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ABSTRACT
Diffusive acceleration at collisionless shock waves remains one of the most promising accel-
eration mechanisms for the description of the origin of cosmic rays at all energies. A crucial
ingredient to be taken into account is the reaction of accelerated particles on the shock, which
in turn determines the efficiency of the process. Here we propose a semi-analytical kinetic
method that allows us to calculate the shock modification induced by accelerated particles
together with the efficiency for particle acceleration and the spectra of accelerated particles.
The shock modification is calculated for arbitrary environment parameters (Mach number,
maximum momentum, density) and for arbitrary diffusion properties of the medium. Several
dependences of the diffusion coefficient on particle momentum and location are considered to
assess the accuracy of the method.
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1 I N T RO D U C T I O N

Most scenarios for the origin of cosmic rays rely upon the accelera-
tion of charged particles in the presence of shock waves, developed
in sources such as supernova remnants, active galaxies, planetary
shocks, gamma-ray bursts and many others. The basic features of
the acceleration process have been highlighted in the pioneering
papers by Krymskii (1977), Blandford & Ostriker (1978) and Bell
(1978) in the context of the so-called ‘test particle’ assumption.
Several excellent reviews (Drury 1983; Blandford & Eichler 1987;
Jones & Ellison 1991; Malkov & Drury 2001) discuss in detail the
many problems that are still open concerning the acceleration pro-
cess. Among these, a fundamental one is the limited applicability of
the results found within the test particle approach. In most scenar-
ios for the origin of either Galactic or extragalactic cosmic rays, in
fact, an appreciable fraction of the kinetic energy crossing the shock
needs to be transferred to accelerated particles. This need contradicts
the very assumption that the accelerated particles are test particles,
unable to exert any dynamical reaction on the shocked fluid. The
well-known result that the spectrum of the accelerated particles is a
power law with slope nearly independent of the detailed properties
of the system (e.g. diffusion coefficient) holds only within the con-
text of this test particle approximation. Relaxing this assumption
leads to the modification of the shock by the accelerated particles,
a phenomenon that has received much attention in the context of
the so-called two-fluid models (Drury & Völk 1980, 1981), kinetic
models (Malkov 1997; Malkov, Diamond & Völk 2000; Blasi 2002,
2004) and numerical approaches, both Monte Carlo and other simu-
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lation procedures (Bell 1987; Ellison, Möbius & Paschmann 1990;
Jones & Ellison 1991; Ellison, Baring & Jones 1995, 1996; Kang &
Jones 1997, 2005; Kang, Jones & Gieseler 2002). For an accurate
recent review, see the work by Malkov & Drury (2001), from which
the reader can see the weak and strong points of each approach. The
present paper illustrates a kinetic analytical approach, which pro-
vides the exact solution for the spectrum of accelerated particles and
shock modification in a very general situation in which the diffusion
properties of the medium are arbitrary. The problem is reduced to
solving an integral–differential equation, which easily leads to the
required solution. For the injection of particles at the shock surface,
we implement the recipe previously presented by Blasi, Gabici &
Vannoni (2005). In all the cases that we have considered, we have
never found evidence for multiple solutions. The method that we
propose is of general validity, in that it can be used for an arbitrary
momentum dependence of the diffusion coefficient and for diffusion
properties (related to the magnetization properties of the medium)
that can change in an arbitrary way with the spatial location in the
fluid.

2 C A L C U L AT I O N S

The equations for the conservation of the mass and momentum
fluxes between upstream infinity and a point x in the upstream region
can be written as

ρ0u0 = ρ(x)u(x), (1)

ρ0u2
0 + Pg,0 = ρ(x)u(x)2 + Pg(x) + PCR(x), (2)

where ρ, u and Pg are the gas density, velocity and pressure (the
corresponding quantities at upstream infinity are indicated with the
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index 0). The pressure of accelerated particles is defined as

PCR(x) = 1

3

∫ pmax

pinj

dp 4πp3v(p) f (x, p), (3)

and f (x , p) is the distribution function of accelerated particles.
Here p inj and pmax are the injection and maximum momenta. The
function f vanishes at upstream infinity, which implies that there
are no cosmic rays infinitely distant from the shock in the upstream
region. The distribution function satisfies the following transport
equation in the reference frame of the shock:

∂

∂x

[
D(x, p)

∂

∂x
f (x, p)

]
− u

∂ f (x, p)

∂x

+1

3

(
du

dx

)
p
∂ f (x, p)

∂p
+ Q(x, p) = 0.

(4)

The x-axis is oriented from upstream infinity (x = −∞) to down-
stream infinity (x =+∞), with the shock located at x = 0. The injec-
tion is introduced here through the function Q(x , p). The diffusion
properties are described by the arbitrary function D(x , p), depend-
ing on both momentum and space. In previous approaches, restric-
tive assumptions on the diffusion coefficient were always adopted
in order to facilitate the path to the solution. The solution f can be
written in the following implicit form:

f (x, p) = exp

[
−

∫ 0

x

dx ′ u(x ′)
D(x ′, p)

]

×
{

f0(p) + 1

3

∫ 0

x

dx ′

D(x ′, p)
exp

[∫ 0

x ′
dx ′′ u(x ′′)

D(x ′′, p)

]

× 1

p2

∂

∂p

∫ x ′

−∞
dx ′′ du

dx ′′ [ f (x ′′, p)p3]

}
. (5)

In the case of a spatially constant diffusion coefficient, as shown by
Malkov (1997), a very good approximation to the solution is found
in the form

f (x, p) = f0(p) exp

[
− q(p)

3D(p)

∫ 0

x

dx ′u(x ′)

]
,

with q(p) = −d ln f 0/d lnp and f 0(p) = f (x = 0, p) the distribu-
tion function at the shock. We have found that the similar form

f (x, p) = f0(p) exp

[
−q(p)

3

∫ 0

x

dx ′ u(x ′)
D(x ′, p)

]
(6)

represents a very good approximation for the case of diffusion coef-
ficients with arbitrary spatial dependence (see Section 3). We there-
fore adopt this functional form in our calculations, although it is not
strictly required, in the sense that we could well use the complete
solution, equation (5).

It was shown by Blasi (2002) that the function f 0(p) can be
written in general as

f0(p) =
[

3Rtot

RtotU (p) − 1

]
ηn0

4πp3
inj

exp

[
−

∫ p

pinj

dp′

p′
3RtotU (p′)

RtotU (p′) − 1

]
.

(7)

Here we have introduced the function U (p) = up/u0, with

u p = u1 − 1

f0(p)

∫ 0

−∞
dx(du/dx) f (x, p) (8)

where u1 is the fluid velocity immediately upstream (at x = 0−).
We have used

Q(x, p) = ηngas,1u1

4πp2
inj

δ(p − pinj)δ(x),

with ngas,1 = n0 R tot/R sub the gas density immediately upstream
(x = 0−) and η the fraction of the particles crossing the shock that are
going to take part in the acceleration process. In equation (7) we have
also introduced the two quantities R sub = u1/u2 (compression factor
at the subshock) and R tot = u0/u2 (total compression factor). The
two compression factors, assuming for simplicity that the heating is
only adiabatic, are related through the following expression (Blasi
2002):

Rtot = M
2/(γg+1)
0

[
(γg + 1)R

γg
sub − (γg − 1)R

γg+1
sub

2

]1/(γg+1)

, (9)

where M0 is the Mach number of the fluid at upstream infinity and
γ g is the ratio of specific heats for the fluid. The parameter η in equa-
tion (7) contains the very important information about the injection
of particles from the thermal bath. Following the work of Blasi et al.
(2005), we relate η to the compression factor at the subshock as

η = 4

3π1/2
(Rsub − 1)ξ 3e−ξ2

. (10)

Here ξ is a parameter that identifies the injection momentum as a
multiple of the momentum of the thermal particles in the down-
stream section (p inj = ξ p th,2). This recipe is inspired by the ‘ther-
mal leakage model’ originally presented by Gieseler, Jones & Kang
(2000) [see also previous work by Ellison, Jones & Eichler (1981),
Ellison (1981) and Ellison & Eichler (1984)]. The parameter ξ is
supposed to contain the information about the microscopic struc-
ture of the shock. For collisionless shock waves the thickness of the
shock is expected to be of the order of the Larmor radius of the ther-
mal particles in the shock vicinity, which is not a very well-defined
concept because of the violent fluctuations in the electromagnetic
fields within the shock. A simple argument can be used to infer that
ξ is of the order of 2–4 (Blasi et al. 2005). For the numerical calcu-
lations that follow, we always use ξ = 3.5, which allows for only a
fraction of the order of 10−4 of the particles crossing the shock to
be injected in the accelerator.

Equation (2) for the conservation of the momentum flux, once
normalized to ρ 0u2

0, is easily transformed to

ξc(x) = 1 + 1

γg M2
0

− U (x) − 1

γg M2
0

U (x)−γg , (11)

where ξ c(x) = PCR(x)/ρ 0u2
0 and U (x) = u(x)/u0. In terms of the

distribution function (equation 6), we can also write

ξc(x) = 4π

3ρ0u2
0

∫ pmax

pinj

dp p3v(p) f0(p) exp

[
−

∫ 0

x

dx ′ U (x ′)
x p(x ′, p)

]
,

(12)

where for simplicity we have introduced xp(x , p) = 3D(p, x)/q(p)u0.
By differentiating equation (12) with respect to x we obtain

dξc

dx
= λ(x)ξc(x)U (x), (13)

where
λ(x) = 〈1/x p〉ξc

=
∫ pmax

pinj
dp p3 1

x p (x,p) v(p) f0(p) exp

[
−
∫ 0

x
dx ′ U (x ′ )

x p (x ′ ,p)

]
∫ pmax

pinj
dp p3v(p) f0(p) exp

[
−
∫ 0

x
dx ′ U (x ′ )

x p (x ′ ,p)

] , (14)

and U(x) is expressed as a function of ξ c(x) through equation (11).
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Finally, after integration by parts of equation (8), one is able to
express U(p) in terms of an integration involving U(x) alone:

U (p) =
∫ 0

−∞
dx U (x)2 1

x p(x, p)
exp

[
−

∫ 0

x

dx ′ U (x ′)
x p(x ′, p)

]
(15)

which allows f 0(p) to be easily calculated through equation (7).
Equations (11) and (13) can be solved by iteration in the follow-

ing way: for a fixed value of the compression factor at the subshock,
R sub, the value of the dimensionless velocity at the shock is calcu-
lated as U (0) = R sub/R tot. The corresponding pressure in the form
of accelerated particles is given by equation (11) as

ξc(0) = 1 + 1

γg M2
0

− Rsub

Rtot
− 1

γg M2
0

(
Rsub

Rtot

)−γg

.

This is used as a boundary condition for equation (13), where the
functions U(x) and λ(x) [and therefore f 0(p)] on the right-hand
side at the kth step of iteration are taken as the functions at the step
(k − 1). In this way the solution of equation (11) at the step k is
simply

ξ (k)
c (x) = ξc(0) exp

[
−

∫ 0

x

dx ′λ(k−1)(x ′)U (k−1)(x ′)

]
, (16)

with the correct limits when x → 0 and x → −∞. At each step
of iteration the functions U (x), f 0(p) and λ(x) are recalculated
[through equations (11), (15), (7) and (14)], until convergence is
reached. The solution of this set of equations, however, is also a
solution of our physical problem only if the pressure in the form of
accelerated particles as given by equation (11) coincides with that
calculated by using the final f 0(p) in equation (12). This occurs only
for one specific value of R sub, which fully determines the solution
of our problem.

3 R E S U LT S

The computational method illustrated in the previous section is very
fast and allows one to determine the solution (namely the veloc-
ity and density profiles in the precursor, the density of accelerated
particles as a function of momentum and location in the upstream
fluid, and all the thermodynamic quantities related to the gas) for
an arbitrary choice of the diffusion coefficient and for any values
of the environmental parameters (Mach number, density, maximum
momentum).

In Fig. 1 we illustrate the spectra (upper panel) and slopes (lower
panel) as a function of momentum for the following values of
the Mach number: M 0 = 4 (dotted line), 10 (short-dashed line),
50 (dash–dotted line), 100 (triple-dot–dashed line), 300 (long-
dashed line) and 500 (solid line). The distribution functions are
multiplied by p4 to emphasize the concave shape of the modified
spectra. All the curves refer to pmax = 105 in units of mc. The most
evident aspect of shock modification, found in all previous calcula-
tions, is here confirmed: the shock modification is enhanced when
the Mach number of the shock increases. The spectrum is flatter at
high momenta as confirmed by the lower panel of Fig. 1, and eas-
ily understood in terms of the large values of the total compression
factor (see Table 1).

For strongly modified shocks, the slope becomes even flatter
than p−3.5 at high momenta, as also found in numerical simula-
tions (Berezhko & Ellison 1999, and references therein).1 In these

1 We remind the reader that in other semi-analytical calculations (e.g. Malkov
1997) the asymptotic spectrum for p inj � p < pmax has slope 3.5.

Figure 1. Upper panel: spectra of accelerated particles at the location of
the shock for M 0 = 4 (dotted line), 10 (short-dashed line), 50 (dash–dotted
line), 100 (triple-dot–dashed line), 300 (long-dashed line) and 500 (solid
line). Lower panel: momentum-dependent slope for the same values of Mach
numbers. In both panels we used ξ = 3.5 and pmax = 105mc.

Table 1. Shock modification for different Mach numbers.

Mach number R sub R tot ξ c(0) p inj η

M0

4 3.19 3.57 0.1 0.035 3.4 × 10−4

10 3.413 6.57 0.47 0.02 3.7 × 10−4

50 3.27 23.18 0.85 0.005 3.5 × 10−4

100 3.21 39.76 0.91 0.0032 3.4 × 10−4

300 3.19 91.06 0.96 0.0014 3.4 × 10−4

500 3.29 129.57 0.97 0.001 3.5 × 10−4

conditions, most energy is channelled in the highest energy part
of the spectrum. At lower energies, on the other hand, the spec-
trum is steeper than that predicted by linear theory, as a natural
consequence of the lower compression at the subshock for strongly
modified shocks. For the parameters adopted here, the energy sat-
uration [namely ξ c(0) ∼ 1] is achieved for Mach numbers around
100, as demonstrated by the fact that the corresponding curves in
the upper panel of Fig. 1 have roughly the same height (namely the
same energy content). On the other hand, different modifications
result in different compressions at the subshock and therefore dif-
ferent injection momenta. This is illustrated in Fig. 1 and Table 1. In
particular, in Table 1 we list the values of the compression factors,
dimensionless cosmic ray pressure at the shock, injection momen-
tum and fraction of accelerated particles for the same values of M0

used to obtain the curves in Fig. 1.
In Fig. 2 we illustrate the results of our method for differ-

ent choices of the momentum dependence of the diffusion coef-
ficient. We consider three cases: (1) Bohm diffusion, DB(p) ∝ p;
(2) Kraichnan diffusion, DKr(p) ∝ p1/2; and (3) Kolmogorov diffu-
sion, DKol(p) ∝ p1/3 (relativistic scalings). For illustrative purposes,
we choose to calculate the spectrum of accelerated particles and the
shock modification for M 0 = 100 and pmax = 105mc. The resulting
spectrum is shown in the upper panel of Fig. 2, for Bohm diffu-
sion (solid line), Kraichnan diffusion (dotted line) and Kolmogorov
diffusion (dashed line). The general tendency is that the saturation
phenomenon occurs at somewhat lower Mach numbers for diffu-
sion coefficients that depend more weakly on momentum. The lower
panel in Fig. 2 illustrates the spatial distribution of pressure in the
accelerated particles [ξ c(x)], where the spatial coordinate is chosen
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Figure 2. Upper panel: spectra of accelerated particles at the location of the
shock for M 0 = 100, pmax = 105mc and for a Bohm diffusion coefficient
(solid line), Kraichnan diffusion coefficient (dotted line) and Kolmogorov
diffusion coefficient (dashed line). Lower panel: distribution of the pressure
in the form of accelerated particles, normalized to the ram pressure [ξ c(x)
as defined by equations (11)–(12)], for the same three cases. The spatial
coordinate is in units of x ∗ = DB(pmax)/u0, with DB the Bohm diffusion
coefficient.

in such a way that x = 1 in the point x ∗ = DB(pmax)/u0. Clearly
the particles with the maximum momentum diffuse on shorter spa-
tial scales than x∗ for diffusion coefficients with weaker momentum
dependence.

The power of the computational method in being suitable for
treating arbitrary dependences of the diffusion coefficient on mo-
mentum and spatial coordinates is further demonstrated in Fig. 3,

Figure 3. Upper panel: spectra of the accelerated particles for spatially
constant Bohm diffusion (thin lines) and for Bohm diffusion with D(p, x) ∝
p/ρ(x). The different line types refer, for each case, to x = 0 (solid line),
x = 10−7x ∗ (dot–dashed line), x = 10−4x ∗ (short-dashed line) and x =
0.1x ∗ (long-dashed line). The dotted lines neighbouring each curve refer to
the distribution functions computed by using in the right-hand side of equa-
tion (5) the solution obtained with our method (see text for details). Lower
panel: ξ c(x) and U (x) (solid and dashed lines, respectively) for the case of
spatially constant Bohm diffusion (thin lines) and for D(p, x) ∝ p/ρ(x)
(thick lines). The spatial coordinate is again in units of x∗ defined as for
Fig. 2.

where we show how the solutions change when the diffusion co-
efficient is allowed to vary in space. For illustrative purposes we
consider the case of a Bohm diffusion coefficient with DB(p, x) ∝
p (constant in space) and DB(p, x) ∝ p/ρ(x), where ρ(x) is the
gas density at the position x, self-consistently calculated by using
the conservation laws. The latter dependence is representative of the
case of a magnetic field frozen in the plasma flowing in the upstream
section.

In the upper panel of Fig. 3 we plot the spectra of the accelerated
particles for spatially constant Bohm diffusion (thin curves) and for
DB(p, x) ∝ p/ρ(x) (thick lines). The different line types refer to
spectra at the different spatial locations: x = 0 (solid line), x =
10−7x ∗ (dot–dashed line), x = 10−4x ∗ (short-dashed line) and
x = 0.1x ∗ (long-dashed line), where x∗ is defined as above, i.e.
x ∗ = DB(pmax)/u0 with DB referring to the spatially constant Bohm
diffusion coefficient. In the lower panel we plot ξ c(x) (solid lines)
and U(x) (dashed lines) for the same two cases, identified by the
different thickness of the lines.

In order to assess the goodness of our approximate solution (equa-
tion 6), we computed the right-hand side of equation (5) by using the
functions U(x) and f (x , p) found with our method. The correction
is found to be non-negligible only in the exponentially decreasing
parts of the spectrum (see dotted lines in Fig. 3), which contains
negligible energy and hardly leads to any observable features. On
this basis, we conclude that equation (6) is an excellent approxima-
tion to the solution for diffusion coefficients with arbitrary spatial
and momentum dependences.

The solutions obtained with this method are remarkably simi-
lar to those obtained with approximate methods by Blasi (2002,
2004), for the case of Bohm diffusion with no spatial dependence.
The discrepancies with such previous treatments are expected and
indeed appear for increasingly weaker dependences of the diffu-
sion coefficient on the momentum of the particles, and in general
when a spatial dependence of the diffusion properties is added
(these aspects will be discussed in an upcoming detailed paper).
The results also compare well with a previous method proposed
by Malkov (1997) and Malkov et al. (2000), where the contribu-
tion of gas pressure was neglected and no recipe for injection was
adopted.

The most important property of the method here described, how-
ever, is the fact that it appears to be the first that allows the spatial
dependence of the diffusion coefficient to be taken into account. The
importance of being able to deal with arbitrary diffusion properties
is highlighted by the following considerations. First, particle accel-
eration at shocks is expected to be efficient only if the turbulence re-
sponsible for diffusion is self-generated (Lagage & Cesarsky 1983;
Lucek & Bell 2000; Bell 2004), and in this case the diffusion coeffi-
cient is necessarily dependent upon both momentum and space in a
complex manner. Moreover, the appearance of a maximum momen-
tum is indeed due to the fact that, at some distance from the shock,
diffusion becomes ineffective and particles are no longer trapped in
the shock vicinity. Since the shock modification depends in a crucial
way on the value of the maximum momentum, it is clear that a care-
ful calculation of the shock modification should be able to account
for these phenomena.
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