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ARTICLE

A general reaction mechanism for carbapenem
hydrolysis by mononuclear and binuclear
metallo-β-lactamases
María-Natalia Lisa 1,10, Antonela R. Palacios1, Mahesh Aitha2, Mariano M. González1, Diego M. Moreno3,4,

Michael W. Crowder2, Robert A. Bonomo5,6,7, James Spencer8, David L. Tierney2,

Leticia I. Llarrull1,9 & Alejandro J. Vila1,7,9

Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are

last resort drugs for infections by such organisms. Metallo-β-lactamases (MβLs) are the main

mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are

currently unavailable as design has been limited by the incomplete knowledge of their

mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis

by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the

mono-Zn(II) B3 GOB-18. These MβLs hydrolyse carbapenems via a similar mechanism, with

accumulation of the same anionic intermediates. We characterize the Michaelis complex

formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to

propose a chemical mechanism for mono and binuclear MβLs. This common mechanism

open avenues for rationally designed inhibitors of all MβLs, notwithstanding the profound

differences between these enzymes’ active site structure, β-lactam specificity and metal

content.
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C
arbapenems are “last resort” drugs for treating infections
from multi-resistant Gram-negative pathogenic bacteria1–
3. Their action is continuously challenged by the emer-

gence and spread of new resistance mechanisms4, 5. As a con-
sequence, infections caused by resistant microorganisms fail to
respond standard treatments, resulting in prolonged illness and
greater risk of death2. Carbapenem-resistant Gram-negative
bacteria are rapidly emerging as a cause of opportunistic
healthcare-associated infections, with high mortality rates6. This
situation has led to a “global crisis” of antibiotics that is exacer-
bated by the lack of novel agents effective against these
pathogens2.

Resistance to carbapenems in Gram-negative bacteria is mostly
due to the production of carbapenemases (carbapenem-hydro-
lysing β-lactamases). Metallo-β-lactamases (MβLs) are one of the
largest and most efficient family of carbapenemases7–10. These
enzymes employ Zn(II) as an essential cofactor to cleave the β-
lactam ring and inactivate these antibacterial agents7, 10. Most
MβLs are broad-spectrum enzymes that also hydrolyse penicillins
and cephalosporins. These facts, together with the worldwide
dissemination of MβL-encoding genes, raise an alarming clinical
problem8. In particular, the gene coding for the NDM-1 MβL has
rapidly spread worldwide, not only in clinical settings but also in
the environment11, 12. Inhibitors developed for the serine-β-
lactamases are not effective against MβLs, and specific inhibitors
for MβLs are not yet available for clinical use7, 9, 10.

The design of an efficient MβL inhibitor has been limited by
the structural diversity of the different members of this enzyme
family7. MβLs are classified into three different subclasses: B1, B2,
and B3, which differ in their active site structures, zinc stoi-
chiometry, loop architectures, and substrate profiles7. Most MβLs
possess a binuclear active site in which two Zn(II) ions (Zn1 and
Zn2) are bridged by a hydroxide (Fig. 1). This stoichiometry is
found in B1 and in most B3 enzymes, in which Zn1 is tetra-
hedrally coordinated to three histidine ligands (3 H site) and the
bridging hydroxide13–16. However, the ligand set of Zn2 differs: in
B1 enzymes it is provided by residues Asp120, Cys221, and
His263 (DCH site)14, while in B3 MβLs it involves residues
Asp120, His121, and His263 (DHH site)15; in both cases the ligand
set is completed by one or two water molecules. Notably, in B2 and
in some B3 enzymes, residue His116 is replaced by less common
and weaker metal binding ligands, such as Asn or Gln, respectively,
giving rise to active mono-Zn(II) MβLs with the metal ion located
in the Zn2 site16–18. These mononuclear enzymes display further
functional and structural diversity: B2 enzymes only hydrolyse
carbapenems17 and display a DCH-like Zn2 site17, while the B3
MβL GOB-18 from Elizabethkingia meningoseptica is a broad-
spectrum enzyme which is active as a bi-Zn(II) or as a mono-Zn
(II) enzyme with the metal ion bound to the canonical Zn2 (DHH)
site present in binuclear B3 enzymes (Fig. 1)16, 19.

This structural diversity has led to different mechanistic
proposals10, which mostly have involved a controversy about: (1)
the essentiality of the different Zn(II) sites20–23; (2) the identity of
the nucleophile, which has been proposed to be the Zn1-bound
hydroxide in bi-Zn(II) enzymes based on biochemical evidence22,
24, 25, but has not been identified in mononuclear variants; (3) the
identity of the proton donor to the β-lactam amide nitrogen; (4)
the substrate binding mode26, 27, and (5) the identification of
mechanistic intermediates28. In this last regard, nitrocefin and
other chromogenic cephalosporins have been useful as mechan-
istic probes to identify reaction intermediates29, 30. However,
these intermediates were not detected in all cases analysed31.
Furthermore, since B2 enzymes are exclusive carbapenemases,
these MβLs cannot be effectively interrogated using these com-
pounds. Indeed, carbapenems are the only substrates common to
all MβLs7.

Structures of enzyme-product complexes of B1 and B3
enzymes with hydrolysed carbapenems have been reported,
providing structural insight into the mechanism32–34, but the
detection of reaction intermediates in carbapenem hydrolysis has
been challenging due to the limited spectroscopic properties of
these compounds. Based on a previous work in the model enzyme
BcII from Bacillus cereus28, we decided to interrogate a series of
MβLs by a combined approach using rapid-mixing techniques
coupled to a range of spectroscopies to compare the mechanistic
differences across MβL subclasses with different active sites and
metal stoichiometries. Notably, all MβLs hydrolyse carbapenems
via a similar branched catalytic mechanism that involves accu-
mulation of two productive anionic intermediates. The proposed
structures for these intermediates allow us to suggest the proton
donors in this mechanism. Mono-Zn(II) enzymes additionally
reveal accumulation of the Michaelis complex, in contrast to bi-
Zn(II) MβLs. We attribute this difference to the involvement of a
metal-activated nucleophile in binuclear enzymes, which accel-
erates the first chemical step of the reaction; thereby suggesting
that nucleophile activation in mono-Zn(II) enzymes does not
involve the metal site. These findings suggest that design strate-
gies for inhibitors active against the full range of MβLs should be
based upon these common mechanistic features, overcoming the
challenge posed by the structural diversity of these enzymes.

Results
Imipenem hydrolysis by a mono-Zn(II) B3 MβL. The presence
of two metal ions in binuclear MβLs complicates spectroscopic
studies as the individual signatures of the two metal sites overlap.
Thus, we initially studied mono-Zn(II) enzymes. Subclass B3
GOB enzymes have a Gln residue at position 116, replacing the
usual His ligand, and thus impairing metal binding at the Zn1 site
(Fig. 1). This enzyme can be active either as a bi-Zn(II) or as a
mononuclear enzyme with the metal ion located in the Zn2
(DHH) site16, 19. We studied imipenem hydrolysis catalysed by
mono-Zn(II)-GOB-18 under pre-steady-state conditions using a
photodiode-array detector coupled to a stopped-flow device.

Substrate consumption during hydrolysis was monitored
following absorbance at 300 nm (Abs300 nm). Progress curves
showed a lag phase followed by a triphasic decrease in Abs300 nm
(Supplementary Fig. 1a). Time-resolved spectra corresponding to
the full duration of the reaction were then acquired. Difference
spectra showed accumulation of a species absorbing at 340 nm
during the first fast phase (Fig. 2a, Supplementary Fig. 1 and
Supplementary Table 1), suggesting the presence of a reaction
intermediate absorbing at this wavelength. The progress curves
could not be fit to any simple linear kinetic model (Supplemen-
tary Fig. 2a–f). Instead, the minimal kinetic scheme that
accounted for the kinetic traces at both wavelengths required a
branched pathway involving two productive intermediate species
(EI1 and EI2), where EI2 is the species absorbing at 340 nm in the
difference spectra (Fig. 3 and Supplementary Fig. 2g–i).

Simulation of the time evolution of the different species in the
reaction, based on the kinetic parameters of this branched model,
reveals significant population of the Michaelis complex (ES) prior
to accumulation of EI2 (Supplementary Fig. 3a). The simulation
further reveals accumulation of EI2 in greater amounts than EI1,
in agreement with the lack of a direct observation of the
absorption features of EI1. Thus we next designed different
experiments to characterize ES and EI2, exploiting the different
time frames of their maximal accumulation.

The Michaelis complex was characterized by rapid-freeze-
quench mixing experiments coupled to X-ray absorption spectro-
scopy, which allows for monitoring of the coordination sphere of
the metal site. We studied mono-Zn(II)-GOB-18 in the resting
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state, a mixture of this enzyme and imipenem after 10 ms of
reaction (where ES is predicted to be the major species), and the
final enzyme-product (EP) complex (Supplementary Fig. 3b). The
Zn K-edge spectrum for mono-Zn(II)-GOB-18 in the resting
state19 showed a first coordination shell of 4 N/O at a mean
distance of 2.01 Å (including 2 His ligands; Table 1), consistent
with the coordination sphere of the Zn2 centre observed by X-ray
crystallography (Fig. 1)16. After 10 ms of reaction with imipenem,
the average Zn−N/O bond length increased to 2.07 Å, with the
increase in distance being consistent with a larger coordination
number in the enzyme-substrate complex (Table 1, Supplemen-
tary Fig. 4a and Supplementary Table 2). The first shell bond
length in the product complex remained substantially longer than
in the resting enzyme at 2.08 Å (Table 1, Supplementary Fig. 4b
and Supplementary Table 2), suggesting that the Zn(II) ion
progressed from four-coordinate in the resting state to
five-coordinate in the Michaelis (ES) and product (EP)
complexes. The XANES spectra (Supplementary Fig. 5) showed
a dramatic increase in the white line intensity that was retained in
the product complex, which was consistent with an increase in
the coordination number in both ES and EP. Based on fits to the
EXAFS data, we suggest this represents incorporation of the C-3
carboxylate as a ligand of Zn2, with retention of the metal-bound
water molecule present in the resting state enzyme.

We performed the hydrolysis reaction under conditions in
which the accumulation of EI2 is maximized. The difference
spectrum recorded by the photodiode array at 600 ms displayed
the absorption band of EI2 (Supplementary Fig. 3c). These
features confirm the presence of a reaction intermediate but do
not provide structural information. To better characterize EI2, we
then studied mono-Co(II)-GOB-18. This species is active against
imipenem, with similar KM but ten-fold smaller kcat values
compared to mono-Zn(II)-GOB-1819, 35. The lower catalytic
efficiency of the Co(II) derivative (Supplementary Table 3) and
the rich spectroscopic features of the Co(II) ion, provide an
opportunity to monitor changes in the metal coordination sphere
during turnover and to determine the individual rate constants
for formation/disappearance of intermediate species. Resting state
mono-Co(II)-GOB-18 is pentacoordinate, according to the ligand
field bands in the visible range35. After rapid mixing of imipenem
and mono-Co(II)-GOB-18, time-resolved spectra showed these
ligand field bands to disappear and give rise to new features,
indicating that changes occurred in the coordination geometry of
the Co(II) site (Fig. 2b and Supplementary Fig. 6). Later, an
intense absorption band developed at 340 nm whose subsequent
decay was coincident with a recovery of the ligand field features of
resting mono-Co(II)-GOB-18, as evidenced by well-defined
isosbestic points (Fig. 2b, Supplementary Fig. 6e and Supplemen-
tary Table 1). Kinetic traces monitoring reaction at 300 nm
(reporting on substrate-bound (ES) and intermediate species),
340 nm (intermediate species), and 635 nm (ligand field bands of
the Co(II) ion in the resting enzyme) at different enzyme:

substrate ratios fitted to a mechanism with two productive
reaction intermediates, similar to mono-Zn(II) GOB-18 (Supple-
mentary Fig. 7). In this mechanism, the absorption peak at 340
nm can also be attributed to EI2. The smaller molar extinction
coefficients at 635 nm estimated for the ES and EI complexes,
compared to the values for the resting state enzyme (E), suggest
an increase in the coordination number upon substrate binding
and during turnover36, in agreement with the EXAFS data for the
Zn(II)-enzyme (Table 1). Recovery of the ligand field bands to
intensities observed for the resting enzyme took place after
consumption of this intermediate. We conclude that the metal ion
in Co(II)-GOB is hexacoordinated in ES, EI1, and EI2. Thus,
catalysis by mono-Zn(II) and Co(II)-GOB follow the same
reaction mechanism, with expansion of the coordination number
during turnover, differing only by the presence of an additional
water molecule in the Co(II) variant.

Imipenem hydrolysis by a mono-Zn(II) B2 MβL. We next
applied similar approaches to study imipenem hydrolysis by the
mono-Zn(II) B2 lactamase Sfh-I. Transient peaks in
absorbance spectra of the complete reaction time course obtained
by stopped-flow absorption spectroscopy revealed accumulation
of two species. First, a species with a maximum at 390 nm
decayed during the early phases of the reaction and next, the
absorbance at 340 nm increased and then decreased (Fig. 2c,
Supplementary Fig. 8 and Supplementary Table 1). The latter
resembles the spectral features observed for EI2 during the
hydrolysis of imipenem by mono-Zn(II)-GOB-18 (Fig. 2a),
allowing us to conclude that the species absorbing at 390 nm may
correspond to intermediate EI1 that was derived from the fitting
but could not be observed in the case of mono-Zn(II)-GOB-18.

In order to better characterize these two intermediates, we
carried out a series of experiments at lower concentrations of
mono-Zn(II)-Sfh-I and imipenem, with the aim of reducing the
hydrolysis rate. Although the low signal-to-noise ratio at 390 nm
precluded monitoring of EI1 during the reaction, traces were
recorded at 300 and 340 nm and analysed by simultaneous global
fitting. We could not fit these data to any linear mechanism
involving both intermediates. Instead, these data could be
accounted for by assuming the same branched mechanism
employed for mono-Zn(II)-GOB-18 (Fig. 3 and Supplementary
Fig. 9). Thus, despite having different metal sites, mono-Zn(II)-
GOB-18 and mono-Zn(II)-Sfh-I follow the same kinetic mechan-
ism for imipenem hydrolysis. This, together with the similar
absorbance properties of the EI2 species identified for each
reaction, suggests that imipenem hydrolysis by the two enzymes
occurs by the same mechanism and involves the same two
reaction intermediates. Simulation of the different species during
hydrolysis (Supplementary Fig. 10) confirms a significant
accumulation of EI1, allowing us to assign the spectral features
at 390 nm to this species.
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Fig. 1 Active sites of metallo-β-lactamases. Klebsiella pneumoniae bi-Zn(II)-NDM-1 (B1, PDB 3spu, left), Serratia fonticola mono-Zn(II)-Sfh-I (B2, PDB 3sd9,

center) and E. meningoseptica mono-Zn(II)-GOB-18 (B3, model based on PDB 5k0w, right). Zinc atoms are shown as grey spheres, and water molecules (W)

are shown as small red spheres. Coordination bonds are indicated with dashed lines
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We then monitored the reaction of mono-Zn(II)-Sfh-I with
imipenem using X-ray absorption spectroscopy. The XANES
spectra for mono-Zn(II)-Sfh-I in the resting state, 10 ms after
mixture with imipenem (when ES is the predominant enzyme
species) and in the enzyme-product complex were nearly
superimposable (Supplementary Fig. 5), indicating a lack of
appreciable rearrangement at the metal site over the course of the
reaction. This result is supported by a comparison of the EXAFS
Fourier transforms (Table 1, Supplementary Fig. 11 and
Supplementary Table 4). The only appreciable differences are a
slight enhancement of the Zn−S scattering in the first shell of the
10-ms sample, and some complex outer shell contributions at 10-
ms that disappear in the product complex, indicative of
interaction with the substrate. This observation indicates that
different metal site geometries can stabilise similar reaction

intermediates (such as those evidenced by absorption
spectroscopy).

Carbapenem hydrolysis by bi-Zn(II) B1 MβLs. Hydrolysis of
imipenem by bi-Zn(II)-NDM-1 under single turnover conditions
revealed an increase of absorbance at 390 nm during the first 2 ms
of the reaction, that then decays as another species accumulates
with an absorption at 343 nm (Fig. 4a, Supplementary Fig. 12 and
Supplementary Table 1). These spectral features can be attributed
to the two reaction intermediates, EI1 and EI2, respectively, based
on the similarities of their spectral features with those observed
for mono-Zn(II)-Sfh-I (Fig. 2c). Since the band at higher energy
(343 nm) partially overlaps with the absorption of imipenem, we
fitted the time evolution of the absorption traces at 390 nm and
300 nm at different enzyme:substrate ratios. These data could be
fitted to a mechanism with two productive intermediates (Fig. 3
and Supplementary Fig. 13), similar to that proposed for the two
mono-Zn(II) enzymes described above. In contrast to the case for
the mono-Zn(II) enzymes, the best fit was obtained when the
Michaelis complex ES was omitted from the model (Supple-
mentary Figs. 13, 14). Our data suggested that in this case for-
mation and decay of ES occurred in the dead time of the
equipment (2 ms) under all tested conditions. We also assayed
hydrolysis of another carbapenem, meropenem, by bi-Zn(II)-
NDM-1, and observed accumulation of two similar reaction
intermediates with absorption bands at 375 nm (EI1) and 336 nm
(EI2), respectively (Fig. 4b, Supplementary Fig. 15 and Supple-
mentary Table 1). Overall, these results show that binuclear B1
MβLs hydrolyse carbapenems by the same branched mechanism
as that described for the mono-Zn(II) enzymes.

To obtain further information on the nature of intermediates
populated during carbapenem hydrolysis by binuclear MβLs,
these experiments were extended to bi-Co(II)-NDM-1, which has
a similar catalytic performance (Supplementary Table 3). Analysis
of the hydrolysis of imipenem by bi-Co(II)-NDM-137 revealed
formation of an intermediate species with a strong absorption
band at 412 nm, matching the spectroscopic features previously
reported for the hydrolysis of imipenem by bi-Co(II)-BcII (Fig. 4c,
Supplementary Fig. 16 and Supplementary Table 1)28. The
characteristic ligand field bands of the Co(II) ion in the resting
enzyme (450–700 nm) disappeared upon the reaction with
imipenem, giving rise to new spectral features and revealing that
changes occurred in the geometry of the Co(II) sites (Fig. 4c and
Supplementary Fig. 16). The time courses of the absorption at 412
(the intermediate maximum), 567 and 642 nm (d–d bands) at
three different enzyme:substrate ratios were measured and fitted
to different kinetic models. The progression of the intensities at
567 nm and 412 nm showed an initial increase in intensity
followed by a decrease, and these features were assigned to EI1.
The best fits to the data were obtained using the branched
mechanism involving two productive intermediates proposed for
bi-Zn(II)-NDM-1 (Supplementary Fig. 17). The extinction
coefficients attributed to the ligand field bands for EI1 and EI2

reveal that the metal sites in these intermediates have similar
coordination geometries (Supplementary Fig. 17), both with
higher coordination numbers than in the resting state enzyme.
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We then used X-ray absorption spectroscopy to analyse
hydrolysis of imipenem by the B1 enzyme bi-Zn(II)-BcII. While
XAS of binuclear enzymes cannot resolve the features of
individual metal sites, it provides average metal site structure,
and valuable information about the Zn–Zn distance during
turnover. The EXAFS of resting bi-Zn(II)-BcII (previously
reported) could be fitted with an average first shell of 4 N/O
and 0.5 S, including 2 His ligands per Zn(II), and a Zn–Zn
separation of 3.42 Å38. After 10 ms of reaction with imipenem,
the first shell peak in the FT diminished and broadened, being
best fit with 4.5 N/O + 0.5 S per Zn(II) ion (Table 1, Supplemen-
tary Fig. 18a and Supplementary Table 5), indicating a small
increase in average coordination number, and a Zn−Zn distance
of 3.82 Å. The corresponding EP complex of bi-Zn(II) BcII and
imipenem was best fitted with similar parameters, but a
substantially shorter Zn–Zn distance of 3.51 Å (Table 1, Supple-
mentary Fig. 18b and Supplementary Table 5). Thus, changes in
the coordination geometry of the metal site are accompanied by a
significant lengthening of the Zn–Zn distance in the formed
intermediates.

Identity of the reaction intermediates. The last step in the
enzyme-catalysed hydrolysis of carbapenems is expected to be the
protonation of the N atom9, giving rise to the Δ2 tautomer, that
later equilibrates in solution to generate the more stable Δ1
tautomer with a 1:1 ratio of the α and β diastereomers (Fig. 5)39.
To investigate sites of protonation in MβL-catalysed carbapenem
hydrolysis, we determined the α:β diastereomer ratio for the
imipenem hydrolysis products of the GOB-18, Sfh-I and NDM-1
enzymes by 1H-NMR spectroscopy39. These experiments yielded
values ranging between 1:5 and 1:7, i.e., with the β diastereomer
in substantial excess, in contrast to the acid-induced hydrolysis
(Fig. 5c). This ratio can be accounted for only by assuming that,
in addition to protonation at the N atom, a diastereoselective
protonation at C-2 takes place within the enzyme active site,

whose product is the Δ1β diastereomer. Since our kinetic schemes
include two productive intermediates (EI1 and EI2), we envi-
sioned that these intermediates could present chemical differ-
ences that would favour either protonation at N or at C-2
(Fig. 5b).

In an effort to generate structural models for possible enzyme-
bound intermediates, we inspected the available crystal structures
for enzyme-product complexes of bi-Zn(II) NDM-1 with
carbapenems (pdb coordinates 4eyl32 and 4rbs). Both structures
lack a metal-bound hydroxide, which would be expected to be
present following N protonation by a metal-bound water
molecule (Supplementary Fig. 19). The absence of a metal-
bound hydroxide in the EP complexes could be instead due to C-
2 protonation within the enzyme, which would then be elicited by
water molecules present at other locations within the active site.
We used QM-MM calculations to analyse the stability of anionic
species that could give rise to these EP complexes. Simulations
starting from anionic species generated from 4eyl32 and 4rbs
converged to similar Zn(II) coordination geometries (Fig. 6a, EI),
with shorter N−Zn2 distances than those observed in the EP
crystal structures (Supplementary Table 6), consistent with the
anionic nature of the intermediates. The C-7 carboxylate resulting
from β-lactam cleavage bridges the two Zn(II) ions (Fig. 6a). The
C2–C3 and C3–N distances of the minimized structures
correspond to bond lengths intermediate between single and
double bonds in both cases, suggesting a delocalized anionic
structure for EI. This observation is in agreement with a previous
RFQ-Resonance Raman characterization of a reaction intermedi-
ate in imipenem hydrolysis by bi-Co(II)-BcII that revealed a
vibrational feature with a frequency intermediate between those
of single and double bonds28.

We also explored anionic intermediates in alternative struc-
tures containing a Zn(II)-bound water molecule, as would be
expected for a mechanism involving N protonation. The
minimized structures (EIWAT, Fig. 6b) also featured a short

Table 1 Representative EXAFS fits for mono-Zn(II)-GOB-18, mono-Zn(II)-Sfh-I and bi-Zn(II)-BcII

Reaction mixture Predominant species* Model Zn−O Zn−N Zn−S Zn−CCO2−
Zn−His Zn−Zn

Mono-Zn(II)-GOB-18 resting; Fit Zn-219 E 4N (2 His) 2.01 (7.4) 2.01 (7.4) 3.16 (20)
3.36 (4.6)
3.73 (16)
4.44 (22)

Mono-Zn(II)-GOB-18 10ms; Fit S.4a-1 ES 5 N/O 2.07 (6.4) 2.07 (6.4)

Mono-Zn(II)-GOB-18 hydrolysed imipenem; Fit S.4b-1 EP 5 N/O 2.08 (9.2) 2.08 (9.2)

Mono-Zn(II)-Sfh-I resting; Fit S.11a-3 E 3 N/O (1 His) + 1S 2.02 (4.8) 2.02 (4.8) 2.29 (3.5) 2.82 (11)
3.19 (0.1)
4.11 (17)
4.47 (12)

Mono-Zn(II)-Sfh-I 10 ms; Fit S.11b-3 ES 3 N/O (1 His) + 1S 2.02 (2.3) 2.02 (2.3) 2.29 (3.0) 2.84 (11)
3.61 (0.1)
4.26 (2.1)
4.37 (1.1)

Mono-Zn(II)-Sfh-I hydrolysed imipenem; Fit S.11c-3 EP 3 N/O (1 His) + 1S 2.02 (3.1) 2.02 (3.1) 2.29 (4.3) 2.82 (6.8)
3.17 (0.1)
4.08 (14)
4.47 (14)

Bi-Zn(II)-BcII resting38 E 4 N/O (2 His) + 0.5S + Zn–Zn 2.03 (6.3) 2.03 (6.3) 2.27 (2.6) 2.90 (3.1) 3.42 (8.3)
3.18 (5.8)
4.08 (11)
4.43 (15)

Bi-Zn(II)-BcII 10 ms; Fit S.18a-6 EI 2N (2 His) + 2.5O + 0.5S + Zn–Zn 1.97 (3.2) 1.97 (3.2) 2.3 (3.3) 2.91 (4.9) 3.82 (5.3)
2.13 (6.2) 2.13 (6.2) 3.13 (1.2)

4.20 (13)
4.43 (16)

Bi-Zn(II)-BcII hydrolysed imipenem; Fit S.18b-5 EP 4 N/O (2 His) + 0.5S + 0.5C + Zn–Zn 2.02 (6.0) 2.30 (6.0) 2.30 (7.3) 2.94 (3.3) 3.51 (8.1)
3.13 (0.9)
4.17 (14)
4.44 (21)

*The indicated predominant species is based on simulations using the models and parameters from the kinetic studies
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N–Zn2 bond, with the extra water molecule bridging the two Zn
(II) ions. Instead, the C-7 carboxylate moiety was found to bind
Zn1 only (Fig. 6b and Supplementary Fig. 20). Minimized
geometries for EIWAT also feature delocalized single and double
bonds between C2–C3 and C3–N.

Both EI and EIWAT feature a large charge delocalization onto
the unsaturated five-membered ring and the adjacent sulphur
atom (Supplementary Table 7). As a consequence, both the N and
the C-2 atoms bear small partial negative charges. Thus, specific
N or C-2 protonation may not be driven by the charges residing
on these atoms but, instead, by the availability of a proton donor.
In EIWAT, N protonation by the bridging water is favoured
(Fig. 6b), giving rise to the Δ2 tautomer. We thus explored the
distribution of water molecules in the active site in EI looking for
possible proton donors to C-2. Molecular dynamics simulations
on EI revealed the presence of several water molecules between
the hydrophilic loop L10 and the β face of the antibiotic
(Supplementary Fig. 21), confirming the feasibility of diaster-
oselective C-2 protonation within the enzyme active site in this
intermediate. Hence, we propose that the α:β diastereomer ratio
in the product of carbapenem hydrolysis by MβLs is a
consequence of the existence of two alternative protonation
routes (N or C-2 protonation), determined by two reaction
intermediates that differ in the identity and location of the proton
donor. Thus, we assign structures EI and EIWAT to the observed
reaction intermediates.

Minimization attempts on the EP complexes generated from
these intermediates gave strikingly different results. The EP
lacking the Zn(II)-bound water was stable upon geometry
minimization, resembling the geometries of the reported crystal
structures32, 33 (Supplementary Fig. 22 and Supplementary
Table 8). In contrast, the EP with the Zn(II)-bound water was
unstable in our calculations, resulting in a substantial lengthening
of the Zn2–N and Zn1–COO− distances, which may ultimately
lead to product detachment from the active site. This is consistent
with our kinetic data, which show that one of the productive
intermediates, EI1, proceeds to product with no detectable
accumulation of EP, while EI2 gives rise to stable EP complexes
in all studied enzymes. Hence, we conclude that EI1 is EIWAT,
undergoing N protonation and giving rise to the Δ2 tautomer;
while EI2 is EI, which can be protonated at C-2 rendering the Δ1
β tautomer in the form of a stable EP complex (Fig. 6). The
structures of the B3 lactamase SMB-1 with hydrolysed carbape-
nems show a Δ1 C-protonated tautomer from the β face,
supporting this proposal34. Protonation of EI1 is faster than
protonation of EI2 in all MβLs (Supplementary Table 9). The fact
that N protonation by a metal-activated water molecule is
expected to be faster, further supports the assignment of EI1 as
EIWAT. Therefore, the two intermediates proceed to products
through proton donors of distinct acidities which are located in
different positions, and conversion of EI1 into EI2 involves
dissociation of a water molecule from Zn2.

Discussion
Based on these results, we propose detailed mechanistic models
for the hydrolysis of carbapenems by binuclear and mononuclear
MβLs (Fig. 7) consistent with a unified mechanistic scheme
(Fig. 3). Despite their diverse active site structures, metal content
and substrate spectrum, MβLs share a branched mechanism
defined by the presence of two productive reaction intermediates
(EI1 and EI2) with similar spectroscopic features. We also provide
direct evidence of changes in the coordination geometry of the
metal sites.

In mono-Zn(II)-GOB, the presence of a single metal ion
demonstrates the involvement of Zn2 in catalysis as changes in its

geometry are evidenced upon formation of the Michaelis com-
plex, and of intermediate EI2 (Fig. 7a). Substrate binding takes
place by expansion of the coordination sphere of Zn2 in mono-Zn
(II)-GOB-18, as revealed by XAS data and by the time evolution
of the ligand field bands in the Co(II)-substituted enzyme. These
observations are consistent with substrate binding to the metal
ion through the carboxylate group at C-3, without dissociation of
the metal-bound water molecule (ES in Fig. 7a). In contrast, the
mono-Zn(II) B2 enzyme Sfh-I did not exhibit significant changes
in its coordination geometry during turnover. In this case, it is
likely that substrate binding takes place with dissociation of the
metal-bound water, maintaining a tetrahedral coordination
sphere.

In contrast to the case of mono-Zn(II) enzymes (Sfh-I and
GOB-18), where the Michaelis complexes are detectable during
the reaction, the concentration of the ES complex has already
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Fig. 4 Electronic absorption spectra of carbapenem hydrolysis catalysed by

binuclear MβLs. a Sequence of difference spectra upon the reaction of 150

μM imipenem and 95 μM bi-Zn(II)-NDM-1. The reaction progresses from

orange to blue spectra. The time interval covers from 0.002 to 0.07 s. b

Sequence of difference spectra upon the reaction of 100 µM meropenem

and 100 μM bi-Zn(II)-NDM-1. The reaction progresses from blue to black

spectra. The time interval covers from 0.002 to 0.05 s. c Sequence of

difference spectra upon the reaction of 450 µM imipenem and 112.5 μM

bi-Co(II)-NDM-1. The reaction progresses from green to purple spectra. The

time interval covers from 0.002 to 0.67 s. The inset shows a magnification

of the 450–720 nm region
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decayed within the dead time of the experiments with bi-Zn(II)
enzymes. We propose that substrate binding in bi-Zn(II) enzymes
takes place also by coordination of the carboxylate group at C-3
to Zn2, with detachment of the bridging hydroxide from this
metal site, thus giving rise to a potent nucleophile (ES in Fig. 7b).
A terminal hydroxide is expected to be a more efficient nucleo-
phile than a bridging hydroxide, as it is also the case for other
metallohydrolases. We thus favour the same hypothesis in this
mechanism40.

The lack of accumulation of the Michaelis complex in the
reaction catalysed by bi-Zn(II) enzymes reveals that the step
involving the nucleophilic attack (ES → EI1) is faster in these
enzymes compared to mono-Zn(II) species. The nucleophile in
bi-Zn(II) MβLs is the hydroxide moiety bound to the Zn1 ion that
is lacking in the mono-Zn(II) variants10, 22. Therefore, we con-
clude that mono-Zn(II) enzymes do not use a metal-activated
nucleophile (Fig. 7a), supporting the proposal that a hydrogen
bond network activates the nucleophilic water in mono-Zn(II)
enzymes17, 41. QM-MM calculations and the kinetic data suggest
that the two productive intermediates EI1 and EI2 correspond to
EIWAT and EI, respectively (Fig. 6), both delocalized anionic
species. The presence of a water molecule in EI1 leads us to
conclude that, in binuclear enzymes, substrate binding takes place
without replacement of the solvent molecule bound to Zn2 in the
resting state, as observed in mononuclear GOB-18 (Fig. 7). This
intermediate accumulates more in bi-Zn(II) enzymes (Fig. 4),
while EI2 shows higher levels in mono-Zn(II) variants (Fig. 2).
These results are consistent with the observation of reaction
intermediates at 390 and 380 nm in SPM-142 and IMP-2543, that
we are now able to assign to EI1. Other enzymes, such as mono-
Zn(II) Bla2 did not show accumulation of any intermediate31.

Formation of intermediate species in bi-Zn(II)-BcII is accom-
panied by a significant lengthening of the Zn(II)–Zn(II) distance,
which finally relaxes to an intermediate distance in the EP adduct.
This behaviour resembles that reported for nitrocefin hydrolysis
by the binuclear B3 enzyme L144, revealing similarities in the
ways that MβLs with different active sites stabilise similar reaction
intermediates on reaction with different substrates. The study of
bi-Co(II)-NDM-1 indicates that, compared to the resting state
enzyme, coordination geometry increases in EI1 and EI2. Rapid-
freeze-quench EPR studies on bi-Co(II)-BcII and bi-Co(II) L1
have also revealed changes in the metal geometry in the inter-
mediates28, 45. MCD spectroscopy could also be exploited with
this goal46. In EI1, the deprotonated hydrolysed-carbapenem
binds to Zn1 through the C-7 carboxylate and to Zn2 through the
C-3 carboxylate and the N atom. In EI2, the carboxylate group at
C-7 becomes a bridging ligand since it is also coordinated to Zn2
(Figs. 6, 7). The proposed coordination spheres of EI1 and EI2 in
the mono-Zn(II) enzymes are equivalent to those proposed for
Zn2 in bi-Zn(II) enzymes (Fig. 7a), further supporting the
mechanistic resemblance to the atomic level.

Protonation at the nitrogen atom in EI1 elicits product for-
mation and dissociation, restoring the active site configuration
which, in the case of binuclear enzymes, involves the nucleophilic
hydroxide (Fig. 7). Instead, protonation at C-2 in EI2 leads to
accumulation of an EP complex lacking a metal-bound water
molecule, in agreement with crystallographic evidence32, 33.
Restoring the active site configuration takes place after product
dissociation. All data here presented strongly support that EI2

undergoes a stereoselective protonation at C-2 involving a water
molecule not bound to the metal site. This mechanistic scheme is
fully consistent with all previous experimental
evidence22, 23, 28, 29, 42, 43, 45. Finally, this mechanism highlights
the difference between carbapenem and cephalosphorin hydro-
lysis. Hydrolysis of cephalosporins with poor leaving groups leads
to C-protonation by the α face30.This observation is in line with a

recent theoretical study suggesting a different proton donor in
cephalosporin hydrolysis, that remains to be tested47. The identity
of the distinct proton donors may be ultimately assessed by time-
resolved crystallography studies.

The role and essentiality of the two Zn(II) ions in MβLs has
been a matter of intense controversy22, 23, 31, 41, 48. Our study
shows that MβLs from different subclasses and with distinct metal
contents display a similar catalytic mechanism. This mechanism
identifies Zn2 (present in mononuclear and binuclear MβLs,
Fig. 1) as playing a central role in substrate binding26, in
providing electrostatic stabilisation for the negative charge of two
ring opened anionic intermediate species28, 29, and in activating
the proton donor in one of the productive branches. These
mechanistic results are in agreement with recent findings showing
that B1 enzymes require a binuclear Zn(II) site in the periplasm
to provide resistance23, and that improvements in the affinity for
the Zn2 ion improve fitness49, 50. We propose two strategies for
the first step involving the nucleophilic attack: a terminal
hydroxide bound to the Zn1 ion in binuclear enzymes, or a water
molecule activated by a hydrogen bond network in the mono-
nuclear enzymes lacking Zn1, such as Sfh-I and GOB.

The rational design of a “pan-MβL inhibitor” effective against
all such enzymes can be envisaged by exploiting these mechanistic
features that are common across the full range of enzymes and
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are independent of the active site structures and metal content.
We recently showed that a minimalistic scaffold mimicking a β-
lactam substrate can be employed as an efficient inhibitor of
MβLs from all subclasses51, 52. Efforts to design MβL inhibitors
inspired in the chemical features of these common reaction
intermediates are currently underway.

Methods
Protein production. Mono-Zn(II)-GOB-18 and bi-Zn(II)-BcII were expressed as
N-terminal fusions to glutathione-S-transferase (GST) protein and purified by
using an affinity column with a glutathione-agarose resin. GST was removed by
treatment with bovine plasma thrombin (Sigma), and the lactamases were finally
purified by ion exchange through a Sephadex CM-50 column13, 19. Mono-Zn(II)-
Sfh-I was expressed in a pET-26b plasmid (Novagen) and purified by anion
exchange (Q-Sepharose) and size exclusion (Superdex 75) chromatography17.
Bi-Zn(II)-NDM-1 was expressed in a modified version of the pET-28 ( + ) plasmid
in which the thrombin cleavage site was replaced by a TEV cleavage site51. The
crude extract was loaded onto a Ni-Sepharose column, the obtained fusion protein
was treated with TEV protease and the mixture was then loaded again onto a Ni-
Sepharose column to obtain the pure cleaved protein51. All protein preparations
have a purity> 95%, as determined by SDS-PAGE. Co(II) substituted enzymes
were produced by adding CoSO4 to the apoenzymes, that were obtained by
extensive dialysis against buffer (10 mM Hepes, pH 7.5, 200 mM NaCl) containing
20 mM EDTA and Chelex 10053.

Rapid kinetics experiments. The hydrolysis of imipenem catalysed by mono-Zn
(II)-GOB-18, mono-Co(II)-GOB-18, mono-Zn(II)-Sfh-I, bi-Zn(II)-NDM-1, and
bi-Co(II)-NDM-1 was followed employing a stopped-flow equipment (Applied
Photophysics SX.18-MVR) coupled to a photodiode array. The pathlength was 1.0
cm and the integration time was 1.28 s. GOB-18 measurements were performed in
100 mM Hepes, pH 7.5, 200 mM NaCl, at 4 °C, and under pre-steady-state con-
ditions. Measurements with mono-Zn(II)-Sfh-I were performed in 50 mM Hepes,
pH 7,at 4 °C, and under pre-steady-state conditions. For NDM-1 the reaction
buffer was 100 mM Hepes, pH 7.5, 200 mM NaCl and 300 µM ZnSO4 or 2
equivalents of CoSO4 in the case of bi-Co(II)-NDM-1, the reactions were per-
formed at 6 °C and under pre-steady-state conditions.

Traces obtained at different wavelengths were subject to simultaneous global fit
to different kinetic models using the software DynaFit54. The molar extinction
coefficients employed for mono-Zn(II)-GOB-18 and mono-Co(II)-GOB-18 were:
εE 300 nm= 3900M−1 cm−1 and εE 340 nm= 670M−1 cm−1 for the free enzyme, εS
300 nm= 9360M−1 cm−1 and εS 340 nm= 410M−1 cm−1 for the substrate, εES 300 nm

= 13,260M−1 cm−1 and εES 340 nm= 1080M−1 cm−1 for the complex
enzyme-substrate; ε EI1 300 nm= 3900M−1 cm−1 and ε EI1 340 nm= 670M−1 cm−1 for
the complex enzyme-intermediate 1 (the same as the free enzyme); εEP 300 nm

= 4400M−1 cm−1 and εEP 340 nm= 825M−1 cm−1 for the complex enzyme-product;
and εP 300 nm= 500M−1 cm−1 and εP 340 nm= 155M−1 cm−1 for the product. The
molar extinction coefficients employed for mono-Zn(II)-Sfh-I were: εE 300 nm

= 5600M−1 cm−1 and εE 340 nm= 350M−1 cm−1; εS 300 nm= 9360M−1 cm−1 and εS

340 nm= 410M−1 cm−1; εES 300 nm= 14,960M−1 cm−1 and εES 340 nm

= 760M−1 cm−1; εEI1 300 nm= 5600M−1 cm−1 and ε EI1 340 nm= 350M−1 cm−1 (the
same as the free enzyme); εEP 300 nm= 6100M−1 cm−1 and εEP 340 nm

= 505M−1 cm−1; and εP 300 nm= 500M−1 cm−1 and εP 340 nm= 155M−1 cm−1. The
molar extinction coefficients employed for bi-Zn(II)-NDM-1 were: εE 300 nm

= 4937M−1 cm−1 and εE 390 nm= 46M−1 cm−1; εS 300 nm= 7210M−1 cm−1 and εS

390 nm= 67M−1 cm−1; εEP 300 nm= 5568M−1 cm−1 and εEP 390 nm= 86M−1 cm−1;
and εP 300 nm= 630M−1 cm−1 and εP 390 nm= 40M−1 cm−1. The molar extinction
coefficients employed for bi-Co(II)-NDM-1 were: εE 412 nm= 409M−1 cm−1, εE
567 nm= 295M−1 cm−1 and εE 642 nm= 239M−1 cm−1; εS 412 nm= 15M−1 cm−1, εS
567 nm= 0M−1 cm−1 and εS 642 nm= 0M−1 cm−1; and εP 300 nm= 630M−1 cm−1, εP
567 nm= 0M−1 cm−1 and εP 642 nm= 0M−1 cm−1. εE, εS, and εP at different
wavelengths were determined in each case by measuring the absorbance of
different enzyme, substrate or product dilutions at the corresponding wavelength.
Then, the molar extinction coefficients were determined by the linear fit of the
Lambert-Beer law to absorbance vs. concentration plots. Product samples were
obtained by hydrolysing known amounts of the substrate with catalytic
concentrations of enzyme. The molar extinction coefficients of enzyme complexes
were calculated as the addition of those corresponding to the species interacting in
each case.

GOB-18 samples were quantified by using εE 280 nm= 32,200M−1 cm−1, while
εE 280 nm= 35,995M−1 cm−1 was employed for mono-Zn(II)-Sfh-I, εE 280 nm=

27,960M−1 cm−1 for NDM-1 and εE 280 nm= 30,500M−1 cm−1 for bi-Zn(II)-BcII.
Substrate samples were quantified by analysing the change in the absorbance at
300 nm due to complete hydrolysis by catalytic amounts of enzyme, and using Δε

300 nm= –9000M−1 cm−1 for imipenem and Δε 300 nm= −6500M−1 cm−1 for
meropenem.

XAS experiments. For EXAFS studies, resting Sfh-I samples (~1 mM) were sup-
plemented with 20% v/v glycerol as a glassing agent. Product samples were pre-
pared by incubating 0.5 mM Sfh-I with 0.5 mM imipenem, supplemented with 20%
(v/v) glycerol, for one hour on ice. EXAFS samples were loaded in Lucite cuvettes
with 6 µm polypropylene windows, flash-frozen and stored in liquid nitrogen.
Freeze-quenched EXAFS samples were obtained using a modified Update Instru-
ments (Madison, WI) rapid-freeze-quench (RFQ) system55. All enzyme and sub-
strate starting concentrations were 1 mM, in 50 mM HEPES metal-free (with
Chelex 100, Bio-Rad), pH 7.0, 20 % v/v glycerol. The Update Instrument syringes
were driven by a ram connected to a PMI-Kollmorgen stepping motor (model
00D12F-02001-1), which was in turn driven by a model 715 Update Instruments
ram controller. The syringes, mixer, and tubing were maintained at
2 °C, in a watertight bath. Immediately prior to sample collection, the nozzle, and
the attached mixer for the shortest reaction times, were removed from the bath and
placed 5 mm above the surface of 2-methylbutane, contained in a collecting funnel.
2-methylbutane was kept at −130 °C by a surrounding bath (Update Instruments)
of liquid nitrogen. Samples were packed into home-designed EXAFS sample
holders at −130 °C; excess 2-methylbutane was decanted. All samples were kept in
liquid nitrogen until data collection. Calibration of the RFQ system was accom-
plished by comparing the development of a low-spin Fe(III) EPR signal and the
disappearance of a high-spin Fe(III) EPR signal with the associated optical changes
at 636 nm, monitored by stopped-flow spectrophotometry, upon mixing excess
sodium azide with myoglobin. The shortest, total effective reaction time achieved
with the RFQ system was 10 ms45.

EXAFS spectroscopy: a Si (111) double-crystal monochromator was used at the
National Synchrotron Light Source (NSLS), beamline X3B, to measure X-ray
absorption spectra, and a Ni mirror was used to accomplish harmonic rejection.
Fluorescence excitation spectra for all samples were recorded with a 31-element
solid-state Ge detector array. Samples were held at ca 15 K in a Displex cryostat.
EXAFS data collection and reduction were performed according to published
procedures55. Data were measured in duplicate, on two independently prepared
samples, by measuring six scans for each sample. Equivalent fits were obtained for
the two data sets. The experimental spectra presented are the averaged data sets

His263

Lys224
Zn2

Cys221

His196

His116

His118
Zn1

Asp120

His263

Lys224
Zn2

Cys221

His196

His116

His118

Zn1

Asp120
Wat

EI EIWATa b

Fig. 6 Structure of the proposed intermediate species formed during the hydrolysis of carbapenems by bi-Zn(II)-MβLs. Optimized structures of EI a and

EIWAT b. The quantum protein subsystem is depicted with the conventional liquorice colours (C cyan, H white, O red, N blue, and S yellow). Zn(II) ions are

shown as grey spheres. Carbon atoms of the antibiotic derived ligand are shown in orange. Coordination bonds of the amino acid residues to Zn(II) are

shown with solid lines and interactions with the antibiotic derived ligand are shown with dotted lines

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00601-9

8 NATURE COMMUNICATIONS | 8:  538 |DOI: 10.1038/s41467-017-00601-9 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


(12 scans per sample). The data were converted from energy to k-space using E0=
9680 eV.

The nonlinear least-squares engine of IFEFFIT was used to fit Fourier-filtered
EXAFS data. IFEFFIT is open source software available from http://www.cars9.
uchicago.edu/ifeffit, which is distributed with SixPack; which is available free of
charge from http://www.sssrl.slac.stanfrd.edu/_swebb/index.html. Fourier-filtered
EXAFS data were fitted utilising theoretical amplitude and phase functions
calculated with FEFF v.8.0056. The zinc–nitrogen and zinc–sulphur scale factors
and the threshold energy, ΔE0, were held fixed in all fits to the data for BcII, GOB,
and Sfh-I samples (Zn–N Sc= 0.78, Zn–S Sc= 0.91, ∆E0= −21 eV, as described
previously). First shell fits were first obtained for all reasonable coordination
numbers, including mixed nitrogen/oxygen/sulphur ligation, allowing only for
variation of the absorber-scattered distances, Ras, and Debye−Waller factors, σas2.
Multiple scattering contributions from histidine ligands and metal–metal scattering
were fitted according to published procedures55.

1H-NMR measurements and analysis. The products resulting from the hydrolysis
of imipenem catalysed by mono-Zn(II)-GOB-18, mono-Zn(II)-Sfh-I, bi-Zn(II)-
NDM-1 and HCl were monitored by 1H-NMR. A solution of 2 mg/ml imipenem in
100 mM sodium phosphate pH 7.0 at 100% D2O was incubated at 25 °C with 10
nM of enzyme or HCl until the complete hydrolysis of imipenem. A volume of 500
µl of the mix were placed in an NMR tube and the 1D NMR spectra were collected.
All spectra were acquired on Bruker Avance 600MHz spectrometer equipped with
a TXI probe, at 25 °C, with accumulation of 64 scans. We used a sweep width of
10,204 Hz for 1D 1H-NMR experiments. The excitation sculpting scheme was used

to achieve water suppression57; the water-selective 180 °C sine-shaped pulse was 2
ms long. The FID was collected in 32 K data points. Prior to Fourier transfor-
mation, a 1 Hz exponential line broadening function was applied. TopSpin 3.0 was
used to process and analyse NMR spectra. Signals were assigned based on the work
of Ratcliffe et al.39. The same scaling ratio was used to plot all spectra in a given
series.

QM-MM calculations. For hybrid QM–MM calculations58, the QM subsystem
was treated at the density functional level using the programme SIESTA59. Basis
sets of double-f plus polarisation quality were employed for all atoms, with a
pseudoatomic orbital energy shift of 30 meV and a grid cutoff of 150 Ry. Basis sets
of double zeta plus polarisation quality were employed for all atoms in the QM
subsystem, and all calculations were performed using the generalized gradient
approximation functional proposed by Perdew, Burke, and Ernzerhof (PBE)60. The
Amber99 force field parametrization was used to treat the classical subsystem61.

The initial structures were taken from the experimental X-ray data: pdb code
4rbs and 4eyl32. Hydrogen atoms were added using Amber14 leap module62. Both
Zn ions (with or without OH−/water bridge) plus the coordinated side chains of
residues His116, His118, Asp120, His196, Cys221, His263, and the hydrolysed
meropenem modified in silico define the quantum subsystem, which comprises in
total 82 atoms, also we added Lys224 in some calculations to study the effect of this
residue. The rest of the protein and the water molecules ( ~ 23,500 atoms) were
treated classically. The simulations were performed by assuming a pH value of 7.5.
With the aim of generating the different species (EI1, EI2, EP1, and EP2), we
modified in silico the quantum subsystem by adding or removing hydrogens atoms
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or water molecules. EI2 was obtained as we described above, then we added
manually the H atom to C-2 to generate EP2. In the case of EI1 we used the initial
structure of EI2 and we located a water molecule between the zinc ions, then we
removed one of the protons of the water molecule and added it to the N atom of
the hydrolysed substrate to obtain the initial structure of EP1. This method has
been successfully applied for the study of metallo-proteins63–65.

Molecular dynamics simulations. The simulation was performed with Amber14
package62, starting from the crystal structure of NDM-1 bound to hydrolysed
meropenem. The system was immersed in a truncated octahedral periodic box with
a minimum solute-wall distance of 8 Å, filled with explicit TIP3P water mole-
cules66. Ewald sums for treating long-range electrostatic interactions67. The
SHAKE algorithm was applied to all hydrogen-containing bonds68. We used the
ff99SB force field implemented in Amber14 to describe the protein. The force field
of the active site (Zn, -OH, Asp, Cys, and His) was taken from the literature69. The
charges and parameters of the hydrolysed substrate were determined using ab initio
methods. The van der Waals radius, force constants and equilibrium distances,
angles and dihedral were taken from gaff database62. Partial charges were RESP
charges computed using Hartree–Fock method and 6-31 G* basis set70. The tem-
perature and pressure were controlled by the Berendsen thermostat and barostat,
respectively, as implemented in Amber1462. Cutoff values used for the van der
Waals interactions were 10 Å. The system was equilibrated at 300 K using a con-
ventional protocol49 and then subjected to 10 ns of simulation in the NVT
ensemble. We applied a restraint to keep the hydrolysed meropenem bound to the
active site.

Data availability. Supporting data are available from the corresponding authors
upon reasonable request.
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