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I

INTRODUCTM

The general problem of defining indices of categorical cluSterihg in
free recall has been the focus of extensive research in recent years (for
instance, see Dalrymple-Alford, 1970; Frankel & Cole, 1971; Kelly, 1973;
Roenker, Thompson, & Brown, 1971; and Shuell, 1969). Most of these contri-
butions discuss alternative statistics that measure the degree to which a
series of responses provided by a subject conforms to a hypothesized struc-
ture within the set donsisting of all potential responses. Typically, a
set of words or other stimuli that are assumed to be categorized into
mutually exclusive and exhaustive classesis given to a subject to study
in a randomized order; subsequently, the subject is asked to recall as
many items as possible from memory. An index of clustering quantifies the
amount of correspondence between the subject's protocol and the specific
partition of the items hypothesized by the researcher. If clustering in
,recall occurs according to expectations, then the respOnses of a subject
should be groupbd more or less consistently with respect to the a priori
categories that theoretically partition the original stimulus list, and in
particular, there should be a tendency for related items tope recalled to-
gether.'

The intent of this paper is not to propose yet another clustering index
as a competitor to the numerous ones already 'ion the market" (for illus-
trations, refer to the papers cited earlier)! Instead, we wish to provide
a novel framework within which several of the more popular clustering in-
dices may be viewed. In the first sections below, a graph-theoretic charac-
terization of the clustering problem is developed; in the later sections
certain specializations of the general-framework are-discussed along with
the appr9priate statistical inference procedures. As one flIrther comment,
it should be pointed outlthat the material to follow is limited to the
categorical clustering problem rather than to free re9a11 clustering in
general (cf., Pellegrino's [1971] discussion of the subjective-organization
paradigm).

1
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A GRAPH-THEORETIC PARADIGM

As a convention, suppose S denotes the set of n stimuli fol,...,ord
that contains the items presented to a subject. To formalize the under-
lying structure of the stimulus set, it is convenient to define a graph' G
that has n nodes or points 011...,on with an edge or line between each un-
ordered pair of distinct nodes. A nonnegative weight is attached to each
edge, that for notational purposes will be referred to as q(oi,o.), where
of and 0 are two distinct arbitrary nodes in S and define a sin?jle edge.

The upper portion of Figure 1 illustrates the -type of pictorial repNesen-
tation that may be given for any graph G. In this example, n is 5\and the

. arbitrary weights for all ten edges are between 0.0 and 1.0, as might be

represented by various numerical association norms.
As a special case, a graph G may be used to represent any categori-

zation assumed for the set S defined by a partition of S into object classes
containing nl,...,nk element's, where ni+...+nk = n. Note that this case
encompasses object classes and their associated elements defined either in

a priori terms (experimenter-defined) or on the basis of subjects' idiosyn-

crasies (subject-defined), with the latter exemplified by subjects sorting
objects into subject-perceived categories (cf., Mandler, 1967). In' the

present context, both types of categorization are considered to charac-
terize the stimulus Structure graph G. For a pair of nodes within the same
object class of the partition,.the Weight function is defined to be 1.0;
conversely, any edge between two nodes from separate objeCt classes is
assigned a weight of 0.0. For example, the lower portion of Figure 1 shows
how the graph G would appear if five objects (n =-5) belonged to two classes
(k = 2) with three objects, 01, 02, and 03, in °De classy (n1 = 3) and two
objects, 04 a4 05, in the other (n2 = 2). For convenience, this particular

case will be called the standard interpretation, but clearly, a categoriza-
tion defined, say,' by overlapping subsets or by a more complex structure
could be characterized-in a similIT way.

In a related manner the response sequence provided by a subject can be
represented by a second graph R on the node Set {01:,...,o}. For the graph R
the weight attached to an edge is either 1.0 or 0.0, where a 1.0 signifies
that the two nodes were recalled sequentially with no intervening elements.
Without loss of generality, it is assumed that all elements of S are actually
recalled, since otherwise the

1
original set S could be redefined as those

elements listed by a subject. Thus, the graph R consistd°of a single

-1We do not wish to contest here whether the proper basis for clustering is
the unconditional or the conditional stimulus set (cf,., Frender & Doubilet,

1974). The procedures to be described can be applied in either case.

3
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Figure 1. Illustration of a graph G on five nodes with nonnegative weights
attached to all edges (upper portion uses a generaltweight func-
tion; lower portion is a standard interpretation)%
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-._)ntiguour; sequence oi edges all having weights of 1.0 that passes, ti4roUgh
each node (-inc.-, and only

Ono possible measure of correspondence between a subject's recall
sequence and the Mrpohesized structure is given by the Index ,F: A

n n

- (1/2) i. q(o ,o.)C(oroj) =
)=1 1-1

Lq(oiroj)C(oiroi),

5

where C(o
ir

o
3

) is the zero-one weight function Characterizing the graph R,
g(o'iroj) is as previoa:,ly defined for Cr andq(oiroi) = oi) Wfor all
1. In the standard interpretation, F is merely the number of repetitions",
1.e.,the number of nole pairs that are recalled seqUentially and belong to
the -,ame objertt clawithiri the hypothesized partition.' Since the number
cf repetitions or some transform of this quantity isthe Commonly used mea-
sure of clustering discussed ia the literature, the F statistic is a natu-
ral generalization. `.; a large index 1' result's when the -node.

pairs that are recalled sequentially also have the larger associated weights
or. the defined edge,; in Although this discussion will emphasize the in-
dex Fr an alternative measure will be proposed in a later section that in-
corporates more information from a subject's protocol than simple adjacent

' responses.
The constant mUttiplic-ir of 1/2 used in the definition of r implies in

!in intuitive serene that some type of correction is being morale for counting

'the same produi:ts twice. In particular, if the original index I' were stated

without the constantemultiplier and the weight functions were not assumed to
be symmetric, then.a similar index may b'j' defined between two possibly asym-
metric weight functions." The graph C would be characterized by the presence
oftWoedgesbetweeneachpairofnodesoiandoi,where one-edge is directed
from of to of and weighted by q(oiroj) and the second edge is placed in
an apposite orientation and Weighted by

1 '

i.e.; directed from of to

o
i

. In.a similar way the protocol graph R could be directed; for instance,
each edge that ha:, a weight of 1.0 is matched with an edge between the same
two nodes but with a weight of 0.0 and is directed in the opposite way.
;eneral directed graphs of this type could prove.a usefdl extension if the
(-,rd in which the ;(1.1)jet provides the recalled nodes is of interest (e.g.,
see Pellegrino, 1971), but for our purposes only symmetric weight functions
wilt be considered explicitly.

At this poirit there, are two distinct problems that could be attacked:

(a) 'normalizing the index i to provide a measure of clustering, or (b) de-

fij,ing a hypothesis-te.,ting procedure for evaluating the size of an observed e
In some instances the second problem subsumes the first, since

many of the more acceptable normalizations require an initial calculation
of .statistics that are also needed in hypothesis testing. Neverthelest, a
number of possible, normalizations will be presented later that relate directly
to several of,the more popular indices already used for the standard inter-
pretation.

1t}
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A PERMUTATION DISTRIBUTION FOR r

One possible strategy for assessing the' correspondence between the two
,graphs R and G is to develop a statisticalqbasekine through a randomization
or permutation distribution for the index F (for.example, see Barton &

David, 1966), Under the assumption that there is no inherent relationship
.between a subject's response protocol.and the underlying assumed structure
defined by G: each possible permutation of the nodes 01,...,on is assumed to
have an equally likely chance of occurring a priori as the subject's response
sequence. Since there are n: possible orderings of the n nodes, an index F
could be calculated for each.such sequence, generating what is typically
called a permutation distribution for F. By comparing the observed value of
F to this distribution, a prdcise evaluation may be made as to whether the
observed value of F is large enough to reject the hypothesis that the sub-
ject's protocol has no inherent relationship to the researcher's theoretical'
categorization. In other words, wit!, respect to the graph G the following

'question is raised: Is`it reasonable to infer that the subject's protocol
was not chosen at random from the n! possi}1e response sequences?

Clearly there are many difficulties with*this formulation, since even,
in the eveht that a subject is responding independently of the'assumed cate-
'gorizationit is very unlikely that tile protocol chosen can be viewed
realistically as an actual random selection from all n: possible response
sequences formed from the list of recalled nodes (for example, see Shuell,

1969). Nevertheless, an inference technique based upon complete randomi-
zation is justified to the extent that response biases, such as serial posi-
tion effects, are unrelated to the categorization being tested by the re-
searcher. 2 There does not appear to be any simple way of making this ob-
viously vague generalization any more precise that would, at the same time,
allow the development of a very general inference procedure.

As a very
t

thatelementary example at should provide some clarification,
suppose that a subject recalls four words in the order 01,02,03,04. The

researcher has assumed that a standard interpretation holds in which the

nodes {01,02} form one category and {03,04} form a second. In this illus-

tration, 7wo edges are present in G with weights of 1.0 between 01 and o2
.and between 03 and 04; alternatively, in R, three edges are present with
weights of 1.0 defined between each pair of adjacent responses: 01 and 02,

02 and 03, and 03 and 04. All other.edges in both graphs have weights of
0.0. Consequently, the observed value of r is 2.0, and the appropriate

2

tal

Response biases of this kind (that act"to disturb the nominal probability
levels under the assumption of "equally likely" sequences) may be counter-
acted to some extent by the investigator, through such techniques as block
randomilzation of items representing different categories, the inclusion of
"buffet' items in the first and last few study list positions, and the in-
ser ,onl-of an interpolated-activity interval between study and test. More
comp ex decision rules could also be devised,,such as ignoring those items
in the subject't protocol that occur in exactly the same k initial or termi-
nal serial positions as on the study list.

"11
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perMutation distribution is defined by calculating r for all 4: = 24
possible response protocols, where each such protocol includes all .fotir
of the nodes(see Table 1).-

...

TABLE 1

A SAMPLE PERMUTATION DISTRIBUTION FOR

Permutation F Value

1-2: 01 02 03 04; 04 03 02 01 2r
3-4: o 02 04 o 03 04 02 01 2

1 2 4 3' 3 4 2 1

5-6: o o o 04 02 a
1 3 2 4' 4 2 3

0l

7-8: 01 1
1

0
3 04 02

; 0
2

o
. 4

o
3
o
1

9-10: 0
l'

0
4

0
2

'03; o
3
02 04 0

1
0

11-12: o
1

04 03 02' 0
2

0
3

0
4 1

0" '1

13-14: 02 01 03 04; 04 03 01 02 2

15-16: 02 o 04 o 03 04 o 02 2
2 1 4 3' 3 4 1 2

17-18: 02 03 01 04;e 04 01 03 02 0

19-20: 02 04 01 03; 03 ol 04 02 0

211-22: 03 01 02 04; 04 02 01 03 1

23-24: '0 1
3 02

o
1 04

;

04 o 1 °2- o 3

The proliability distribution based on these obtained values of I' is as
. follows:

'Probability

0 8/24

1
S.

8/24

2 8/24

Withih a hypothesis-testing context, the probability of observing a value
of F equal to 2 (or larger) is 1/3 thder the assumption that the response
protocol is chosen at random ttem the 4: possible sequences. ,A larger
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value of n would be necessary to proyide attainable significance levels
in the traditional ranges. of .05 to .01, bvt obviously, the same paradigM
could be used with a corresponding increase in the required computational
labor,

The pArcedure just described ownstructs what is called a "conditionaf
permutati AA ibution" in the statistical literature, where the term
"conditicn 1" refers to the-ue of the subject's actual protocol in iden-

s et, of nodes for the construction of- the reference distri-
bution. --Inference procedures based upon these ideas form the basis for
much of nonparametric statistics, and in fact, some of the same problems
that appear in applying nonparametric techniqaes also cause diafficulties
in the free: recall framework as well. Specifically, since the permutation
distribution must -be generated anew for each particular application, alter-
native approaches that bypass complete enumeration must be found. Gener-
ally, two different solutions are attempted in the statistics literature:
the substitution. of "scores" (for instance, ranks or normal deviates) for
the original numerical observations that will allow a tabling of the per-
mutation distribution that suffices for all applications; or secondly,
deriving the mean and,irariance formulas for the appropriate test statistic
"and relying A large sample distributions for hypothesis testing.

Unfortunately, because-of the great, variability in the types ofcate-
gorization structure, the latter alternative is the only possibility that
can be entertained for the free recall problem. Consequently, the next
task-isto derive the mean and variance parameters for F. For'an attempt
to obtain complete probability distributions in the case,of a standard
interpretation, the reader should consult Kelly (1973).



IV

MEAN AND VARIANCE FOR r

The mean and variance parameters for r are easily derived and, sur-
prisingly, are a special case of la much more general set of expressions
given by Mantel (1967) in the biometrics literature. For convenience,
suppose A

1
, A

2
, and A

3
are defined as follows:

n n

Al = ( E E q(o1 .,o))
2

;

i=1 j=1
3

n n

A2=EJ E q(o.,o.)) 2
;

i= j=1 1 3

n n
2

= E.
1

. E q(o.,o,)
i=1 j=1

Then, using this notation

n n

E(r) = (1/n) E E q(o.,o.);
. 1 3

2 1,=1 3=1

Var(r) = (1 /(n(n -1))) (A1 2A2) (1/n.2 )Aa. + (1/n)A
3.

For the standard interpretation in which the assumed partition con-
sistsnof object classes of sizes, n1,...,nk, formulas [1] and [2] reduce
considerably to the forms given in [3] and j4], respectively:

-g( n = (l lyi) E\n?) -

i=

14
11
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2
Var(I') = (1/(n

2
(n-1))) ( E n.)

2 Q [4]

i=1 1

(2db(n-i.)))..( E ni) .

i=1

7/ n

+ ((n+1)/(n(n-1)))( E n.2 )

i=1

n/(n -1).

In'this special case, [3] is the expected number of repetitions and
is identical to the expression derived by Bousfield and Bousfield (1966).
Furthermore, the variance term in [4] is,equivalent to a formula used by
Frankel and Cole (1971) and is equal to the variance of the number of runs
in a multiple-type object context since the number of such runs is merely
the complement of the number of repetitions. For the probability distri-
bution given previously and using formulas 13] and [4], we find that E(T) =
1 and Var(F) = 2/3. These values can be verified numerically by computing.

. the mean and variance of I' directly from the complete-permutation diStri-
bution..

Because the mean and variance parameterS forj are available, it is
natural to normalize the index r in the followinglqay:3

Z = (F-E.(F))/Var(F).

Phis pormalization "corrects" the observed value of r for the amount of
c ustering expected for the particular items recalled by the subject.
F llowing Frankel and Cole (1971), the statistic Z generalizes the type of
deviation measure that Shuell (1969) suggests for an index of clustering
in a standard interpretation.` Several other indices are suggested later.
Finally, it should be noted that it seems reasonable to,compare this Z index
to a standard, normal distribution (given relatively large n) in order to pro-
vide an approximation to the permutation distribution discussed earlier.

3
Although in this section we discuss normalization procedu es for a single
subject under a conditional permutation model, a more use ul extension can
be developed through an appropriate measure C(o.,o ) based on N protocols.
This is presented in a later section.

j
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AN ALTERNATIVE INDEX c AND SOME EXTENSIONS

A

The common measures of clustering used in the free recall literature,

including the general measure r, depend only upon a minimal amount of in-.

formation from an individual subject's protocol. Specifically, only those

node pairs that are recalled sequentially contribute to the measure and

all other pairs contribute nothing, even those that are separated by only

one intervening node within the recall sequence. There is ohe rather

simple scheme, however, for incorporating additional information from the

subject's protocol by defining an alternative index Q. Suppose the sub-

ject generates the node sequence 01,...,on and a proximity function is

defined between any two nodes in the protocol as the number of intervening

nodes plus one. Thus, two nodes that are recalled far apart should have

a large associated proximity function. In particular, define C(or,os) =

Ir 1

and let

n n

St = (1/2) E E q(o.1 ,o1C(0.1 ,10.)
3 3

i=1 j=1

n n

= (1/2) E E fq(o.,0.3 )

1=1, j=1

= E Eq(oi,oi)(j-i).
i < j

If clustering in recall occurs, then two items of and of within the

same category,sor more generally, two items with relatively large values

of q(ooni), should have small,associated function values C(oi,oj). Con-

sequently, the smaller the value, of 0, the more clustering in free recall

occurs according to what is expected considering the weighted graph G.

Fortunately, the mean and variance parameters for are also available as

special cases of the Mantel (1967) formulas:

n n

E(Q) = [(n+1)/6] E E g(0.,0.);
i=1 j=1

Var(Q) = [(n+1)/180][-A
1
+(n-4)A

2
+4(n-1)A

3
].

13



Me'

-14 (

For the standard interyre4tion, these two expressions take on the simpler
forms given in,[7] and [8]:

n

E(0) = ((n+1)/6)( E n.
2

- n);
1

Var(Q)= ((n+1)/180)[-( E n.)
2

+ 4(n+1) E n.
i=1'1

I. 1

n

.+ (n-4) E n.
3
--4n

2
].

.

1=1

4

[7]

- [8]

As a simple numerical illustration in the case of a standard inter-
pretation; the four-node example given previously may also be used to verify
formulas [7] and [8].. In this case" the complete set of permutation values
would be as shown in Table 2.

TABLE 2

A SAMPLE PERMUTATION DISTRIBUTION FOR 0

Permutation Q Value

1-2:

3-4:

5-6:

7-8:

9-10:

11-12r

13-14:

15-16:

17-18:

19-20:

21-22:

23-24:

0 o
1 ?

01 02
1 2

o o
1- 3

01 03

01 04
1 4

o
041 4

02 01

c:) 01

02 03

02 04

03 01

03 o2

o o 033 4'

04 o
4 3'

02 04;
2 4'

04 02;

02 o
2 3'

o 033 2'

03 o
4'

04 03;

01 04;

01.03;

02 04;

01 04;

04

03
3

04
4

02

03
3

02

04

03
3

04

03

04

04

o

o
4

02
2

04

o
2

03

oo04

01

01

02

01

022

02
2

03
3

oo
04
4

044

0/

01

03

04

01

02

1

o01

o01

01

o01

1

02

2

02

02

03

03

1

a

2

2

4

4

4

4

2

2

4

4

4

4

4'

17



eb.

The correspon g prof ability' distribution would be:

4

Probabiility

8/24

16/24

N

J

15 -\

Thus, comlAuting'either from formulas [7) and [8] ox from the actual permuta-
tion distribution, we find E(Q) = 10/3 And Var(S2) =8/9. A normalization'of

. the index SI using the mean-and variance may. be usefi for interpretation here

as well.

1'
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INDICES OF CLUSTERING

Although hypothesis testing can be approached through an application.
of.a randomization distribution, a second rather distinct problem still
remains, in defining "good" indices of categorical clustering. Exactly
the same difficulty occurs in measuring rank correlation using the number
of rank order inversions as a criterion. Almost all of the suggested
rank correlation measures rely on the same statistic (usually denoted by
S) to test the null hypothesis of no population association (see Hays;
1973, p. 799). Nevertheless, at least five'different normalizatiops of
this basic S statistic have been suggested as away of providing a final
measur4 of rank correlation, e.g., Somers' asymmetrical y's, Goodman-
Kruekal's y, tau a, taub, and tauc (Somers, 1962 Consequently, the
basic statistic for the standard interpretation ee recall problem
defined by the number of repetitions seems to be t n tural analogue of
the S statistic of rank correlation; moreover, the desire to find an ade-
quate index of clustering corresponds directly to the historkbal search
for a good index of rank correlation.

In our general framework, the indices F and Q play the role of basic
statistics that could be normalized in various ways to provide a final
index of clustering. Several normalizations are suggested in Table 3 that
will reduce for the special case of a standard interpretation to the more
familiar measures discussed in the psychological literature. No attempt
will be made to evaluate the merits of .each of these normalizations, and
thus, the reader is urged to consult the sources that are cited for exten-
sive critiques and theoretical justifications.

Each of the indices given in Table 3 depends upon a number of constants
chosen from the following list:

E(F), E(Q), Var(F), Var(Q), Max(F), Max(Q), Min(F), Max(Q).

\ All of these quantities have been defined earlier except for the Min and
Max parameters, and these latter bounds can be obtained by a simple order-.
ing operation. In particular, if the n(n-1)/2 values of q(oi,oj) are
ordered from smallest to largest and the n(n-1)./2 values.of C(oi,oj) are
also ordered from smallest to largest, then one-half of the sum of the pair-
wise products of the two entries in the same rank position defines the maxi-

* mul# value of the index. Similarly, if the n(n-1)/2 Valles of C(oi,oi) are
reordered oppositely from largest to smallest, then one-half of the gum of

19the pairwise products definer'? e minimum index value (Gilmore, 1962). If

a fairly simple structure for t graph G can be identified (e.g., a standard
interpretation) then a closed-form expression for the minimum and maximum

17 1;')
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index values may be obtained directly. In general, ho ever, any' application

that depends on a rather comple'x structure'in thegahGwill reguireasepa-
rate evaluation of the minimum and Maximum index vaImbs through this type of

ordering procedure.
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VII

GROUP STATISTICS

The indices of clustering in free recall that have been discussed up
std-thp- point are limited to the protocols of a single subject. However,

there \4.s an immediate generalization of the basic randomization paradigm
that provides a direct extension to group data, or for that matter, to

i

repeated trials using the same subject. For instance, suppose the stimulus
structure graph G is fixed but we obtain N protocols either from.a group of
N subjects or f om the same subject over N trials. Each of the N protocols

is defined by a subset of the set of nodes S that define the graph and

a proximity measure is constructed in some way between each pair of-nbaes

of and of in S. As an illustration, an overall proximity function C(oi,oj)
could be Obtained by first constructing for each protocol k a proximity
matrix Ck(oi,oj) between all node pairs in S and then summing (and possibly
averaging) the N individual proximity functions. For a specific example,
the proximity function Ck(oi,oi) for protocols k could be defined as

C
k
(o

i
,o

j
) =

1 if lo.
1

and o. are recalled consecutively

0

in protocol k;

0 otherwise.

In this case, if C(oi,o) = ECk(oi,oi), then the overall proximity between
of and of is the number of protocols'in which of and of were recalled sequen-
tially. Thus, with this interpretation, larger values of C(oi,oj) correspond
to the more similartobjects. As an alternative possibility, suppose that
protocol k contains nk recalled items and we define:

C
k 1
(o.10.)

jlifbotho.1 ando.are recalled-in protocol

k and with li ji 7 1 intervening nodes;

n
k

+ 1 if either of or of is not present in protocol k.

Using this definition and summing over all protocols, small values of C(oi,oi)
denote the more similar object pairs.

2w
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In any event, given the final' proximity measure C(o ,o.)
'

a general
3

Index may be defined by, say, A:

n n

A = (1/2) E , g(0.,Q1C(o.,°.)
j=1 1=1,

1 , 1 3

AL

E Eg(o,,o.)C(o.,o.).
< j

1 1

//Mantel's formulas immediately provide the randomization mean and variance
for A:

11; n
Let A11= ( E E g(o1 ,,o,))

2
;

3
j=1 i =1

Then

n n
2

A = E ( E g(o.,o.)) ;

2
3. =1 1=1

n n
2

A = E E g(o.,o.) ;

3 1
j=1 1=1

n n

B1 = (E EC(o.,o,))
2

;

j=1 1=1

n n

= E ( E C(o.,o.))
2

;

3
j=1 1=1

1

n n

B = E E C(o.,0.)
2

;
3 .

3=1 -1=1

E(A) = (1/(2n(n-1))]/A1B1 ;

VarSA) = -(r/(2n(n-1))]
2
A B
1 1 '441,L1

(1/(2n(n-1))JA B
3 3

2



+ (1/(n(n-1) (n-2)) ] (A2 A3] [B2,- B3]

+ (1/(4(n(n-1)(A-2)(n-3)MA
1

4A
2
+ 2A

3
]

(B
1

4B
2
+ 2B3].
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With these parameters, a normalized Z statistic may be defined-in the .

usual way:

Z = (A E(A))/Var(A)

Once again,, this Z statistic should provide a convenient large-sample
approximaX4on to the exact permutation test that the measu es q(oi,oi) and
C(ol,oj) are unrelated, or more simply, Z could be used a a normalized

group measure of clustering in free recall.
Although the general statistic A .may be used to index clustering in

free recall for a gioup of subjects or for a single subject over'trials, a
more traditional approach to group analyses should be noted. Here the

single protocol statistics, say r or Q, are calculated and used in tradi-
tional analysis of variance paradigms to assess group differences, trends,
and so on. Clearly, the use of a clustering index as a dependent variable
is a much more general technique than the simple randomifation'eXtension
defined through the single index A.



VIII

DISCUSSION

Although the inference problem discussed in this paper has been
framed completely. witIlin the free recall paradigm, in actuality the task
of comparing two graphs can be made much more general. We have indicated

earlier that in the free recall paradigm, the subject response graph, R,
is compared with the stimulus structure graph, G, with the latter defined

either by the experimenter or by the subject. In some cases, however,

the stimulus structure graph may be of interest in its own right, namely,

when an investigator wishes to compare some a priori structure with the

subject's perception of it (see, for example, Anglin, 1970). Suppose

the subject is asked to sort the elements of S into groups of similar

objects, as is done in the Mandler (1967) paradigm. An index of corre-
spondence between the subject's sort and the a priori structure characterized
by G can be obtained in the same way that r or SI were defined earlier.

In summary; the problem of comparing two graphs R and .G appears to

be a very general inference technique that can be identified as basic to

many exp ?rimental situations in the behavioral sciences. Given the elegance
of the associated randomization procedures, this framework is capable ofi

providing an extremely general inference strategy. The necessary corre-
spondences are now being developed in detail by the authors, and hopefully,
this work will provide the applied researcher with a new set of useful and
powerful analytical tools.

t)
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