34 to �1.95) suggesting statistically indistinguishable
from the predicted value of �2 (Fig. 3).‡ In addition to this
inverse square law, quantities such as fluid flow rate and mass
also scale identically in forests and trees (Table 1). In a very real
sense, the entire forest is a hierarchically branching resource
supply network that can be described mathematically and be-
haves structurally and functionally like a scaled version of the
branching network of the largest tree.

Discussion
This article presents the first part of our theory. A second article
(42) makes additional predictions for, succession and whole-
standard resource use and productivity, and provides detailed
empirical tests. The theory builds on metabolic scaling theory,
and is derived for the simplified case of a single species stand. It
should also apply, however, to multispecies stands so long as all
trees compete for the same limiting resources and obey the same
allometric scaling relations. Our theory is complementary to the
‘‘self-thinning’’ literature because the geometry of a tree (as
given by the plant branching networks governed by parameters
a and b) is fundamental in the scaling of forest structure and
dynamics. However, our theory predicts that the exponent that
characterizes the inverse relationship between size and density
[i.e., f(r) and g(m)] is fundamentally different from the ‘‘self-
thinning law’’ (6) in plant ecology where g(m) � m�2/3 but that
f(r) is not explicitly derived. The core assumptions of our theory
are well supported: (i) whereas co-occurring plants usually
compete for a common resource such as light (47, 48), nutrients

‡Statistics are for binned data (histogram) for frequency and branch radius based on the
original data plots from the 1964 Shinozaki et al. article (46). While reasonable, given that
only the histogram data are available, a more accurate assessment of our model for branch
distributions should use the more rigorous statistical approach based on the raw (un-
binned) data as discussed in White et al. (54).

Fig. 3. Size distribution of branches or roots within a given tree. Shown are
three trees, Cryptomeria sp. (black circles) Picea sp. (stars), and Betula sp. (gray
squares) and the fitted OLS regression for each tree; the exponents are �2.13,
�2.03, and �2.05 respectively. Data are taken from Shinozaki et al. (46).
Because the exponent is essentially identical to the tree size distribution
within a forest, the entire forest is, in a very real sense, a hierarchically
branching resource supply network that can be described mathematically and
behaves structurally and functionally like a scaled version of the branching
network of the trees it contains.

Table 1. Similarity of predicted scaling relations for branches
within a tree [quantities denoted by uppercase symbols and
subscripts i (46)], and for trees within a forest (denoted by
lowercase symbols and subscripts k)*

Scaling quantity Individual tree Entire forest

Area preserving Ri�1

Ri
�

1
n1/2

rk�1

rk
�

1
�1/2

Space filling Li�1

Li
�

1
n1/3

lk�1

lk
�

1
�1/3

Biomechanics R i
2 � Li

3 rk
2 � lk

3

Size distribution* �Ni � R i
�2 � Mi

�3/4 �nk � rk
�2 � mk

�3/4

Energy and material
flux*

Bi � R i
2 � Ni

L � Mi
3/4 Bk � rk

2 � nk
L � mk

3/4

*The above theory is developed based on using radius as the primary measure
of size. The dependences on mass, leading to quarter-power exponents, are
derived expressions using the continuous distribution function f(r) � 1/r2

(Eq. 8 and SI Text, Eq. S3). The mathematical equivalence of these scaling
relations shows that the entire forest behaves as if it were a hierarchically
branching resource supply network that mimics the branching network of a
single tree (see also Fig. 3).
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(49), or water (50, 51); nonetheless, (ii) species in different
taxonomic and functional groups (e.g., gymnosperms and an-
giosperms) exhibit similar scaling relations for structural dimen-
sions and metabolic rates (25, 36, 37, 52); so that (iii) forests, and
plant communities in general, tend to pack to fill space so that
growth of some individuals must be matched by mortality of
other individuals of similar size (6, 53). Consequently, the theory
should be very general and apply to diverse forests (and possibly
plant communities, in general) of coexisting tree species, irre-
spective of limiting resource, geographic location, and taxonomic
or functional group. Furthermore, although derived for above-
ground shoots, the model should also apply to below-ground
roots, which exhibit similar scaling relations (46, 52).

In addition to providing a coarse-grained quantitative descrip-
tion of forests that reveals pervasive underlying regularities (see
Table 2), the theory provides a unique way of viewing a forest
community. Most intriguingly, we show that the forest can be
viewed abstractly as an approximate uniform distribution of
vascular ‘‘tubes’’ of equal length each transporting the same
quantity of energy and resources. Furthermore, the mathemat-
ical structure and physical characteristics of the ‘‘virtual’’ net-
work of interacting trees in the forest is essentially identical to the
network of branches of an individual tree.

This zeroth-order theory deliberately makes simplifying as-
sumptions and ignores ecological interactions that affect species
composition. Consequently it does not address many traditional
questions of plant community ecology: (i) How many and what
kinds of species coexist? (ii) What are the ecological roles of
different taxonomic or functional groups? (iii) What are the
impacts of abiotic stress, disturbance, herbivores, and diseases?
Nevertheless, the theory is directly relevant to these questions,
because tree size is the single most important variable affecting
resource use, population density, and stand dynamics. A major
strength is that the theory endeavors to explain a lot with a
little—it makes many quantitative predictions and unifies diverse
features of forest structure and dynamics based on a small
number of principles and parameters.
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