
Hindawi Publishing Corporation
Advances in Artificial Intelligence
Volume 2009, Article ID 356120, 11 pages
doi:10.1155/2009/356120

Research Article

A General Rate K/N Convolutional Decoder Based on
Neural Networks with Stopping Criterion

Johnny W. H. Kao,1 Stevan M. Berber,1 and Abbas Bigdeli2

1 Department of Electrical and Computer Engineering, University of Auckland, Auckland 1142, New Zealand
2 Queensland Research Laboratory, National ICT Australia, Brisbane QLD 400, Australia

Correspondence should be addressed to Johnny W. H. Kao, j.kao@ece.auckland.ac.nz

Received 10 December 2008; Revised 9 April 2009; Accepted 30 April 2009

Recommended by Peter Tino

A novel algorithm for decoding a general rate K/N convolutional code based on recurrent neural network (RNN) is described
and analysed. The algorithm is introduced by outlining the mathematical models of the encoder and decoder. A number of
strategies for optimising the iterative decoding process are proposed, and a simulator was also designed in order to compare
the Bit Error Rate (BER) performance of the RNN decoder with the conventional decoder that is based on Viterbi Algorithm (VA).
The simulation results show that this novel algorithm can achieve the same bit error rate and has a lower decoding complexity.
Most importantly this algorithm allows parallel signal processing, which increases the decoding speed and accommodates higher
data rate transmission. These characteristics are inherited from a neural network structure of the decoder and the iterative nature
of the algorithm, that outperform the conventional VA algorithm.

Copyright © 2009 Johnny W. H. Kao et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. Introduction

With the rapid growth of digital communication systems
in the recent years, lowering the power consumption and
increasing the reliability of the system can both be achieved
by using error-control coding (ECC). Convolutional code is
a popular class of forward error-correcting codes, commonly
used in space and satellite communication and digital
video broadcasting [1–3]. The Viterbi Algorithm (VA) is
well known to be the optimum method for decoding
convolutional code based on maximum likelihood (ML)
detection [4]. Furthermore, this algorithm is later extended
into Turbo codes, which recently becomes very popular
because of its closeness to the Shannon’s limit [5–9]. A
significant amount of research is devoted into optimising
the turbo codes in order to achieve the minimum bit
error rate (BER) [5, 6]. However, it is commonly known
that the complexity of the Viterbi algorithm grows expo-
nentially with the number of constraint length of the
encoder [7, 8]. As a result, such algorithm becomes less
favourable for modern communication systems where the
constraint length of the encoder can easily reach up to

seven or nine, making it almost impractical to implement
[9].

Recently, researchers are finding different alternatives to
VA, hoping to overcome this challenge. This has lead to many
suboptimal decoding techniques. One of the techniques that
have attracted considerable attention is one that is based on
neural networks (NNs).

Neural networks (NNs) are characterised from the
biological structure of the mammalian brain. There are
several properties which make such structure suitable for
digital communication applications. Some of these proper-
ties include highly parallelised structure, adaptive processing,
self-organisation, and efficient hardware implementation
[9, 10]. In particular, their capabilities to solve complex
nonlinear problems make them well suited for decoding
convolutional code, which itself is a nonlinear process.

Initially neural networks have only been applied for
predicting errors in turbo decoders [11], or to optimise the
transmission protocol [12]. However, during recent years,
some work has been developed in which new decoding
algorithms were proposed based purely on such structures.



2 Advances in Artificial Intelligence

In 1996, an early work of artificial neural net Viterbi
decoder was investigated [13]. The Viterbi Algorithm was
implemented using artificial analogue neurons. It was also
noted that the proposed decoder fits very well for VLSI
circuits. However, the neural network structure was still
used for existing algorithms. In 2000, another convolutional
decoder using recurrent neural network was developed [14].
It has shown again that the performance of neural network
decoding approaches to that of VA, and it can be easily
implemented in hardware.

In 2003, there was a report published that proposed a
new decoding algorithm based on recurrent neural network
(RNN) for a generalised rate 1/n convolutional encoder [15].
By deriving a general noise energy function with the gradient
descent algorithm to minimise the function, the results again
reinforce the promising result of RNN decoder compared
with the traditional VA ones. Furthermore the computa-
tional complexity and speed of this system in comparison
with the conventional VA has been investigated in that
research. The author shows that the decoding complexity
of a recurrent neural network decoder is only a polynomial
function of the constraint length of the encoder, instead of
an exponential function like in VA. Therefore the author
suggests that this technique would be a good candidate
to replace VA when a high constraint length encoder is
required. However, the problem of developing an algorithm
for a general rate K/N convolutional code remains unsolved.
Therefore this paper is not just an extension of the previous
work, but its generalisation where a theoretical model of a
K/N encoder/decoder is developed. It was confirmed that
the theory of 1/n encoder can be easily developed from this
general theory for a K/N encoder. Furthermore, due to this
inherent nature of the iterative process, an efficient stopping
criterion for optimising the trade-offs between performance
gains and neural network decoding time is investigated as an
extension to the previous work [15–17].

Unlike most existing convolutional decoders, which are
based on trellis diagrams, the RNN decoder is a completely
new approach to the decoding problem. Therefore it is
important to note that the proposed method in this paper
is not an implementation or optimisation of the existing
trellis-based Viterbi or BCJR algorithms. Therefore all the
conventional characteristics of the trellis decoding are not
applicable in this paper. However, since the well-known
Turbo decoder is also based on convolutional codes, the
proposed RNN decoder can also be applied. The possibility
of using the soft decision output of a 1/n neural network
decoder to provide the soft output information which is
required by the Turbo decoder was investigated in [16]. In
addition, the stopping criterion used in this paper can also
be applied for Turbo decoders or other methods of iterative
decoding.

Another unique advantage of the RNN decoder is on
its computational speed. Most of the modern high-speed
convolutional decoders are trellis based, in which high
decoding speed/throughput is achieved through introducing
parallelism in the existing algorithm and careful hardware
design during implementation. Two good representations
of such high-speed decoders for convolutional codes can

Encoder

AWGN

channel

L1 stage

LK stage

.

.

.

b1(t)

b1(t − 1)

b1(t − 2)

b1(t − L1 + 1)

bK (t)

bK (t − 1)

bK (t − LK + 1)

γ1(t)

γ2(t)

γN (t)

W1(t)

W2(t)

WN (t)

r1(t)

r2(t)

rN (t)

.

.

.

.

.

.

Figure 1: The structure diagram of the encoder, AWGN channel,
and the received data.

be found in [18, 19]. In those works, both implement
the conventional trellis-based Viterbi Algorithm to their
decoders, in which the overall speed can be increased by
decoding on different segments of the received sequence
in parallel. Nevertheless, as a consequence of using the
trellis, the complexity would still increase exponentially if an
encoder with a higher constraint length was used. In contrast,
the proposed algorithm in this paper does not have such
concern because it is not based on the trellis at all; hence
the complexity only increases as a polynomial function (not
exponential) of the constraint length of the encoder.

This paper contains the following sections. Section 2
presents the theoretical model of a K/N convolutional
encoder and decoder. The iterative decoding techniques are
addressed in Section 3. Section 4 describes the two examples
used for simulation. All simulation result and discussions are
presented in Section 5. Lastly, the conclusions are drawn in
Section 6.

2. Theoretical Background

2.1. Theoretical Model of the Encoder. A general rate K/N
convolutional encoder, which generates a set of N-bit long
code word for each set of K message bits at the time instant
t, is shown in Figure 1. Each input of the encoder has its
own number of memory elements and hence carries differ-
ent constraint lengths, defined by L1, L2, . . . ,Lk, . . . ,LK . In
another word, it can be visualised that the encoder is merely
a combination of K numbers of different subencoders, where
each subencoder can have its own unique constraint lengths.

The bits contained in the kth subencoder cells are
denoted by bk(T0 + t − ik + 1), and T0 = maxk(Lk), where
ik = 1, 2, . . . ,Lk. Furthermore, each cell in the subencoder
is connected to each output through the combination of a
common feedforward logic depicted in Figure 1.



Advances in Artificial Intelligence 3

Therefore the encoder can be represented by a large
matrix that contains all submatrices from each subencoder,
shown as

g =
[

g1
L1

g2
L2
· · · gk

Lk · · · gK
LK

]

, (1)

where each submatrix corresponds to the impulse response
of the kth subencoder and is expressed as

gk
Lk =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

gk11 gk12 · · · gk1ik · · · gk1Lk

gk21 gk22 · · · gk2ik · · · gk2Lk

...
...

. . .
...

. . .
...

gkn1 gkn2 · · · gknik · · · gknLk

...
...

. . .
...

. . .
...

gkN1 gkN2 · · · gkNik · · · gkNLk

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2)

This expression is similar to one that is derived in [20].
In order to reduce the mathematical complexities, polar

mapping of additive group {0, 1} is mapped into multiplica-
tive group of {1,−1}, similar to [11, 15].

Therefore the encoding becomes a process of mapping
an N-dimensional coded vector, Γ(t) = [γ1(t), γ2(t), . . . ,
γn(t), . . . , γN (t)], from a K-dimensional message vector,
b(t) = [b1(t), b2(t), . . . , bk(t), . . . , bK (t)], via

γn(t) =
K
∏

k=1

⎡

⎣

Lk
∏

ik=1

bk(T0 + t + 1− ik)g
k
n,ik

⎤

⎦. (3)

The additive white Gaussian noise (AWGN), represented
by a set of noise samples, is added to the encoded set of
bits generated at the time instant t. As the encoded set
is transmitted through the channel in a serial sequence,
the noise samples can be represented as independent
and identically distributed random variables, W(t) =

[W1(t),W2(t), . . . ,Wn(t), . . . ,WN (t)]. The received code
word, which is corrupted by AWGN, is denoted by a noisy N-
bit long code vector r(t) = [r1(t), r2(t), . . . , rn(t), . . . , rN (t)].

2.2. Theoretical Model of the Decoder. The main task for
the decoder is to estimate a sequence of message bits that
is the closest to the transmitted source message. Hence the
decoding procedure can be redefined as a problem of finding
the minimum difference between the message sequence to

the one received. More strictly, it then becomes a problem of
minimising the noise energy function defined as

f (b)=
T
∑

s=0

‖w(t)‖2

=

T
∑

s=0

N
∑

n=1

(

rn(t + s)− γn(t + s)
)2

=⇒ f (b)

=

T
∑

s=0

N
∑

n=1

⎧

⎨

⎩

rn(t + s)−
K
∏

k=1

⎡

⎣

Lk
∏

ik=1

bk(T0 +t+s+1−ik)g
k
n,ik

⎤

⎦

⎫

⎬

⎭

2

.

(4)

This noise energy function is a function of the coordinates of
Γ and r vectors in N-dimensional Euclidean space. One way
to minimise the function expressed above is to employ the
gradient decent algorithm (GDA) [15]. The essence behind
GDA is that by sequentially estimating each bit from the
previous estimate, and the gradient of the function is used
as an updating factor, that is,

bk(t)new = bk(t)− α
∂ f (b)

∂bk(t)
. (5)

The last term of the above expression is the partial derivative
of the noise energy function in respect to bk(t), and α is the
gradient update factor. Together they will adjust the estimate
bit towards the desired value. The coefficient α for a 1/n
code has been clearly explained in [17]. It is a constant that
can be carefully chosen to eliminate any self-feedback, hence
improving the processing speed and simplifying the overall
expression.

Regarding the partial derivative, the previous investiga-
tion [15] only derives a general expression which is only
suitable for a 1/n convolutional encoder (single input and
multiple outputs). Now this expression is to be further
generalised for a rate K/N convolutional encoder (multiple
inputs and multiple outputs), which then becomes

∂ f (b)

∂bk′(t + a)
=(−2)

T0
∑

s=1

N
∑

n=1

(

gk
′

n,sk′

)

×

⎡

⎢

⎢

⎣

rn(t+s+a−1)
K
∏

k=1

Lk
∏

ik=1
ik′ /= s

bk(t+s+a−ik)g
k
n,ik

−bk′(t + a)g
k′
n,sk′

]

,

(6)

where the variable a denotes the index of the referred bit in
the message sequence at decoding time t.



4 Advances in Artificial Intelligence

Therefore, if a nonlinear activation function fa is applied
into the GDA formula, then the whole equation used to
estimate a single bit becomes

bk′(t + a)new

= fa

⎛

⎜

⎜

⎝

1
∑

gk′

T0
∑

s=1

N
∑

n=1

(

gk
′

n,sk′

)

×

⎡

⎢

⎢

⎣

rn(t + s + a−1)
K
∏

k=1

Lk
∏

ik=1
ik′ /= s

bk(t + s + a−ik)g
k
n,ik

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

.

(7)

This is the critical formula used to estimate one message
bit from a stream of received data. One cycle of iteration is
completed when all parameters bk′(t + a) for a = 0, 1, . . . ,T
are updated, either in parallel or in series. Moreover, such a
structure forms the basis of a neuron, which after combining
together forms the basic prototype of a recurrent neural
network. Parallel-processing is made possible because each
neuron can function independent of each other. These
concepts will be illustrated later through the simulation
examples. Furthermore, the decoding complexity of this
algorithm remains as a polynomial function of constraint
length; therefore it can be practically implemented for a
system that requires a higher order encoder for better error-
control protection. The proof of complexity is detailed in
Appendix A. Therefore the reduction in system complexity
and parallel processing are the main advantages of this
algorithm.

3. Iterative Decoding Techniques

The GDA formula implicitly states that the decoding process
has become an iterative procedure, similar to Turbo codes.
Theoretically a larger number of iterations should always
yield a more satisfactory result, because the estimation
should tend closer to the actual value after successive
iterations. The cost on the other hand is the excess decoding
time required. Therefore at this point, some strategies are
investigated in order to find the optimum trade-off between
the performance and time. In this section three methods are
presented to deal with this problem.

3.1. Fixed Iteration. The most trivial method would be
simply to fix on a predetermined number of iterations on
the decoder, regardless of the result of estimation. All the
received information is forced to pass through the required
number of iterations before producing any result. The
distinct advantages of this method are that it is very simple
to implement, and also the overall decoding performance
is totally under the designer’s control. This method is most
suitable for situations where the optimum decoding result is
required, regardless of the processing time.

However, without sufficient trials and the prior knowl-
edge on the behaviour of the encoder/decoder, setting

an “overly-estimated” large number would not yield the
extra performance gain as expected, compared to a smaller
iteration, and it also wastes much unnecessary decoding time
too.

3.2. Stopping Criterion. The second approach is to set a
stopping criterion on the decoder prior to decoding. The
decoding process would only terminate once this criterion
has been met, regardless of the number of iterations it has
gone through. This is the initial attempt to remove the
constraint on the iteration number, and the decision to
terminate is based on the result obtained from each iteration
cycle. The main difference from the first method is that
each code vector will not necessarily finish decoding at the
same time; hence the time and the performance is no longer
within the designer’s control. The aim of using this method
is to reduce the processing time required by minimising the
number of iteration.

One of the criterions is defined by the following condi-
tion: terminate the decoding if two successive iterations yield
the same estimate of the source message. The underlying
assumption is that since two successive iterations give the
same estimate, then the estimate must be very close to the
actual value; hence there is no point to continue searching
further. In another word, this criterion is restricting the
decoder to stop searching once it found the first minimum
of the noise energy function. This minimum may be a local
or global minimum point. However this criterion lacks the
sophistication to continue searching for the global optimum
solution. Therefore some performance loss is inevitable for
its small decoding time. This finding is later reinforced
from the simulation results. Therefore this solution is more
suitable in places where the decoding time is at a higher
priority compared to its performance.

3.3. Extension of Stopping Criterion. From the first two
approaches we realise that there is an inevitable trade-off

between the desired decoding accuracy and the process time.
The first method would always yield a much better result
than the second but requires a much longer decoding time,
especially if it is restricted to a high number of iterations,
whereas the second approach can reduce the required
processing time with a degraded decoding performance. In
practice however, it is desirable for the decoder to hold both
advantages. In this paper, a method is proposed that is not
a separate approach from the previous two, but merely a
combination of both, or can be regarded as an extension of
the second one.

While still employing the same simple criterion on the
decoder, now the decoded estimate is forced to pass through
a minimum number of fixed iterations before the criterion
can be triggered. The idea of this approach is raised from
observing the simulation results, noticing that the errors
reduce drastically after only initial few cycles of iterations.
Hence this minimum threshold value can be a very small
integer; thus not much time will be wasted. Furthermore, it
is observed from the simulations that this slight modification
can significantly increase the performance of the simple



Advances in Artificial Intelligence 5

b(t)

b(t − 1)

b(t − 2)

γ1(t)

γ2(t)

Figure 2: The structural diagram of the rate 1/2 convolutional
encoder.

stopping criterion, as described previously. Therefore, at the
time of investigation, this becomes a favourable approach
that yields the best trade-off in terms of the decoding
performance and the processing time.

4. Simulation Examples

In order to verify the theoretical decoding capability of
the RNN decoder, two encoders with rate 1/2 and 2/3 are
investigated.

4.1. Example 1: 1/2 Encoder. Consider a simple rate 1/2
convolutional encoder with a constraint length of 3, which
has the impulse generator matrix

g =

⎡

⎣

1 0 0

1 0 1

⎤

⎦. (8)

The structure of this encoder is illustrated as in Figure 2.
Using the general GDA formula with the specified value

of K = 1, N = 2, and T0 = 3, the update rule for this
particular encoder can be expressed as

b(t + a)new = fa

(

1

3
r1(t + a) +

1

3
r2(t + a)b(t + a− 2)

+
1

3
r2(t + a + 2)b(t + a + 2)

)

.

(9)

Using the combination of the received soft values as inputs
and the previous estimate, the update rule allows the decoder
to estimate a particular bit at time t. One iteration will be
completed when all the information bits (a = 0, 1, . . . ,T)
have been processed sequentially throughout the entire
sequence. The relationship between the received code word
and the estimated message word can be depicted using a
neuron diagram shown in Figure 3.

The place where multiplication occurs is marked with a
circle in the neuron diagram. Each estimated bit needs to
pass through a sigmoid activation function before feeding
back into the network for the next iteration. This process
carries on before it is terminated either by reaching to a fixed
number of iterations or by triggering a stopping criterion as
mentioned above.

r1(t)
r2(t)

r2(t + 2)

b(t − 2)

b(t − 1)
b(t)

b(t + 1)

b(t + 2)

∑

1/3
fa

b(t)new

Figure 3: The neuron diagram of the RNN decoder in Example 1.

In addition, the processing speed can be further increased
if multiple neurons are used to estimate the entire message
sequence concurrently. This parallel signal processing ability
can thus accommodate a higher data transmission rate.

4.2. Example 2: 2/3 Encoder. The second example is of an
encoder with a higher rate of 2/3, which has the impulse
generator matrix as

g =
[

gL1

∣

∣gL2

]

=

⎡

⎢

⎢

⎢

⎣

1 0 0 0

0 1 0 0

0 1 0 0

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 1

1 0 1 0
1 0 0 1

⎤

⎥

⎥

⎥

⎦

.
(10)

The structural diagram of this encoder can be referred in
Appendix A. Again, a specific update rule for this encoder
can be derived as

b1(t)new = fa

(

1

3
[r1(t)b2(t − 1)b2(t − 2)b2(t − 3)

+ r2(t + 1)b2(t + 1)b2(t − 1)

+r3(t + 1)b2(t + 1)b2(t − 2)]),

b2(t)new = fa

(

1

7
[r2(t)b1(t − 1)b2(t − 2)

+ r3(t)b1(t − 1)b2(t − 3)

+ r1(t + 1)b1(t + 1)b2(t − 1)b2(t − 2)

+ r1(t + 2)b1(t + 2)b2(t + 1)b2(t − 1)

+ r2(t + 2)b1(t + 1)b2(t + 2)

+ r1(t + 3)b1(t + 3)b2(t + 2)b2(t + 1)

+r3(t + 3)b1(t + 2)b2(t + 3)]).

(11)

As the above expression shows, for a higher rate encoder,
there are more terms involved in the update formula,
because the estimation of one source message also relies
on the estimation of the other message. This dependent
characteristic is predictable because both sources share a
common encoder; hence the output of the encoder would
therefore contain the mixture of information from both
inputs. As expected the update rule can be portrayed as a
neural model because, in essence, this decoding algorithm
shares the same underlying principle as a typical error-back-
propagation neural network model.



6 Advances in Artificial Intelligence

r1(t)

r2(t + 1)

r3(t + 1)

r1(t + 1)

r1(t + 2)

r1(t + 3)

r2(t)

r2(t + 2)

r3(t)

r3(t + 3)

b1(t − 1)
b1(t + 1)

b1(t + 2)

b1(t + 3)

b2(t − 3)

b2(t − 2)

b2(t − 1)

b2(t + 1)

b2(t + 2)
b2(t + 3)

∑

∑

1/3

1/7
fa

fa

b2(t)new

b1(t)new

Figure 4: The neuron diagram of the RNN decoder in example 2.

Figure 4 illustrates the structure of one neuron. For a
message sequence that has T bits, then T neurons can be
constructed using the same structure except that each neuron
would then possess an extra delay in every term if compared
to a previous neuron. The whole neural network decoder
is completed when all the neurons are connected together
shown in Figure 5.

The main stages in decoding are outlined as follows.
At first the receiver observes the incoming code words in
parallel. In this case, it would be denoted as r1(t), r2(t), and
r3(t), respectively, and each code word is T bits long. Initially
all the estimated bits are uniformly set to one. Then the three
code words enter the neural network that also contains T
number of neurons. The received code words would interact
with estimated message sequence, denoted by b1(t + a) and
b2(t + a), as depicted in Figure 5, producing another set of
newly estimated sequences. The newly estimated messages
will replace the previous one, completing one cycle of
decoding. The updated estimated will reinteract with the
same code word until another set of updated messages
replaces the current one. This iteration process continues
repeatedly until the stopping criterion has been triggered
by the decoder. Then the most current estimate will pass
through a hard-limiting function in order to transform the
soft values back into the binary symbols, before releasing as
the final decoded output.

In addition, a higher code rate can increase the speed
of signal transmission, as K bits in parallel are fed to the
encoder, which produces N bits in parallel. Therefore the
investigation of this encoder is of importance because it can
verify the capability of this algorithm for processing multiple
streams of data simultaneously. For this particular encoder,
each input can represent the message source from one user,
and both users share a common encoder. It would also
imply that the hardware cost can be reduced when applied
in practice because less number of encoders is required.

5. Simulation Results and Discussion

A simulated digital communication system using the two
encoders described in the previous section was designed in
order to verify the bit error rate (BER) performance of the
RNN decoding scheme. For the sake of convenience, the rate
1/2 encoder and the rate 2/3 encoder shall be referred as
encoders A and B, respectively, from this point on.

All the simulations were conducted by calculating the
BER of decoding the encoded messages that are randomly
generated and passed through an AWGN channel. The
message sequences are transmitted in packets of different
sizes. Each packet is encoded, transmitted, and decoded
separately, and therefore the result from each packet can be
regarded as independent. Numerous numbers of packets (in
order of thousands) are required in order to truly reflect
the BER in the specified signal to noise (SNR) range [21].
In addition, uncoded BPSK and conventional soft-decision
Viterbi decoders are also implemented in the simulation as a
benchmark for comparison.

5.1. Effect of Pack Size. The main objective in this simulation
is to investigate the effect of different packets sizes for the
RNN decoder. The simulated Eb/No span is from 0 to 6 dB. A
total of more than 80000 test bits are sent across to measure
the BER accurately. The packets sizes simulated were 8, 16,
32, and 64 bits per packet. Each packet is decoded for 20
cycles of iterations before producing the final result.

The simulations results are summarised in Figures 6 and
7. It shows that the packet size does not impose too much
effect for encoder A (i.e., single input), whereas the effect is
much more significant for encoder B (i.e., multiple inputs).
At this point of research, the authors speculate that this
phenomenon might be related to the initial header registers
that are in front of every packet. These registers, because
their states are already known prior to decoding, therefore



Advances in Artificial Intelligence 7

r1(t)

r2(t)

r3(t)

Neuron (a = 0)

Neuron (a = 1)

Neuron (a = T)

Neural network

b1(t + a)

b2(t + a)
Update new b(t)

estimate

Final b(t)

b
2
(t

) n
ew

b
1
(t

) n
ew

St
o

p
p

in
g

cr
it

er
io

n

Figure 5: A conceptual diagram of the complete neural network decoder.

B
E

R

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

0 1 2 3 4 5 6

Uncoded BPSK

RNN-16 bits

RNN-32 bits

Viterbi
RNN-64 bits

RNN-8 bits

Figure 6: BER of the RNN decoder for a rate 1/2 encoder in
different packet sizes.

act as a perfect guide for the initial few bits of the estimated
message. As the length of the message increases however,
such effect is gradually diminished, leading to more errors
propagate along the later parts of the message. This problem
is more noticeable for encoder B because the estimation of
one message also depends on the estimation of the other;
hence errors are more likely to propagate and grow much
more rapidly than for encoder A.

Nevertheless, the BER for encoder A is indeed com-
parable to the conventional Viterbi decoder. Similarly, this
simulation also shows that the performance margin between
encoder B and VA is close too, when the packet sizes are
relatively small.

Therefore it can be concluded that when a multiple input
encoder is going to be employed into a system with neural
network decoders, then the size of the transmitted packet
will have an impact on the decoding accuracy. As long as the

Packet size

64

32

16
8

B
E

R

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

0 1 2 3 4 5 6

Uncoded BPSK

RNN-8 bits

Viterbi

RNN-16 bits

RNN-32 bits

RNN-64 bits

Figure 7: BER of the RNN decoder for a rate 2/3 encoder in
different packet sizes.

packet size is kept as small as possible, the RNN decoder can
provide an impressive performance.

5.2. Effect of Different Number of Iterations. A simulation was
carried out to observe any changes in the BER for the RNN
decoder in different numbers of iterations. This information
is especially useful in implementing the first method of the
stopping criterion as discussed earlier. In this investigation
the SNR has to be fixed at 2 dB, and then the BER were
recorded for the RNN decoder undergoing different numbers
of iterations.

Figure 8 shows that for encoder A the BER drops sharply
after only a few initial cycles of iterations. After the drop,
the errors rises again continuously on a constant slope as
the number of iterations increases, which is different to
what one would normally expect. This is more evident for
transmission of large packets (i.e., 32 or 64 bits). This implies



8 Advances in Artificial Intelligence

Packet size

SNR = 2 dB

B
E

R

10−4

10−3

10−2

10−1

Iteration number

5 10 15 20 25 30 35 40 45 50

Uncoded BPSK

Viterbi

RNN-8 bits

RNN-16 bits

RNN-32 bits

RNN-64 bits

Figure 8: BER of the RNN decoder for a rate 1/2 encoder in
different iterations at an SNR of 2 dB.

Packet size

64

32

16

8

SNR = 2 dB

B
E

R

10−3

10−2

10−1

100

Iteration number

5 10 15 20 25 30 35 40 45 50

Uncoded BPSK

RNN-8 bits

RNN-16 bits

RNN-32 bits

Viterbi
RNN-64 bits

Figure 9: BER of the RNN decoder for a rate 2/3 encoder in
different iterations at an SNR of 2 dB.

that designer must consider cautiously the iteration number
when applying encoder A into the system. If the iteration
number is set too high, then not only is extra decoding time
wasted but also the decoder would produce more errors than
expected, which ends up as a “double-lose” situation.

Conversely, such problem is not so obvious for encoder
B, as shown in Figure 9. However the decoder needs to have
a few more iterations before the BER starts converge to an
approximately constant value. The result of this simulation
further reinforces that the coding gain is not always propor-
tional to the number of iterations in the decoding process.
This becomes another advantage of adapting RNN decoders,
because the decoding time can be further conserved by
keeping just a small iteration number. This finding coincides
with the results obtained from Turbo codes [22, 23], where
the iteration number for the Turbo decoder is usually
kept around five, since there is only small performance
improvement after that.

5.3. Effect of Stopping Criterion. The objective of this simula-
tion is to compare the decoding performance of employing

B
E

R

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 (dB)

0 1 2 3 4 5 6

Uncoded BPSK

Viterbi

RNN-SC

RNN-extension of SC

Figure 10: BER of the RNN decoder for a rate 1/2 encoder under
two different stopping criterions.

the simple criterion and the extension of this criterion
described in Sections 3.2 and 3.3, respectively. Other than
the final BER, the average number of iterations taken before
triggering the criterion and terminating the decoding is
also recorded down. This parameter is important because
this number is directly linked with the required processing
time of decoder. Since the main goal of using the stopping
criterion is to reduce the decoding time, hence ideally this
parameter should be as small as possible.

For both encoders, the maximum number of iterations
is restricted to 50, in case that the stopping criterion (SC)
is never fulfilled, and there is no obvious performance gain
beyond that point (shown from Figures 8 and 9). The
extention of SC simply adds another minimum threshold of
5 iterations before SC can be triggered. This threshold value
is derived from observing the simulation results, where the
BER drops sharply after the first five cycles of iterations. The
packet size is fixed at 8 bits. The following table summarises
the results on the iteration number when adapting different
stopping criterions.

When the extension of SC is applied, both decoders
would need an extra few cycles before the decoding process
terminates. This is reflected on about 10% increase in the
decoding time. However, for the slight increase in time,
the BER has decreased significantly after this modification.
Figures 10 and 11 show that this improvement is more
obvious at a higher SNR. Both encoders demonstrate this
outstanding performance improvement achieved in the
extension of SC; as a result they are all very comparable with
the conventional Viterbi decoders.

The simple criterion however, due to its simplicity in
the design, would terminate decoding when the estimate is
located on first local minimum of the noisy energy function.
Although this method uses the least time in simulation, the
results are not as satisfactory as expected. The difference
between SC and the extension of SC is more pronounced
for encoder B (multiple inputs) than for encoder A (single
input). In short, the extension of the simple stopping



Advances in Artificial Intelligence 9

Table 1: Average number of iterations required to reach the stopping criterion.

Encoder A (rate 1/2) Encoder B (rate 2/3)

Stopping criterion Extension of SC Stopping criterion Extension of SC

Average iterations 3.04 6.02 4.6 6.3

B
E

R

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Eb/N0 (dB)

0 1 2 3 4 5 6

Uncoded BPSK

Viterbi
RNN-SC

RNN-extension of SC

Figure 11: BER of the RNN decoder for a rate 2/3 encoder under
two different stopping criterions.

criterion is an efficient way of yielding the optimal decoding
accuracy in a minimum amount of time.

6. Conclusions

In conclusion, a mathematical model of a general rate K/N
convolutional encoder and recurrent neural network decoder
is developed and analysed in this paper. A theoretical model
of a rate K/N convolutional encoder, based on noise energy
function, is derived. Then the task of decoding the encoded
message that is corrupted in noise reduces to a problem of
minimisation of this multivariable noise energy function.
The problem of decoding is solved using the gradient descent
algorithm. Such algorithm can be modelled as a recurrent
neural network. The complexity of such approach remains as
a polynomial function of the order of the encoder, which is
lower than the complexity of conventional techniques, that is,
an exponential function. The independency of each neuron
enables possible parallel-processing to further increase the
decoding efficiency.

In order to verify the theoretical findings and perfor-
mance of the RNN decoder from various aspects, simulations
were carried out by using two encoders with rates 1/2 and
2/3. All results show that the packet size and the number
of iterations have certain influence on the BER performance
of the decoder. However, as long as the packet size is kept
relatively small and employs a suitable stopping criterion,
then the RNN decoder achieves a similar decoding accuracy
with the traditional Viterbi decoders, with a reduction in
complexity. Therefore this decoding algorithm, which has
the same decoding performance and has more desirable

b1(t)

b1(t − 1)

b1(t − 2)

b2(t)

b2(t − 1)

b2(t − 2)

b2(t − 3)

γ1(t)

γ2(t)

γ3(t)

Figure 12: The structural diagram of the rate 2/3 convolutional
encoder.

characteristics that are superior to the conventional decoder,
will possess great potentials for future communication
systems.

Appendix

A. The Computational Complexity of
the RNN Decoder

In an earlier paper, Secker has analysed the computational
complexity and speed of the RNN decoder [15]. However,
that study was limited for a rate 1/n convolutional encoder
(i.e., single-input encoders). An extension of that study has
been undertaken using a similar approach, to derive the
RNN complexity for a general rate K/N encoder having any
arbitrary number of inputs and outputs.

The first assumption is that the RNN decoder has T + 1
number of neurons, where T is typically chosen to be about
five times the constraint length of the convolutional code. For
a general case, we can choose T as To, which is the maximum



10 Advances in Artificial Intelligence

number of constraint length out of all subencoders. Thus the
number of neurons is

Numneurons = T + 1 = 5To + 1. (A.1)

The complexity of each neuron can be examined via analysis
of the update equation for each neuron as given in

bk′(t + a)new

= fa

⎛

⎜

⎜

⎝

1
∑

gk′

T0
∑

s=1

N
∑

n=1

(

gk
′

n,sk′

)

×

⎡

⎢

⎢

⎣

rn(t + s + a− 1)
K
∏

k=1

Lk
∏

ik=1
ik′ /= s

bk(t + s + a− ik)g
k
n,ik

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

,

(A.2)

where K ,N , and L denote the number of input, the number
of output, and the constraint length of a subencoder.

A.1. Number of Additions. Equation (A.2) only shows the
update equation for one input. For a K-input encoder, we
can see there are K(To ×N) in the summation and terms for
which gk′n,sk′ /= 0.

Thus, the number of addition operations required is

Numadd/neuron =

K
∑

k′=1

⎡

⎣

⎛

⎝

T0
∑

s=1

N
∑

n=1

(

gk
′

n,sk′

)

⎞

⎠− 1

⎤

⎦. (A.3)

In the worst case, wehre all gk
′

n,sk′
terms are one (i.e., the

encoder generator matrix, g, has all ones and no zeros), the
number of additions per neuron is

Numadd/neuron = K(ToN − 1) = KToN − K. (A.4)

Moreover, we will assume that all subencoders’ constraint
lengths are equal; thus we will denote To as L from this point
on. As there are 5L + 1 neurons to be updated per iteration,
the total number of additions per iteration of the network in
the worst case is

Numadd/iter = (5L + 1)× (KLN − K)

= 5KL2N − 5LK + KLN − K

= L2(5KN) + L(KN − 5K)− K.

(A.5)

For a rate 1/n encoder (i.e., K = 1), the expression would fall
equal to the equation obtained in [15], which is a special case
of this general expression.

Thus, given a fixed number of encoder input K and
output N, the number of additions per iteration can at worst
increase polynomially with the encoder constraint length, L.
With fixed L, the number of additions per iteration can at
worst increase linearly with N and K. The order of addition
complexity can be expressed as

Numadd/iter = O
(

KNL2
)

. (A.6)

A.2. Number of Multiplications. From inspecting equation
(A.2), we can see that the bulk of multiplication operations
occurs from the term inside the square brackets as shown in

rn(t + s + a− 1)
K
∏

k=1

Lk
∏

ik=1
ik′ /= s

bk(t + s + a− ik)g
k
n,ik . (A.7)

The number of multiplication operations required to evalu-
ate this expression depends on the elements of the generator
matrix of that subencoder, gkn,ik , that can be calculated as

K
∑

k=1

Lk
∑

ik=1
ik /= s

gkn,ik . (A.8)

Bearing in mind that the above expression only accounts for
one subencoder, therefore the total number of multiplication
per neuron for K number of subencoders is

Nummult/neuron =

K
∑

k′=1

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 +
To
∑

s=1

N
∑

n=1

⎡

⎢

⎢

⎣

(

gk
′

n,sk′

)

K
∑

k=1

Lk
∑

ik=1
ik /= s

gkn,ik

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

(A.9)

where the +1 term is included for the multiplication by
1/

∑

gk
′

as in (A.2). In the worst case scenario, where all the
elements of the encoder generator for all subencoders are
1, the number of multiplications per neuron is (assuming
L = To = Lk, for k = 1, . . . ,K)

Nummult/neuron = K(1 + NLK(L− 1))

= K
(

1 + NKL2 −NKL
)

= K + NK2L2 −NK2L.

(A.10)

As there are 5L + 1 neurons to be updated per iteration, the
total number of multiplications per iteration of the network
is (in the worst case)

Nummult/iter = (5L + 1)
(

K + NK2L2 −NK2L
)

= 5LK + 5NK2L3 − 5NK2L2

+ K + NK2L2 −NK2L

= 5NK2L3 − 4NK2L2 + KL(5−NK) + K.

(A.11)

Once again, this expression would fall equal to the equation
obtained in [15], which is a special case of a 1/n encoder.

Thus, given a fixed number of encoder input K and
output N, the number of multiplications per iteration can
at worst increase polynomially with the encoder constraint
length, L. With fixed L, the number of multiplications
per iteration can at worst increase linearly with N and
polynomially with K. The order of multiplication complexity
can be expressed as

Nummult/iter = O
(

NK2L3
)

. (A.12)



Advances in Artificial Intelligence 11

It is interesting to note from the above expression that the
number of inputs, K, has a stronger impact on the number of
multiplications required than on the number of outputs, N.
This was not discovered in the previous work before because
only a single input encoder was assumed.

References

[1] S. Haykin, Communication Systems, John Wiley & Sons, New
York, NY, USA, 4th edition, 2000.

[2] D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps,
C. A. Rodger, and J. R. Wall, Coding Theory: The Essentials,
Marcel Dekker, New York, NY, USA, 1991.

[3] S. B. Wicker, Error Control Systems for Digital Communication
and Storage, Prentice-Hall, Upper Saddle River, NJ, USA, 1995.

[4] A. Viterbi, “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm,” IEEE Transac-
tions on Information Theory, vol. 13, no. 2, pp. 260–269, 1967.

[5] B. Vucetic and J. Yuan, Turbo Codes: Principles and Applica-
tions, Kluwer Academic Publishers, Norwell, Mass, USA, 3rd
edition, 2002.

[6] M. Jézéquel and R. Pyndiah, Eds., Turbo Codes: Error-
Correcting Codes of Widening Application, Hermes Penton
Science, London, UK, 2002.

[7] A. D. Houghton, The Engineer’s Error Coding Handbook,
Chapman & Hall, London, UK, 1st edition, 1997.

[8] W. C. Huffman and V. Pless, Fundamentals of Error-Correcting
Codes, Cambridge University Press, Cambridge, UK, 2003.

[9] M. Ibnkahla, “Applications of neural networks to digital
communications: a survey,” Signal Processing, vol. 80, no. 7,
pp. 1185–1215, 2000.

[10] A. Rantala, S. Vatunen, T. Harinen, and M. Aberg, “A silicon
efficient high speed L = 3 rate 1/2 convolutional decoder using
recurrent neural networks,” in Proceedings of the 27th European
Solid-State Circuits Conference (ESSCIRC ’01), pp. 441–444,
Villach, Austria, September 2001.

[11] M. E. Buckley and S. B. Wicker, “The design and performance
of a neural network for predicting turbodecoding error with
application to hybrid ARQ protocols,” IEEE Transactions on
Communications, vol. 48, no. 4, pp. 566–576, 2000.

[12] J. Bruck and M. Blaum, “Neural networks, error-correcting
codes, and polynomials over the binary n-cube,” IEEE Transac-
tions on Information Theory, vol. 35, no. 5, pp. 976–987, 1989.

[13] X.-A. Wang and S. B. Wicker, “An artificial neural net Viterbi
decoder,” IEEE Transactions on Communications, vol. 44, no. 2,
pp. 165–171, 1996.

[14] A. Hamalainen and J. Henriksson, “Novel use of channel
information in a neural convolutional decoder,” in Proceedings
of the IEEE-INNS-ENNS International Joint Conference on
Neural Networks (IJCNN ’00), vol. 5, pp. 337–342, Como, Italy,
July 2000.

[15] S. M. Berber, P. J. Secker, and Z. A. Salcic, “Theory and
application of neural networks for 1/n rate convolutional
decoders,” Engineering Applications of Artificial Intelligence,
vol. 18, no. 8, pp. 931–949, 2005.

[16] S. M. Berber, “Soft output decision convolutional (SONNA)
decoders based on the application of neural networks,”
Engineering Applications of Artificial Intelligence, vol. 21, no. 1,
pp. 1–13, 2008.

[17] P. J. Secker, S. M. Berber, and Z. A. Salcic, “A generalised
framework for convolutional decoding using a recurrent
neural network,” in Proceedings of the Joint Conference of the
4th International Conference on Information, Communications

& Signal Processing, and the 4th Pacific Rim Conference
on Multimedia (ICICS-PCM ’03), vol. 3, pp. 1502–1506,
Singapore, December 2003.

[18] P. J. Black and T. H.-Y. Meng, “A 1-Gb/s, four-state, sliding
block Viterbi decoder,” IEEE Journal of Solid-State Circuits, vol.
32, no. 6, pp. 797–805, 1997.

[19] G. Fettweis and H. Meyr, “High-speed parallel Viterbi decod-
ing: algorithm and VLSI-architecture,” IEEE Communications
Magazine, vol. 29, no. 5, pp. 46–55, 1991.

[20] S. M. Berber and Y.-C. Liu, “Theoretical interpretation and
investigation of a 2/n rate convolutional decoder based
on recurrent neural networks,” in Proceedings of the Joint
Conference of the 4th International Conference on Information,
Communications & Signal Processing, and the 4th Pacific Rim
Conference on Multimedia (ICICS-PCM ’03), vol. 2, pp. 1201–
1205, Singapore, December 2003.

[21] S. M. Berber, “An automated method for BER characteristics
measurement,” IEEE Transactions on Instrumentation and
Measurement, vol. 53, no. 2, pp. 575–580, 2004.

[22] L. Trifina, H. G. Balta, and A. Rusinaru, “Decreasing of
the turbo MAP decoding time using an iterations stopping
criterion,” in Proceedings of the 7th International Symposium
on Signals, Circuits and Systems (ISSCS ’05), vol. 1, pp. 371–
374, Lasi, Romania, July 2005.

[23] B.-S. Shim, D.-H. Jeong, S.-J. Lim, and H.-Y. Kim, “A new
stopping criterion for turbo codes,” in Proceedings of the
8th International Conference on Advanced Communication
Technology (ICACT ’06), vol. 2, pp. 1107–1111, Phoenix Park,
Korea, February 2006.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


