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A GENERAL SCHWARZ LEMMA FOR KAHLER MANIFOLDS. 

By SHING-TUNG YAU. 

Introduction. The classical Schwarz-Pick lemma states that any holomor- 
phic map of the unit disk into itself decreases the Poincare metric. Later 
Ahlfors generalized this lemma to holomorphic mappings between two Rie- 
mann surfaces where curvatures of these Riemann surfaces were used in a very 
explicit way. More recently, Chern initiated the study of holomorphic mappings 
between higher-dimensional complex manifold by generalizing the Ahlfors 
lemma to these spaces. Then this lemma was further extended by Kobayashi, 
Griffiths, Wu and others. It plays a very important role in their theory. In this 
note, we shall prove the following generalization of the Schwarz lemma. 

THEOREM Let M be a complete Kahler manifokl with Ricci curvature 
bounded from below by a constant, and N be another Hermitian manifokl with 
holomwrphic bisectional curvature bounded from above by a negative constant. 
Then any holomwrphic mapping from M into N decreases distances up to a 
constant depending only on the curvatures of M and N. 

The main point here is that the domain M is a very general manifold. The 
best known result in this direction is due to Kobayashi [3], who assumed that M 
is a bounded domain whose Bergman kernel function should behave well near 
the boundary. The method employed previously in proving the Schwarz lemma 
depends largely on a nice exhaustion of the manifold M. This is assumed in 
order to assure the existence of a maximal point of a certain function. In this 
note, we eliminate these hypotheses by applying a method that we developed in 

[5]. 
We would like to thank Professor H. Wu for his interest and encourage- 

ment in this work. Professor H. Royden informed us that he is able to improve 
the estimate in our main theorem. Namely, he is able to replace K2 by the 
upper bound of the holomorphic sectional curvature of N. 

1. Notation and Formulas for Hermitian Manifolds. Let Mm be a 
Hermitian manifold of dimension m. Let el, e2, ... , em be a unitary frame field in 
an open set of Mm. Let 91, 02,... Om be its coframe field. Then there are 
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complex-valued linear differential forms of type (1,0) such that the Hermitian 
metric is given by 

m 

dSm2 = i oi 

i=l 

It is known that there are connection forms 9ij such that 

m 

d9i= O ,AOij9+ E (2) 
j=l 

with 
m 

oij + ij = and Ei E Tiek, A=k- (3) 

The tensor Tiik is called the torsion tensor. The curvature forms Ejj are 
defined by 

E) d9ij + 9 Oik A ,O (5) 
k 

and we have 
m 

&.ij = -e. = 2 E Ri,klUkAol. (6) 

The skew-Hermitian symmetry of (i, expressed by the first equation of (6) 
is equivalent to 

R'ikl = ilk (7) 

If = j4 ei and = iqi ei are two tangent vectors, then the holomorphic 
bisectional curvature determined by t and q is defined [3] by 

i, j,k, l 

(E iti(Ew nini) 

If = ,q, the above quantity is called the holomorphic sectional curvature in 
directioa {. The Ricci tensor is defined as 

m 

Rk= Riikl= Rlk, (8) 
i=l 
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and the scalar curvature is defined as 

R=ERkk. (9) 
k 

Let Nn be another Hermitian manifold with dimension n. Then we can 
define the corresponding frame field Wa, curvature tensor Safiy8, Ricci tensor 

Sao 

and scalar curvature S. 
Let f: M'm->Nn be any holomorphic mapping. Then we can define 

m 
f wa E aaii (10) 

and 

U = E qj 5-.j (11) 
a,i 

Clearly, we have 

f* dSN ? udS . (12) 

In order to relate things to curvature, one has to compute the Laplacian of 
u. It is defined as follows. Let 

du= (uiJi + Ui i9) (13) 

- d (E ui6ti )=E uii-6tiAOi (14) 

Then the Laplacian of u is 

Au = E if- (15) 

The Chern-Lu formula [1] states the following: 

,Au> E Rjiaaijaj-X X aaiafiaykaqkSafYq. (16) 
asi,1~~~~i ik as,,O,y, B 

[In applying (16), one also has to use the elementary fact that the 
bisectional curvature of a complex submanifold is not greater than that of the 
ambient manifold.] 
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2. Schwarz Lemma for General Complex Manifolds. We shall apply the 
following theorem of [5] and [6]. 

THEOREM 1. Let M be a complete Riemannian manifold with Ricci 
curvature bounded from below. Let f be a C2-function which is bounded from 
below on M. Then for all E > 0, there exists a p in M such that at p, 

IgradfI < , \f > -- and f ( p) < inff+ e. (17) 

Now consider the function u defined in Section 1. Let c be any positive 
number. Then direct computation shows 

+ 112 (18) 
'\( u-+c 2(u+ C )3/3 (u+c)( 

Hence applying (16), we have 

A I( u'+ )(u3c)5 1 ui12 1 
vu(+ )s (u +Cs5/2 E 2(u+C)3/2 

X [ E aaAajRji E E a..iaOia-yka7,kSaBy71 (19 
i, k a13iyk,qk,1 

Let > 0 be any number. Then, by Theorem 1, there is a point p such that 
at p, 

I E UiJ2 <, 
4(u+c)3 i 

A I ) (20) 

1 <inf 1 +e. 
u+c u+c 

Dividing (20) by /u+ c and comparing it with (21)8 we obtain 

(u [ E aia// E aaiaf3iaykykSa/3Th] 
2(u+c)2 La,i,j i, k a,,83, y,rq 
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Let K1 be the greatest lower bound of the Ricci curvature of M, and K2 be 
the least upper bound of the holomorphic bisectional curvature of N. Then it 
follows from (21) that 

-U K + u K2 )-24 (22) 

When c--0, 1/ u + c goes to its infimum and u goes to its supremum. 
Therefore, if K2 is negative and u is not identically zero, then K1 is non-positive 
and 

K1 
0<supu < K,. (23) 

THEOREM 2. Let M be a complete Kahler manifold with Ricci curvature 
bounded from below by K1. Let N be another Hermitian manifold with 
holomorphic bisectional curvature bounded from above by a negative constant 
K2. Then if there is a non-constant holomaphic mapping f from M into N, we 
have K1 ?0 and 

f*dSN < # dSm. (24) 

In particular, if K1 > 0, every holonorphic mapping from M into N is constant. 

Since the unit disk has a Kiihler metric with constant negative holomorphic 
sectional curvature, we have the following 

COROLLARY. Let M be a complete Kahler manifold with non-negative 
Ricci curvature. Then M does not admit any bounded holomorphic function. 

In case dimM= 1, one can weaken the hypothesis on N. 

THEOREM 2'. Let M be a complete Riemann surface with curvature 
bounded from below by a constant K1. Let N be another Hermitian manifold 
with holomorphic sectional curvature bounded from above by a negative 
constant K2. Then for any constant holomorphic mapping f from M into N, (24) 
holds. 

3. Other Generalizations. Instead of taking the trace of the tensor f* dSN, 
we can also consider the other elementary function of this tensor. Since 
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formulas corresponding to (16) still exist [4], one can derive corresponding 
properties for these elementary functions. For simplicity, we shall only state the 
following 

THEOREM 3. Let M be a complex Kahler manifold with scalar curvature 
bounded from below by K1. Let N be another Hermitian manifold with Ricci 
curvature bounded from above by a negative constant K2. Suppose the Ricci 
curvature of M is bounded from below and dimM= dimN. Then the existence 
of a non-degenerate holomwrphic map f from M into N implies that K1 < 0 and 

K1 
f* dVN ? -dVm, (25) K2 M'(5 

where dVM, dVN are volume elements of M and N respectively. 

We can partially generalize Theorem 3 in the following sense: Let dVN be 
a non-negative top-dimensional form on a complex manifold N such that the 
Ricci curvature of dVN is bounded from above by a negative constant K2. Let P 
be the ball whose Poincare' metric has scalar curvature K1 and whose dimension 
is equal to dimN. Let f be a meromorphic map (in the sense of Remmert) 
mapping the polydisk P into N. Then we have f*dVN < (K1/K2) dVp. 

The proof of this assertion follows from the fact that f is holomorphic 
outside a subvariety of codimension two, so that f*dVN can be extended 
through this subvariety. The standard proof of the Ahlfors lemma can be 
applied to prove our claim. 

Finally, we remark that Eells and Sampson [2] have studied harmonic 
mappings between two Riemannian manifolds. One can also deduce a formula 
similar to (16) for this class of mappings. However, in order to draw a useful 
conclusion, it seems that one has to assume the mapping is quasi-conformal. 

STANFORD UNIVERSITY 
STANFORD, CALIFORNIA 

REFERENCES. 

[1] S. S. Chern, On holomorphic mappings of Hermitian manifolds of the same dimension, in: 
Proc. Symp. Pure Math. 11, Amer. Math. Soc., Providence, R.I., 1968, pp. 157-170. 



GENERAL SCHWARZ LEMMA. 203 

[2] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 
(1964), pp. 107-160. 

[3] S. Kobayashi, Hyperbolic manifolds and holomorphic mappings, in Pure and Applied Mathe- 
matics, Vol. 2, Marcel Dekker, New York, 1970. 

[4] V. C. Lu, Holomorphic mappings of complex manifolds, J. Differential Geomety 2 (1968), pp. 
299-312. 

[5] S. T. Yau, "Harmonic functions on complete Riemannian manifolds," Comm. Pure and Appl. 
Math., 28, pp. 201-228 (1975). 

[6] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan 19 (1967), pp. 
205-214. 

[7] S. Y. Cheng and S. T. Yau, "Differential equations on Riemannian manifolds and their 
geometric applications," Comm. Pure and Appl. Math. 28, pp. 333-354 (1975). 


	p.197
	p.198
	p.199
	p.200
	p.201
	p.202
	p.203

