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A GENERAL SOLUTION TO THE HIDDEN-LINE PROBLEM 

David R. Hedgley , Jr. 
Ames Research Center 

Dryden Flight Research Facility 

INTRODUCTION 

The requirement for computer-generated perspective projections of three- 
dimensional objects by way of line drawings has escalated in recent years. Pictures 
of objects which show visible and hidden lines are relatively easy to present. 
Unfortunately, such renderings are often ambiguous and serve as little value to the 
engineer or scientist. (See fig. 1. > 

Transparent box Is it this? Or this? 

Figure 1. Ambiguous case. 

Historically, much literature has appeared addressing this problem (ref. 1). 
However, prior solutions have exhibited some inherent limitations, one of the most 
significant being square-law growth, that is, the tendency of the computer execution 
time to grow as the square of the number of elements. Another significant restriction 
is the environmental limitations. (See appendix A for a list of typical limitations.) 

At NASA Ames Research Center’s Dryden Flight Research Facility (DFRF) , the 
need arose to graphically represent aerodynamic stability derivatives as a function 
of two variables. (See the stability derivative plot in appendix B .> This require- 
ment and the potential for further application served as a motivation for developing 
a general solution to the hidden-line problem which avoids the undesirable features 
of prior solutions. 



This paper lays the theoretical foundation for the practical implementation of a 
general hidden-line algorithm. A theorem is presented and proved which does not 
assume any environmental limitations, unlike prior approaches. Furthermore the 
theorem allows the determination of the visibility of an entire line segment by choosing 
only a few points on that line, thus providing a basis for a rapid algorithm. 

The author wishes to express his appreciation to Mary Bailer, Victor Pestone, 
and Paul Redin for their many helpful suggestions and constructive criticisms. 

ANALYSIS 

This section introduces basic definitions of symbols and terms, develops the 
equation of a plane, and discusses both the visibility of an arbitrary point and how 
the points are selected. The criteria of these selections and the sufficiency of the 
choices are predicated on a theorem which is proved. 

Definitions 

Let 0 be any scene or collection of objects which can be represented with straight 
lines and/or n-sided convex/concave planar polygons (internal boundaries allowed). 
Also, let each polygon be defined in such a way that every point is a boundary point 
in the topological sense. For economy of definition, vertices of polygons are sufficient 
and, similarly, end points for line segments. 

With the admissible elements enunciated in the above paragraph, we need only 
discuss the visibility of a point P and its selection. The argument is then easily 
extended to the entire scene 0. 

The Equation of a Plane 

The equation of a plane is given by 

where 

A = blc2 - b2c1 

B = c1a2 - c2al 

C=a b 
1 2’ - a2bl 

D = -(Axi + Byi + Czi) 



where 

ai = xi+1 - xi 

bi =‘Y~+~ - yi (i = 1,2) 

ci = zi+l - zi 

xj’ Yj’ 

zj (j = 1,3) are three non-collinear points. A, B , and C are the coefficients 

of the normal vector to the plane and hence the coefficients of the plane itself. 

For consistency with plotter hardware convention, x and y have their standard 
directions and z is perpendicular to the plane of the paper. The direction is con- 
sistent with a right-handed coordinate system., 

Visibility Criteria 

CRITERION I. Let C be the projection of a planar closed polygon A on the XY- 
plane such that every point on C is a boundary point. (See fig. 2.) Let 
P(x, y) be the projection of any point (x, y, z). If P lies on the boundary 
of C, it is clearly visible with respect to C. And hence (x, y, z) is visible 
with respect to A. If P lies outside the boundary of C, then a line drawn from P 
in any direction to infinity will intersect the boundary an even number of times. 
If P lies inside the boundary of C, then this semi-infinite line drawn from P will 
intersect the boundary of C an odd number of times. (See ref. 2.) 

Figure 2. PZane A and its projection, C; point 
(x, y, z) and its projection, P(x, y). 

Figure 3 illustrates this idea. Note that line 21, drawn from PI in the XY-plane 

in an arbitrary direction to infinity, intersects the edges of the holes and containing 
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Figure 3. Polygon C with two holes. 

plane, C, four times. Thus, the count is even indicating that PI is “outside” C and 

hence (xl, yl, zl) is visible with respect to plane A. This is also true for 

(x 2’ Y2’ 5)’ However, for P3 (x3, y3>, the count is odd indicating that the point 

lies in the interior of C. 

If this semi-infinite line should cross a vertex, a line with a different slope 
should be selected. It is always possible to find such a line since the number of 
combinations of vertices is finite, whereas the number of slopes is infinite. Moreover, 
if C should have an arbitrary number of “holes” whose boundaries have the character 
of the external boundary of C, then no generality is lost. For if P lies inside C and 
outside all “holes ,” then the count is odd with respect to C as a polygon and even 
with respect to all holes. Therefore the total count remains odd. The remaining 
cases are argued similarly. 

With the preceding observations in combination with the equation of a plane, it 
is now possible to determine the visibility of (x, y , z) with respect to plane A if 
P is “inside” C. 

CRITERION II. z 2 -(A x + Boy + Do)/Co implies (x, y, z) is visible with 
respect to A. 

0 

CRITERION III. z < -(Aox f Boy f Do)/Co implies (x, y, z) is invisible with 
respect to A. 

Whether or not P is inside, outside, or on the boundary of C can be determined 
from Criterion I. Clearly then, if (x, y, z) is visible with respect to all Ai, it is 

visible. Note that if A is a line or if Co = 0, then Criteria II and III do not apply, In 

this case, the projection is a line and hence every point is visible with respect to it. 

Point Selection Criterion 

Having a method for visibility determination is not by itself sufficient for a prac- 
tical implementation. That is, hidden-line algorithms typically take huge amounts 
of computer time for even moderately simple scenes. The worst case is brute force 
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where every line is quantified into many points and each point is tested. Hence, 
economy of points and efficiency of implementation are very important. The following 
discussion presents an ordered approach to improve computational efficiency. We 
first consider this important definition. 

DEFINITION. Let S be a sequence of distinct triplets (xi, yi, zi) belonging to 

a line determined by (xl, yl, zl) and (x2, y2, z2). Define S to be “ordered” if given 

any two triplets, say (xk, yk, zk) and (xn, y,, zn) . Then n > k implies that 

(x n -x112 + (Yn - ~1)~ 2 (xk - ~1)~ + (y, - ~1)~. Define a primed symbol, such 

as Q’, to mean the projection of that element, Q , onto the XY-plane . (Fig. 4 represents 
a typical sequence S .> 

s = P1’ p** pj, P& PS’ $j’ p7 

Figure 4. Spatial representations of sequence S and points 
that comprise set {Pi} . Note that here {Pi} = PI, P5, P6, P7, 

which follows from the definition of a valid intersection on Q. 
along with its end points. 

THEOREM. Let Q. be any line segment which belongs to 0, any scene. Also, let 

S be an ordered sequence (Pi} = {xi, yi, zi} belonging to Qo, which includes its 

end points along with a subset of the interior points of Qo. Let these points of 

Q. be such that their projections are a subset of all of the intersections, if any, 

of Q6 with the interior points of other lines, say Qi, Q$, . . . , QA, as well as all 

of the intersections of Qo with the boundaries or interiors of planes A., . . . , Ak, 
I 

if any. Further, let this subset have the property that if (x0, y,, zo) 

belongs to Q. whose projection is the intersection Qo’ with Qn, and (x0, y,, zn) 

belongs to Qn, then zn > z. . (Fig. 4 illustrates a valid selection of points 

that comprise the set {Pi}. ) 

Then if Pi and Pi+l are both visible, the visibility of every interior point of 
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[Pi, Pi+l] has the same character. Moreover, if Pi or Pi+l is invisible, then 

every interior point of [Pi, Pi+I] is also invisible. 

PROOF. Let both Pi and Pi+l be visible. Also, let Pm be any interior point of 

[Pi, Pi+l] and be visible. If Ps is any other interior point, then it must also be 

visible. Assume the contrary whereby Ps is assumed to be invisible. Clearly then, 

Ps is hidden by some polygon, say AI, which implies that Pi lies in the interior of 

A i and satisfies Criterion III. Since Pm is visible, it is visible with respect to every 

polygon and in particular with respect to A 1. Therefore, P&either lies outside or 

on the boundary of A i, or PA lies in the interior of A i and P m satisfies Criterion II. 
(See fig. 5.) 

1, passes through plane A 

Lo passes behind planes A and B 

Figure 5. Visibility examples. 

Suppose P,sZ lies outside the boundary of A i. Since A i is closed, an edge of A i 

intersects Qb between PA and Pi. That is, there is an intersection of projections 

between Pi and Pi+I. This implies that the z-coordinate of the point on the edge of 

A1 whose projection is this intersection must be less than or equal to the z-coordinate 

of the point on Q. whose projection is this same intersection. This observation 

follows from the definition of S . 

Thus, there is a point on Qo, say Pt (x,, yt, zt> , such that Pi lies in the interior 

of A ’ and Pt satisfies Criterion II, or Pt lies on the boundary of A 
1 1 

since PA lies in 

the interior of Ai and Ps satisfies Criterion III. Hence, !20 must intersect A 1 inside 
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the boundary between Pi and Pi+l. But this is a contradiction which follows from 
the construction of S. 

Now if PA lies on the boundary of A i , then the z-coordinate of the point on Q. 

whose projection is the intersection of QA with the projection of an edge of A1 must 

be greater than or equal to the z-coordinate of a point on the edge of Al whose 

projection is this intersection. Clearly, this again implies there is an intersection 
of Qo with the plane A1 in its interior or boundary between Pi and Pi+l, which is 

impossible from the definition of S. 

The same contradiction follows if PA lies in the interior of Ai and Pm satisfies 
Criterion II. 

On the other hand, if Pm is invisible, the proof that every interior point of 

[Pi, Pi+l] is also invisible follows immediately by assuming there exists an interior 

point, say Ps, that is visible. By letting Pm be the known invisible point in 

[Pi, Pi+l] , the above argument may be employed and the same contradiction reached. 

Let us now define Pi or Pi+l to be invisible. Since, say, Pi is invisible, it lies 

in the interior of, say, A 1. Since Pi is an interior point of Ai and Pi satisfies 

Criterion III, there exists another point Ps such that PA lies in the interior of Ai, and 

Ps satisfies Criterion III. Now if we assume there exists another interior point, 

say Pm belonging to [Pi, Picl ] , that is visible, again the above argument may be 

used and the same contradiction reached. Q .E .D. 

IMPLEMENTATION 

An algorithm based on the theory presented in this paper has been implemented 
on a CDC-6500 computer at DFRF. This approach represents a significant improve- 
ment over existing algorithms in that it minimizes the number of points interrogated 
for visibility without assuming any environmental limitations. Although the theorem 
provides a formal basis for assuring generality and rapid execution, it ‘does not 
address the nuisance of square-law growth. That will now be discussed. 

Initially, an m X n grid in the XY-plane is constructed whose size is log2 N + 

constant, where again N is the number of elements. 

tained in a grid block, Bi , 

If an element Aj is entirely con- 

an index i, which represents the grid block, is placed in 

E..’ 
1 

If, however, some part of the element belongs to the boundary boxes of four or 

less blocks and is not a proper subset of any block, then i will be 



k 
i = 1 Ls * base ‘-’ 

s=l 

where 

l<k<4 
Ls = the grid block number involved 

base = log2 N + constant + 1 

This value of i is also placed in E.. 
I 

Thus, Ej will contain up to four of the blocks 

involved for the element A.. 
I 

Additionally, if Aj is inside the boundary box of a - 

grid block but not properly contained in it, then j is stored in the matrix, Mk i, 

where k is the kth element with this property and i is the grid block number. ’ 

If Aj belongs to more than four grid blocks, Ej is zero. 

The indices found in Ej are sorted only once. With this arrangement, it is now 

possible to assign a unique address, CE , to each sequence of like indices ignoring 

i 
those values in Ej which represent more than one block involvement (i.e. , 

i > log2 N + constant + 1) (Scheme 1). 

Thus, given an element Aj whose Ej is not zero, its relevant elements will be 

the elements corresponding to CE. and the Mk E. matrix. The total number of 

I ’ I 
relevant elements , TN, as they relate to Aj will be 

TN= $ CL +MkL 
i=l i ’ i 

where 

Mk,Li 
= addresses of relevant elements 

T = [log E.] + 1 
base j 

Here, Li are the packed block numbers derived from E.. 
I 

If Ej is zero, then the entire collection represents the relevant elements of A.. 
I 

Note that although each CL is mutually exclusive, this is not true for the matrix, 
i 



Mk,Li’ 
An element belonging to Mk L may also belong to MR L . Thus allowances 

’ P ’ w 
are made to eliminate redundancies. 

A second scheme (Scheme 2) is adopted as follows. The minimum X- and 
y-coordinate values along with the maximum z-coordinate value of each element are 
sorted once using a method with N log N growth. This results in three lists, each 
arranged in ascending order. Then, given an element A, the location of its maxi- 
mum x and y and minimum z in each list in turn is found logarithmically, if possible. 
Thus, only that part of each list such that (1) xmax < xi, (2) y,,, < yj , and 

(3) zmin 2 zk is retained. The minimum (i, j, n-k) and its corresponding elements 

become the smallest relevant set with respect to A with this scheme. 

With the number of relevant elements known from both methods, the minimum 
count from both schemes is chosen along with the appropriate corresponding elements. 

The final relevant set of elements resulting from comparisons of elements within 
this relevant set will be smaller yet. However, its computational efficiency is not 
salient since the growth pattern is ultimately predicated on the TN value. Clearly, 
if only the members of this class are tested against Ai, then square-law growth is 
avoided. 

Rigorous testing at DFRF verified that the algorithm enjoys almost linear growth. 
It should be noted that this algorithm was benchmarked against the Watkins algorithm 
and Loutrel algorithm (refs . 1 and 2) and was found to be superior to both in terms 
of speed. This superiority increased with the complexity of the scene. 

The computer program developed for the testing has about 1700 statements. 
The memory required for data is about 69N decimal words, where N is the number 
of elements. 

Line drawings presented in appendix B illustrate the generality of the algorithm. 
The steps of the algorithm are presented in appendix C. 

The program can be obtained from the Computer Software Management and 
Information Center (COSMIC) , 112 Barrow Hall, the University of Georgia, Athens, 
Georgia 30602. 

CONCLUDING REMARKS 

This paper addresses a classical problem in computer graphics and presents 
the theoretical basis for a practical hidden-line algorithm that surmounts all of the 
limitations of previous solutions. Furthermore, the efficiency of the algorithm does 
not suffer because of its generality. To the author’s knowledge, this is the most 
robust approach known and represents the first completely general solution to this 
most popular and important problem. 

Dryden Flight Research Facility 
Ames Research Center 

National Aeronautics and Space Administration 
Edwards, California, November 16, 1981 



APPENDIX A 

LIMITATIONS OF OTHER SOLUTIONS 

The following is a list of limitations of which at least one applies to all of the 
known hidden-line (calligraphic) solutions to date. 

Requires more than one pass. 
Does not handle n-sided polygons. 
Does not accept both concave and convex polygons as well as line segments. 
Does not tolerate faces with internal boundaries (concave or convex> . 
Requires more topological information than the vertices. 
Possesses square-law growth. 
Does not accept penetrating polygons complete with lines of intersection. 
Execution time grows linearly with the scale factor. 
Execution time is excessive for even moderately simple structures (500 lines). 
Makes mistakes frequently. 
Does not handle several adjacent faces which are transparent and opaque. 
Assumes a certain orientation of vertices (i.e. , clockwise or counterclockwise) . 
Requires that polygons not be larger than a certain size. 
Does not tolerate situations where an edge belongs to an arbitrary number of faces. 
Has limited orientations. 
Requires that every polygon belong to a polyhedron. 
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APPENDIX B 

COMPUTER-GENERATED LINE DRAWINGS 

CMR 
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Water tower Array of planes 

73 polygons 171 polygons 
Execution time = 10 set Execution time = 60 set 

Stability derivative plot 

625 polygons 
Execution time = 60 set 

Modified F-16 

159 polygons 
Execution time = 12.5 set 

Intersecting planes 

20 polygons 
Execution time = 1.8 set 

Box with a hole 

6 polygons, 
Execution time = .35 set 
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APPENDIX C 

STEPS OF THE ALGORITHM 

The sequence of the programmed algorithm is presented in the following 
discussion. All elements have been input in the form of (x, y, z) triplets (end 
points of line segments or vertices of polygons) to the hidden-line program. 

Step 1. Performs the Eulerian transformations on the (x, y, z) triplets for 
each element. Stores all of the computed information. All further computations 
will be on the transformed triplets. 

Step 2. Determines the equation of each plane and its edges, if applicable. 
All information is stored as in Step 1 and is kept in locations which correspond to 
that element number. 

Step 3. Computes minimum and maximum x and y in the projection plane for 
the entire scene. 

Step 4. Constructs a grid whose divisions are equal to log2 N + constant, 

where N is the total number of elements. The area of the grid is predicated on the 
minimum and maximum values of Step 3. The divisions are formed with lines 
parallel to the x- and y-axes. 

Step 5. Determines which elements are properly contained in a grid block 
and records which block. Also determines which elements are in the boundary 
boxes of the block but not contained in the block. Stores this information in 
arrays whose indices are the grid block numbers involved (Scheme 1). 

Step 6. Sorts the minimum x and y and maximum z of each element. 

Step 7. Begins main loop for point visibility test of each element. 

Step 8. Using Scheme 2, selects revelant elements with respect to each element 
in turn. (Relevant elements as they relate to a given element are those elements 
which could possibly hide some portions of the given element .> 

Step 9. Retrieves alternate set of relevant elements from Scheme 1 determined 
from Step 5. Chooses minimum count and corresponding elements from both schemes. 

Step 10. Reduces the relevant set to a smaller subset by performing boundary 
box tests on the x- , y- , and z-dimensions of the given element as that element 
relates to its relevant set. Also performs strict overlap tests. This final set is 
used in the remaining calculations. 

Step 11. Determines the equations of the lines of intersections, if any, between 
the given element and its relevant set. These equations are added to the stack of 
edges which bound the given element. This augmented count is used only for this 
particular element. The count is decremented to its original value when the 
algorithm proceeds to the next element. 
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Step 12. For each element A., 
I 

finds the points on each edge of Aj that intersect 

all of the edges of the relevant elements. The actual intersection points chosen are 
dictated by the theorem presented. 

Step 13. Sorts the intersections from left to right per line segment. 

Step 14. Determines the visibility of each intersection point along with the 
end points of each line segment. Initially, only every other intersection point need 
be examined. This follows from the theorem. 

The visibility criteria are described previously in the report. 

The process from Step 7 to Step 14 is repeated N times. 
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