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We develop a tractable and flexible stochastic volatility multifactor model of the term

structure of interest rates. It features unspanned stochastic volatility factors, correlation

between innovations to forward rates and their volatilities, quasi-analytical prices of zero-

coupon bond options, and dynamics of the forward rate curve, under both the actual

and risk-neutral measures, in terms of a finite-dimensional affine state vector. The model

has a very good fit to an extensive panel dataset of interest rates, swaptions, and caps. In

particular, the model matches the implied cap skews and the dynamics of implied volatilities.

(JEL E43, G13)

1. Introduction

A number of stylized facts about interest rate volatility have been uncovered in

the literature. First, interest rate volatility is clearly stochastic. Second, interest

rate volatility contains important unspanned components. For instance, Collin-

Dufresne and Goldstein (2002a); Heidari and Wu (2003); and Li and Zhao

(2006) identify a number of unspanned stochastic volatility factors driving

interest rate derivatives that do not affect the term structure, and Andersen and

Benzoni (2005) also find unspanned factors in realized interest rate volatility.

Third, changes in interest rate volatility are correlated with changes in interest

rates. For instance, estimates in Andersen and Lund (1997) and Ball and Torous

(1999), who both study the dynamics of the short-term interest rate, imply that

relative interest rate volatility is negatively correlated with interest rates while

absolute interest rate volatility is positively correlated with interest rates.1 As
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1 Both papers estimate a stochastic volatility extension of the Chan et al. (1992) model given by

dr (t) = κ1(µ1 − r (t))dt +
√

v(t)r (t)γdW1(t),

dlogv(t) = κ2(µ2 − logv(t))dt + σdW2(t),
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we discuss below, similar results are obtained from time series of implied

swaption and cap volatilities. Fourth, the unconditional (realized and implied)

volatility term structure exhibits a hump—see, e.g., the discussion in Dai and

Singleton (2003).

In this paper, we develop a tractable and flexible multifactor model of the

term structure of interest rates that is consistent with these stylized facts about

interest rate volatility. The model is based on the Heath, Jarrow, and Morton

(1992) (HJM, henceforth) framework. In its most general form, the model has

N factors, which drive the term structure, and N additional unspanned stochas-

tic volatility factors, which affect only interest rate derivatives. Importantly,

the model allows innovations to interest rates and their volatilities to be corre-

lated. Furthermore, the model can accommodate a wide range of shocks to the

term structure including hump-shaped shocks. We derive quasi-analytical zero-

coupon bond option (and therefore cap) prices based on transform techniques,

while coupon bond option (and therefore swaption) prices can be obtained

using well-known and accurate approximations. We show that the dynamics of

the term structure under the risk-neutral probability measure can be described

in terms of a finite number of state variables that jointly follow an affine dif-

fusion process. This facilitates pricing of complex interest rate derivatives by

Monte Carlo simulations. We apply the flexible “extended affine” market price

of risk specification proposed by Cheredito, Filipovic, and Kimmel (2007),

which implies that the state vector also follows an affine diffusion process

under the actual probability measure and facilitates the application of standard

econometric techniques.

We estimate the model for N = 1, 2, and 3 using an extensive panel dataset

consisting of 7 years (plus 1.5 years of additional data used for out-of-sample

analysis) of weekly observations of LIBOR and swap rates, at-the-money-

forward (ATMF, henceforth) swaptions, ATMF caps, and for the second half of

the sample, non-ATMF caps (i.e., cap skews). To our knowledge, this is the most

extensive dataset, in terms of the range of instruments included, that has been

used in the empirical term structure literature to date. The estimation procedure

is quasi maximum likelihood in conjunction with the extended Kalman filter.

The empirical part of the paper contains a number of contributions. First, we

show that for N = 3, the model has a very good fit to both interest rates and

interest rate derivatives. This is consistent with principal component analyses

that show that three factors are necessary to capture the variation in the term

structure (see, e.g., Litterman and Scheinkman, 1991) and, as discussed above,

that a number of additional unspanned stochastic volatility factors are needed

to explain the variation in interest rate derivatives fully. This conclusion also

holds true in the out-of-sample period.

Second, we address the relative valuation of swaptions and caps by reesti-

mating the N = 3 model separately on swaptions and caps, and pricing caps

where the correlation between W1(t) and W2(t) is set to zero. The short-term interest rate and its volatility are
correlated through the term r (t)γ . Andersen and Lund (1997) estimate γ = 0.544 and Ball and Torous (1999)
estimate γ = 0.754 implying the dynamics stated in the text.
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and swaptions out of sample. We find that, according to our model, swaptions

were mostly undervalued relative to caps during the first 2.5 years of the sam-

ple. However, since then swaption and cap prices appear largely consistent with

each other.

Third, we stress the importance of allowing innovations to interest rates

and their volatilities to be correlated. In the cross-sectional dimension of the

data, we observe downward sloping cap skews in terms of lognormal implied

volatilities with low-strike, in-the-money caps trading at higher lognormal

implied volatilities than high-strike, out-of-the-money caps. In the time-series

dimension of the data, we observe that changes in lognormal implied volatilities

of both swaptions and caps are moderately negatively correlated with changes

in the underlying forward rates, while changes in normal implied volatilities

are moderately positively correlated with changes in the underlying forward

rates.2,3 In our model, both the steepness of the implied cap skews and the

dynamics of implied volatilities depend critically on the correlation parameters,

and the model is able to match both features of the data accurately. In other

words, our model provides a consistent explanation of why and how implied

volatilities vary across moneyness and time.

Fourth, we test the N = 3 models estimated separately on swaptions and caps

against a range of nested models. The fit to both interest rates and interest rate

derivatives becomes progressively worse as more of the term structure factors

are restricted to generate exponentially declining, rather than more flexible

and possibly hump-shaped, innovations to the forward rate curve and as the

number of unspanned stochastic volatility factors is reduced. Furthermore, the

ability to fit the cap skew deteriorates significantly if innovations to interest

rates and their volatilities are assumed uncorrelated. This shows that all the

major features of our model are necessary to provide an adequate fit to the

entire dataset.

Our model is related to the stochastic volatility LIBOR market models of

Han (2007) and Jarrow, Li, and Zhao (2007). Han (2007) estimates his model on

swaption data, while Jarrow, Li, and Zhao (2007) estimate their model on cap

skew data. In their models, conditional on the volatility state variables, forward

LIBOR rates are lognormally distributed, and forward swap rates are approx-

imately lognormally distributed (under the appropriate forward measures). In

2 In this paper, the term “lognormal implied volatility” is the volatility parameter that, plugged into the lognormal
(or Black, 1976) pricing formula, matches a given price. The term “normal implied volatility” is the volatility
parameter that, plugged into the normal pricing formula, matches a given price. For ATMF swaptions or caplets,
the relation between the two is approximately given by σN = σL N F(t, T ), where σN is the normal implied
volatility, σL N is the lognormal implied volatility and F(t, T ) is the underlying forward rate.

3 The average correlation between weekly changes in lognormal (normal) implied volatilities and weekly changes
in the underlying forward rates is −0.354 (0.349) for the 42 ATMF swaptions in the dataset and −0.331 (0.347)
for the seven ATMF caps in the dataset. Surprisingly, Chen and Scott (2001) report that the correlation between
changes in the lognormal implied volatilities from options on short-term Eurodollar futures and changes in the
underlying futures rates is only −0.07. This may have to do with their using a different sample period from ours
(they consider an earlier period from March 1985 to December 2000) and the fact that they consider the very
short end of the yield curve, which is highly affected by Fed behavior (see, e.g., Piazzesi, 2005).
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contrast, in our model, conditional on the volatility state variables, forward

LIBOR and swap rates are approximately normally distributed (under the ap-

propriate forward measures). More importantly, to make their models tractable,

they impose zero correlation between innovations to forward LIBOR rates and

their volatilities. The zero-correlation assumption implies that the forward

LIBOR rate distributions have fatter tails than the lognormal distribution, and

their models predict implied volatility smiles rather than the implied volatility

skews observed in the data.4 To match the implied volatility skews, Jarrow, Li,

and Zhao (2007) add jumps to the forward rate processes and estimate large

negative mean jump sizes (under the forward measures).

There are two issues with the zero-correlation constraint in their models,

however. First, their models are not able to match the dynamics of implied

volatilities across time as they imply that changes in lognormal implied volatil-

ities are approximately uncorrelated with changes in the underlying forward

rates. Indeed, Jarrow, Li, and Zhao (2007) report that the state variable that

drives most of the stochastic volatility is strongly negatively correlated with

interest rates despite the zero-correlation constraint in their model. Second,

we show that allowing for correlation between innovations to forward rates

and their volatilities can account for much of the implied volatility skew. By

ignoring this aspect, Jarrow, Li, and Zhao (2007) may overstate the importance

of jumps for pricing non-ATMF caps.

It seems logical, then, to extend the stochastic volatility LIBOR market model

(possibly with jumps) to nonzero correlation between innovations to forward

LIBOR rates and volatility. Unfortunately, such a model is intractable.5 The

ease with which we can incorporate nonzero correlation is one reason we prefer

to work with instantaneous forward rates within the HJM framework. Another

reason is our ability to obtain a finite-dimensional affine model of the evolution

of the forward rate curve.6

4 In contrast, in our model, a zero correlation assumption would imply that the forward LIBOR rate distributions
have fatter tails than the normal distribution and the model would predict very steep lognormal implied skews—
steeper than observed in the data.

5 The reason why nonzero correlation undermines the tractability of a stochastic volatility LIBOR market model is
that the dynamics of the volatility process becomes dependent on forward rates under the forward measure. See
Wu and Zhang (2005) for more on this issue and the approximations necessary to retain analytical tractability,
even with nonzero correlation. Andersen and Brotherton-Ratciffe (2005) develop a LIBOR market model with
unspannned stochastic volatility factors in which the forward rates enter the diffusion terms of the forward rate
processes in a flexible way that allows forward rates and their volatilities to be correlated. Pricing of caps and
swaptions relies on a number of fairly involved approximations, and they make no attempt to test their model on
a panel dataset of interest rate derivatives.

6 In LIBOR market models, it is typically not possible to obtain a finite-dimensional Markov model for the
evolution of the forward rate curve. Apart from making pricing by simulations more complicated, it also
prohibits estimating the model simultaneously on interest rates and derivatives by standard approaches. Instead,
Han (2007) and Jarrow, Li, and Zhao (2007) apply a two-step estimation approach in which, first, the loadings
on the term structure factors are obtained as the eigenvectors from a factor analysis of the historical covariance
matrix of forward rates, and second, the parameters of the volatility processes (and possibly the jumps) are
estimated from interest rate derivatives. Estimating a model simultaneously on interest rates and derivatives, as
we do in this paper, gives additional flexibility in terms of fitting the data.
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Our model is also related to Casassus, Collin-Dufresne, and Goldstein (2005),

who develop a stochastic volatility Hull and White (1990) model, which is a

special case of our model. Using implied cap skew data on a single date, they

also document the importance of allowing for nonzero correlation between

innovations to forward rates and volatility.

Other papers that use interest rate derivatives for estimating dynamic term

structure models include Umantsev (2001), who uses swaptions, Bikbov

and Chernov (2004), who use options on Eurodollar futures, and Almeida,

Graveline, and Joslin (2006), who use caps. These papers estimate traditional

three-factor affine models that do not have sufficient flexibility to match the

extensive dataset used in this paper. Furthermore, in these models it is very

difficult to generate unspanned stochastic volatility that arises naturally within

the HJM framework.7

The paper is structured as follows. Section 2 describes our general stochastic

volatility term structure model. Section 3 discusses the data and the estimation

procedure. Section 4 contains the estimation results. Section 5 concludes.

2. A General Stochastic Volatility Term Structure Model

2.1 The model under the risk-neutral measure

Let f (t, T ) denote the time-t instantaneous forward interest rate for risk-free

borrowing and lending at time T . We model the forward rate dynamics as

d f (t, T ) = µ f (t, T )dt +
N∑

i=1

σ f,i (t, T )
√

vi (t)dW
Q

i (t), (1)

dvi (t) = κi (θi − vi (t))dt + σi

√
vi (t)

(
ρi dW

Q
i (t) +

√
1 − ρ2

i d Z
Q
i (t)

)
, (2)

i = 1, . . . , N , where W
Q

i (t) and Z
Q
i (t) denote independent standard Wiener

processes under the risk-neutral measure Q. The model extends traditional HJM

models by incorporating stochastic volatility. The forward rate curve is driven

by N factors. Forward rate volatilities, and hence interest rate derivatives, are

driven by N × 2 factors, except if ρi = −1 or ρi = 1 for some i . Innovations

to forward rates and their volatilities are correlated, except if ρi = 0 for all

i . For N = 1, the model can be seen as the fixed-income counterpart to the

Heston (1993) model, which has been used extensively in the equity derivatives

literature.

7 See Collin-Dufresne and Goldstein (2002a) for the parameter restrictions that are necessary in order for traditional
three-factor affine models to exhibit unspanned stochastic volatility. They also show that traditional affine models
with two factors or less, such as the Longstaff and Schwartz (1992) model, cannot exhibit unspanned stochastic
volatility.
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Heath, Jarrow, and Morton (1992) show that absence of arbitrage implies

that the drift term in Equation (1) is given by

µ f (t, T ) =
N∑

i=1

vi (t)σ f,i (t, T )

∫ T

t

σ f,i (t, u)du. (3)

Hence, the dynamics of f (t, T ) under Q are completely determined by the

initial forward rate curve, the forward rate volatility functions, σ f,i (t, T ), and

the volatility state variables, vi (t).

For a general specification of σ f,i (t, T ), the dynamics of the forward rate

curve will be path-dependent, which significantly complicates derivatives pric-

ing and the application of standard econometric techniques. A branch of the

term structure literature has investigated under which conditions HJM models

are Markovian with respect to a finite number of state variables.8 Applying

these results to our setting, it can be shown that a sufficient condition for the

dynamics of the forward rate curve to be represented by a finite-dimensional

Markov process and for the volatility structure to be time-homogeneous is that

σ f,i (t, T ) = pn(T − t)e−γi (T −t), where pn(τ) is an n-order polynomial in τ. To

keep the model flexible yet tractable, we set set n = 1 such that

σ f,i (t, T ) = (α0,i + α1,i (T − t))e−γi (T −t). (4)

This specification allows for a wide range of shocks to the forward rate curve.

In particular, it allows for hump-shaped shocks that turn out to be essential to

match interest rate derivatives.9 Furthermore, the specification nests a number

of interesting special cases. With N = 1 and α1,1 = 0, we get the stochastic

volatility version of the Hull and White (1990) model analyzed by Casassus,

Collin-Dufresne, and Goldstein (2005). When also γ1 = 0, we obtain a stochas-

tic volatility version of the continuous-time Ho and Lee (1986) model.

The following proposition shows the Markov representation of the model:

Proposition 1. The time-t instantaneous forward interest rate for risk-free

borrowing and lending at time T , f (t, T ), is given by

f (t, T ) = f (0, T ) +
N∑

i=1

Bxi
(T − t)xi (t) +

N∑

i=1

6∑

j=1

Bφ j,i
(T − t)φ j,i (t), (5)

8 See, e.g., Ritchken and Sankarasubramaniam (1995); Bhar and Chiarella (1997); Inui and Kijima (1998); de Jong
and Santa-Clara (1999); Ritchken and Chuang (1999); and Chiarella and Kwon (2003).

9 Note that α0,i , α1,i , θi , and σi are not simultaneously identified; see, e.g., the discussion of invariant affine trans-
formations in Dai and Singleton (2000). In our empirical analysis, we normalize θi to 1 to achieve identification.
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where

Bxi
(τ) = (α0i + α1iτ)e−γi τ, (6)

Bφ1,i
(τ) = α1i e

−γi τ, (7)

Bφ2,i
(τ) =

α1i

γi

(
1

γi

+
α0i

α1i

)
(α0i + α1iτ)e−γi τ, (8)

Bφ3,i
(τ) = −

(
α0iα1i

γi

(
1

γi

+
α0i

α1i

)
+

α1i

γi

(
α1i

γi

+ 2α0i

)
τ +

α2
1i

γi

τ2

)
e−2γi τ,

(9)

Bφ4,i
(τ) =

α2
1i

γi

(
1

γi

+
α0i

α1i

)
e−γi τ, (10)

Bφ5,i
(τ) = −

α1i

γi

(
α1i

γi

+ 2α0i + 2α1iτ

)
e−2γi τ, (11)

Bφ6,i
(τ) = −

α2
1i

γi

e−2γi τ, (12)

and the state variables evolve according to

dxi (t) = −γi xi (t)dt +
√

vi (t)dW
Q

i (t), (13)

dφ1,i (t) = (xi (t) − γiφ1,i (t))dt, (14)

dφ2,i (t) = (vi (t) − γiφ2,i (t))dt, (15)

dφ3,i (t) = (vi (t) − 2γiφ3,i (t))dt, (16)

dφ4,i (t) = (φ2,i (t) − γiφ4,i (t))dt, (17)

dφ5,i (t) = (φ3,i (t) − 2γiφ5,i (t))dt, (18)

dφ6,i (t) = (2φ5,i (t) − 2γiφ6,i (t))dt, (19)

subject to xi (0) = φ1,i (0) = · · · = φ6,i (0) = 0.

Proof. See Appendix A. �

Note that forward rates do not depend directly on the volatility state vari-

ables. The dynamics of the forward rate curve are given in terms of N × 8 state

variables that jointly follow an affine diffusion process. There are no stochastic

terms in the φ1,i (t), . . . ,φ6,i (t) processes, which are “auxiliary,” locally deter-

ministic, state variables that reflect the path information of xi (t) and vi (t). By

augmenting the state space with these variables, the model becomes Markovian.

The model falls within the affine class of dynamic term structure models of

Duffie and Kan (1996) and inherits all the nice analytical features of that class.

The model is time-inhomogeneous, as the dynamics of the forward rate curve

depends on the initial term structure. In Section 3, we reduce the model to its

time-homogeneous counterpart for the purpose of econometric estimation.
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2.2 Prices of zero-coupon bonds and bond options

The time-t price of a zero-coupon bond maturing at time T , P(t, T ), is given

by

P(t, T ) ≡ exp

{
−
∫ T

t

f (t, u)du

}

=
P(0, T )

P(0, t)
exp

⎧
⎨
⎩

N∑

i=1

Bxi
(T − t)xi (t) +

N∑

i=1

6∑

j=1

Bφ j,i
(T − t)φ j,i (t)

⎫
⎬
⎭ ,

(20)

where

Bxi
(τ) =

α1i

γi

((
1

γi

+
α0i

α1i

)
(e−γi τ − 1) + τe−γi τ

)
, (21)

Bφ1,i
(τ) =

α1i

γi

(e−γi τ − 1), (22)

Bφ2,i
(τ) =

(
α1i

γi

)2 (
1

γi

+
α0i

α1i

)((
1

γi

+
α0i

α1i

)
(e−γi τ − 1) + τe−γi τ

)
,

(23)

Bφ3,i
(τ) = −

α1i

γ2
i

((
α1i

2γ2
i

+
α0i

γi

+
α2

0i

2α1i

)
(e−2γi τ − 1)

+
(

α1i

γi

+ α0i

)
τe−2γi τ +

α1i

2
τ2e−2γi τ

)
, (24)

Bφ4,i
(τ) =

(
α1i

γi

)2 (
1

γi

+
α0i

α1i

)
(e−γi τ − 1), (25)

Bφ5,i
(τ) = −

α1i

γ2
i

((
α1i

γi

+ α0i

)
(e−2γi τ − 1) + α1iτe−2γi τ

)
, (26)

Bφ6,i
(τ) = −

1

2

(
α1i

γi

)2

(e−2γi τ − 1). (27)

It follows that the dynamics of P(t, T ) is given by

d P(t, T )

P(t, T )
= r (t)dt +

N∑

i=1

Bxi
(T − t)

√
vi (t)dW

Q
i (t). (28)

To price options on zero-coupon bonds, we follow Collin-Dufresne and

Goldstein (2003), who extend the analysis in Duffie, Pan, and Singleton (2000)

to HJM models, and introduce the transform

ψ(u, t, T0, T1) = E
Q
t

[
e−

∫ T0
t

rs dseulog(P(T0,T1))
]
. (29)
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This transform has an exponentially affine solution as demonstrated in the

following proposition:

Proposition 2. The transform in (29) is given by

ψ(u, t, T0, T1) = eM(T0−t)+
∑N

i=1 Ni (T0−t)vi (t)+ulog(P(t,T1))+(1−u)log(P(t,T0)), (30)

where M(τ) and Ni (τ) solve the following system of ODEs:

d M(τ)

dτ
=

N∑

i=1

Ni (τ)κiθi , (31)

d Ni (τ)

dτ
= Ni (τ)(−κi + σiρi (u Bxi

(T1 − T0 + τ) + (1 − u)Bxi
(τ)))

+ 1
2

Ni (τ)2σ2
i + 1

2
(u2 − u)Bxi

(T1 − T0 + τ)2

+ 1
2
((1 − u)2 − (1 − u))Bxi

(τ)2

+ u(1 − u)Bxi
(T1 − T0 + τ)Bxi

(τ), (32)

subject to the boundary conditions M(0) = 0 and Ni (0) = 0.

Proof. See Appendix A. �

As in Duffie, Pan, and Singleton (2000) and Collin-Dufresne and Goldstein

(2003), we can now price options on zero-coupon bonds by applying the Fourier

inversion theorem.

Proposition 3. The time-t price of a European put option expiring at time T0

with strike K on a zero-coupon bond maturing at time T1, P(t, T0, T1, K ), is

given by

P(t, T0, T1, K ) = K G0,1(log(K )) − G1,1(log(K )), (33)

where Ga,b(y) is defined as

Ga,b(y) =
ψ(a, t, T0, T1)

2
−

1

π

∫ ∞

0

Im[ψ(a + iub, t, T0, T1)e−iuy]

u
du, (34)

where i =
√

−1.

Proof. See Appendix A. �

For estimation, we will use LIBOR rates, swap rates, caps, and swaptions.

LIBOR and swap rates are straightforward to compute from the zero-coupon

curve. A cap is a portfolio of caplets. A caplet is a call option on a LIBOR rate

but can also be valued as a (scaled) European put option on a zero-coupon bond

and can therefore be priced using Proposition 3. A payer swaption is a call option
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on a swap rate but can also be valued as a European put option on a coupon

bond. No analytical expressions exist for European coupon bond options in

the general affine framework, but a number of accurate approximations have

been developed. We apply the stochastic duration approach developed by Wei

(1997) for one-factor models and extended to multifactor models by Munk

(1999). This approximation is fast and has been shown to be accurate for

ATMF options, which is what we use for estimation; see Munk (1999) and

Singleton and Umantsev (2002).10 The idea of the stochastic duration approach

is to approximate a European option on a coupon bond with a (scaled) European

option on a zero-coupon bond with maturity equal to the stochastic duration of

the coupon bond. Therefore, swaptions can also be priced using Proposition 3.

Appendix B contains the pricing formulas for LIBOR rates, swap rates, caps,

and swaptions.

2.3 Implications for implied volatilities

Our model is expressed in terms of instantaneous forward rates. In contrast,

LIBOR market models (Miltersen, Sandmann, and Sondermann, 1997; and

Brace, Gatarek, and Musiela, 1997) are expressed in terms of forward LIBOR

rates, while swap market models (Jamshidian, 1997) are expressed in terms of

forward swap rates. In this section, we relate our model to these competing

frameworks popular in the financial industry. We also obtain very intuitive

formulas for the ATMF implied volatilities for swaptions and caplets in our

model.11

Applying Ito’s Lemma to the time-u forward swap rate for the period Tm to Tn

[see Equation (76) in Appendix B] and switching to the forward swap measure

under which forward swap rates are martingales (see Jamshidian, 1997), we

obtain

d S(u, Tm, Tn) =
N∑

i=1

⎛
⎝

n∑

j=m

ζ j (u)Bxi
(T j − u)

⎞
⎠√vi (u)dW

QTm ,Tn

i (u), (35)

where ζm(u) = P(u,Tm )
PVBP(u)

, ζ j (u) = −νS(u, Tm, Tn)
P(u,T j )

PVBP(u)
for j = m + 1, . . . ,

n − 1, ζn(u) = −(1 + νS(u, Tm, Tn)) P(u,Tn )
PVBP(u)

and PVBP(u) = ν
∑n

j=m+1

P(u, T j ). Furthermore, the dynamics of vi (u) under the forward swap measure

10 Other approximation schemes have been developed by Collin-Dufresne and Goldstein (2002b); Singleton and
Umantsev (2002); and Schrager and Pelsser (2006). However, these tend to be slower than the stochastic duration
approach and hence not well suited for this paper, in which a very large number of swaption prices needs to be
computed for each evaluation of the likelihood function.

11 To keep the discussion brief, we will focus on the dynamics of forward swap rates and ATMF swaption implied
volatilities. However, since a forward LIBOR rate can be seen as a particular forward swap rate, the analysis also
applies to the dynamics of forward LIBOR rates and ATMF caplet implied volatilities.
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are given by

dvi (u) =

⎛
⎝κi (θi − vi (u)) + vi (u)σiρiν

n∑

j=m+1

ξ j (u)Bxi
(T j − u)

⎞
⎠ du

+ σi

√
vi (u)

(
ρi dW

QTm ,Tn

i (u) +
√

1 − ρ2
i d Z

QTm ,Tn

i (u)
)
, (36)

where ξ j (u) = P(u,T j )

PVBP(u)
. W

QTm ,Tn

i (u) and Z
QTm ,Tn

i (u) denote independent standard

Wiener processes under the forward swap measure QTm ,Tn .

While instantaneous forward rates are normally distributed conditional on the

volatility state variables, the same does not hold for forward swap rates, since

the ζ j (u) terms are stochastic. Also, the process of vi (u) is nonaffine under the

forward swap measure due to the stochastic ξ j (u) terms. However, we can obtain

an approximate and affine expression for the dynamics of the forward swap

rate by replacing ζ j (u) and ξ j (u) with their time-t expected values, which are

simply their time-t values since these terms are martingales under the forward

swap measure.12 This implies that, conditional on the volatility state variables,

forward swap (and LIBOR) rates are approximately normally distributed in

our model. This is in contrast to the LIBOR and swap market models where

forward swap (and LIBOR) rates are typically (either approximately or exactly)

lognormally distributed.13

We can make a second approximation by replacing vi (u) in Equation (35)

with its time-t expected value. In this case, given time-t information, S(Tm, Tn)

is normally distributed

S(Tm, Tn) ∼ N (S(t, Tm, Tn), σN (t, Tm, Tn)
√

Tm − t), (37)

where

σN (t, Tm, Tn)

=

⎛
⎜⎝

1

Tm − t

∫ Tm

t

N∑

i=1

⎛
⎝

n∑

j=m

ζ j (t)Bxi
(T j − u)

⎞
⎠

2

E
QTm ,Tn

t [vi (u)]du

⎞
⎟⎠

1/2

. (38)

Then, an approximate price of a (Tm − t)–into–(Tn − Tm) swaption (i.e., the

time-t price of an option expiring at Tm on a swap for the period Tm to Tn) can

be obtained by inserting Equation (38) in the normal swaption pricing formula.

12 This is because PVBP(u), which is the numeraire associated with the forward swap measure, appears in the
denominators of these terms. A similar approach is followed by Schrager and Pelsser (2006) in a general affine
model. They argue that the approximation is very accurate since ζ j (u) and ξ j (u) typically have low variances.

13 The fact that forward rates are conditionally normally distributed implies that forward rates may become negative.
However, for typical parameter estimates reported in Section 4, the probability of forward rates taking negative
values under Q is virtually zero. The probability is generally higher, although still small, under P .
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Monte Carlo evidence (not reported) shows this to be reasonably accurate

for ATMF swaptions.14 Therefore, we can view σN (t, Tm, Tn) as a reasonably

accurate expression for the normal implied ATMF swaption volatility in our

model. The corresponding lognormal implied ATMF swaption volatility is

approximately given by

σL N (t, Tm, Tn) =
σN (t, Tm, Tn)

S(t, Tm, Tn)
. (39)

These expressions yield several insights. First, Equations (38) and (39) di-

rectly link the volatility state variables in our model to the ATMF normal and

lognormal implied volatilities. A positive vi (t)-shock naturally increases nor-

mal and lognormal implied volatilities. However, since σN (t, Tm, Tn) equals

the square root of the average expected instantaneous variance of the forward

swap rate over the life of the swaptions15 and since a vi (t)-shock is expected to

die out over time, the effect on implied volatilities will tend to decrease with

the length of the option. Other things being equal, the effect on longer-term

options will be larger for the more persistent volatility state variables.

Second, shocks to the term structure have only an indirect effect on

σN (t, Tm, Tn) through the ζ j (t) and ξ j (t) terms. This effect is small for rea-

sonable parameter values. In contrast, shocks to the term structure have a direct

effect on σL N (t, Tm, Tn) through the underlying forward rate. Therefore, in our

model the normal implied volatility surface is driven almost exclusively by

variations in the volatility state variables, while the lognormal implied volatil-

ity surface is driven by variations in both the volatility state variables and the

term structure.

Third, and related, without correlation between innovations to the volatility

state variables and the term structure, the model implies that changes in normal

implied volatilities are approximately uncorrelated with changes in the under-

lying forward rates, while changes in lognormal implied volatilities are quite

strongly negatively correlated with changes in the underlying forward rates.

However, with positive correlation parameters, the model implies positive (less

negative) correlations between normal (lognormal) implied volatility changes

and forward rate changes, more in line with what we see in the data.

2.4 Market price of risk specifications

For estimation, we also need the dynamics of the state vector under the actual

measure P , which are obtained by specifying the market prices of risk, �W,i

14 For N = 3 and typical parameter estimates reported in Section 4, the pricing errors range from −2% to 3% of
the true price depending on the swaption and the values of the state variables. Note that this approach to pricing
swaptions is extremely fast, requiring only a single numerical integration. Therefore, we use it in the initial stages
of the estimation procedure to obtain a set of parameter estimates that is subsequently refined by applying the
more accurate stochastic duration approach described in Appendix B.

15 Where the expectation is taken under the forward swap measure.

2018



A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives

and �Z ,i , that link the Wiener processes under Q and P through

dW P
i (t) = dW

Q
i (t) − �W,i (t)dt, (40)

d Z P
i (t) = d Z

Q
i (t) − �Z ,i (t)dt. (41)

We apply the “extended affine” market price of risk specification suggested by

Cheredito, Filipovic, and Kimmel (2007) and Collin-Dufresne, Goldstein, and

Jones (2003). This is the most flexible market price of risk specification that

preserves the affine structure of the state vector under the change of measure.

In our setting, the “extended affine” specification is given by

�W,i (t) =
λW,i0 + λW,i x xi (t) + λW,ivvi (t)√

vi (t)
, (42)

�Z ,i (t) =
1√

1 − ρ2
i

λZ ,i0 + λZ ,ivvi (t) − ρi (λW,i0 + λW,i x xi (t) + λW,ivvi (t))√
vi (t)

,

(43)

which implies that the dynamics of xi (t) and vi (t) under P are given by

dxi (t) =
(
ηP

i + κP
x,i xi (t) + κP

xv,ivi (t)
)

dt +
√

vi (t)dW P
i (t), (44)

dvi (t) = κP
i

(
θP

i − vi (t)
)
dt + σi

√
vi (t)

(
ρi dW P

i (t) +
√

1 − ρ2
i d Z P

i (t)
)
, (45)

where ηP
i = λW,i0, κP

x,i = (λW,i x − γi ), κP
xv,i = λW,iv , κP

i = κi − σiλZ ,iv and

θP
i = κi θi +σi λZ ,i0

κP
i

. Obviously, the dynamics of φ1,i (t), . . . ,φ6,i (t) do not change

since these contain no stochastic terms.

The traditional “completely affine” specification (see, e.g., Dai and Singleton,

2000) is obtained by setting λW,i0 = λW,i x = λZ ,i0 = 0, while the “essentially

affine” specification (see, e.g., Dai and Singleton, 2002; and Duffee, 2002) is

obtained by setting λZ ,i0 = 0.16 In both cases, we have that θP
i = κi θi

κP
i

. The

advantage of the “extended affine” specification is that one can adjust the mean

reversion speed and the long-run level of the volatility processes independently

of each other when changing measure. In contrast, with the “completely affine”

and “essentially affine” specifications, adjusting the mean reversion speed nec-

essarily changes the long-run level by a given amount.

The “extended affine” specification is only valid provided that vi (t) does not

attain its boundary value of zero under both Q and P . Therefore, we have to

16 Strictly speaking, in our setting, the “essentially affine” specification coincides with the “completely

affine” specification. However, we could allow dxi (t) = · · · dt +
√

ǫ + vi (t)dW
Q

i (t), in which case �W,i (t) =
λW,i0+λW,i x xi (t)+λW,ivvi (t)√

ǫ+vi (t)
and the statement in the text would be exactly correct. See Cheredito, Filipovic, and

Kimmel (2007) for more on this issue.
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impose the following boundary nonattainment conditions:17

2κiθi ≥ σ2
i , (46)

2κP
i θP

i ≥ σ2
i . (47)

3. Estimation Approach

3.1 Data

Our dataset consists of weekly observations of LIBOR/swap term structures

and lognormal implied ATMF swaption and cap volatilities from August 21,

1998 (i.e., just prior to the LTCM crisis) to January 26, 2007. From January 4,

2002 to January 26, 2007, we also have weekly observations on the lognormal

implied cap skews.18 All observations are closing midquotes on Fridays and

are obtained from Bloomberg.19

The LIBOR/swap term structures consist of LIBOR rates with maturities of

3, 6, and 9 months and swap rates with maturities 1, 2, 3, 5, 7, 10, and 15 years.

The term structure data are displayed in Figure 1.

The swaptions have underlying swap maturities of 1, 2, 3, 5, 7, and 10 years

(called “tenors”) and option maturities of 1 month, 3 months, 6 months, 1 year,

2 years, 3 years, and 5 years—i.e., a total of 42 swaptions. The strikes on the

ATMF swaptions are simply the forward rates on the underlying swaps. Figure

2 displays the swaption data.

The caps have length 1, 2, 3, 4, 5, 7, and 10 years. The strikes on the

ATMF caps are the swap rates on the swaps with payments that correspond to

those of the caps. The skew data consists of implied volatilities on caps with

fixed strikes of 1.5%, 2.0%, 3.0%, 4.0%, 5.0%, 6.0%, and 7.0%. We define

“moneyness” of a given cap as the ratio between its strike and the strike on the

ATMF cap of the same length. Therefore, those caps with moneyness larger

than one are out-of-the-money (OTM), while those with moneyness less than

one are in-the-money (ITM). Rather than work with caps with fixed strikes

(and time-varying moneyness), we will work with caps with fixed moneyness

(and time-varying strikes) between 0.80 and 1.20. The strike on a cap with a

given moneyness is obtained by cubic-spline interpolation. Figure 3 displays

the ATMF cap data, while Figure 4 displays the cap skew data. The missing

data in the time series of skews for the 1- and 2-year caps is due to the fact

that very low interest rates have made a full skew unavailable in some periods

17 Intuitively, if vi (t) were zero, we would have an infinite market price of risk despite zero volatility, representing
an arbitrage opportunity. The boundary nonattainment conditions ensure that the market prices of risk stay finite,
although they can become arbitrarily large. The boundary nonattainment conditions must be satisfied under both
P and Q for the measures to the equivalent. See Cheredito, Filipovic, and Kimmel (2007) for a further discussion.

18 Presently, information on implied swaption skews is not available through standard data sources.

19 Note that we are implicitly assuming homogeneous credit quality across the LIBOR, swap, swaption, and cap
markets since all cash-flows are discounted using the same discount factors.
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Figure 1

Time series of LIBOR and swap rates

Each time series consists of 441 weekly observations from August 21, 1998 to January 26, 2007.
Source: Bloomberg.

(we refrain from extrapolating outside the range of implied volatilities that are

available and use only full skews to give equal weight to OTM and ITM caps).

Furthermore, we have eliminated a few observations where there were obvious

mistakes in the reported implied volatilities.

We calibrate a forward rate curve on each observation date using the follow-

ing Nelson and Siegel (1987) parameterization:

f (t, T ) = β0 + β1e−γ1(T −t) + β2(T − t)e−γ2(T −t). (48)

The parameters are recalibrated on each observation date by minimizing the

mean-squared percentage differences between the observed LIBOR and swap

rates on that date and those implied (48). Based on the forward rate curves

(or, rather, the associated zero-coupon curves), we compute swaption and cap

prices from the lognormal (or Black, 1976) pricing formulas.

For estimation, we use data from August 21, 1998 to July 8, 2005. The rest

of the sample is used to evaluate the model out of sample.
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Figure 2

Time series of lognormal implied ATMF swaption volatilities

Each time series consists of 441 weekly observations from August 21, 1998 to January 26, 2007.
Source: Bloomberg.

3.2 The Kalman filter

We estimate the model using the extended Kalman filter.20 This involves writing

the model in state-space form, which consists of a measurement equation and

20 Duffee and Stanton (2004) compare several estimation methods in the context of estimating affine term struc-
ture models, namely Efficient Method of Moments (EMM), Simulated Maximum likelihood (SML), and
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Figure 3

Time series of lognormal implied ATMF cap volatilities

Each time series consists of 441 weekly observations from August 21, 1998 to January 26, 2007.
Source: Bloomberg.

a transition equation. The measurement equation describes the relationship

between observable variables and the latent state variables. It is given by

yt = h(X t ) + ut , ut ∼ iid. N (0, S), (49)

where yt is a vector consisting of observable quantities, X t is the state vector,

h is the pricing function, and ut is a vector of iid. Gaussian measurement errors

with covariance matrix S. The X t -vector is given by

X t = (x1(t), . . . , xN (t),φ1,1(t), . . . ,φ6,N (t), v1(t), . . . , vN (t))′, (50)

Quasi-Maximum likelihood (QML), in conjunction with the Kalman filter. Their conclusion is that the lat-
ter procedure is preferable due to its better finite-sample properties. Computational considerations also speak in
favor of the QML/Kalman filter approach, since the inclusion of derivatives in the estimation makes even this oth-
erwise simple procedure computationally intensive. Estimating the model with more complex simulation-based
EMM, SML, or MCMC procedures would be extremely time consuming, if not impossible.
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Figure 4

Time series of lognormal implied cap skews

The skews are the differences between the implied volatilities across moneyness and the implied volatilities of
the corresponding ATMF caps. “Moneyness” of a given cap is defined as the ratio between its strike and the strike
on the ATMF cap with the same maturity. Each time series consists of a maximum of 265 weekly observations
from January 4, 2002 to January 26, 2007.
Source: Bloomberg.

while the yt -vector consists of the LIBOR/swap term structure and the deriva-

tives prices.

LIBOR and swap rates are nonlinearly related to x1(t), . . . , xN (t) and

φ1,1(t), . . . ,φ6,N (t) through Equation (20). The model laid out in Section 2 is
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time-inhomogeneous and fits the initial yield curve by construction. For the pur-

pose of estimation, we reduce the model to its time-homogeneous counterpart

by replacing f (0, T ) with ϕ in Equation (5) and P(0,T )
P(0,t)

with exp {−ϕ(T − t)}
in Equation (20). ϕ is estimated as part of the estimation procedure and can be

interpreted as the infinite-maturity forward rate.21

Derivatives prices are nonlinearly related to v1(t), . . . , vN (t) through Equa-

tions (30) and (33). Since we price derivatives based on the actual forward rate

curves, derivatives prices are independent of the x(t) and φ(t) state variables.

This has the advantage that an imperfect fit to the forward rate curve does

not get reflected in derivatives prices, which in turn should provide us with

a cleaner estimate of the volatility processes.22 Since derivatives prices vary

strongly across option maturities, maturities of the underlying swap rates as well

as moneyness, we divide derivatives prices by their Black (1976) “vegas”—

i.e., their sensitivities to variations in lognormal volatilities. With this scaling,

derivatives prices have comparable magnitudes.23

To reduce the number of parameters in S, we make the conventional as-

sumption that the measurement errors are cross-sectionally uncorrelated (that

is, S is diagonal). Furthermore, we assume that one variance applies to all

measurement errors for interest rates, and that another variance applies to all

measurement errors for scaled derivatives prices.

The transition equation describes the discrete-time dynamics of the state

vector implied by the continuous-time processes (44), (45), (14)–(19), i =
1, . . . , N ,

X t+1 = �(X t ) + wt+1, wt+1 iid., E[wt+1] = 0, Var[wt+1] = Q(X t ). (51)

Since X t follows an affine diffusion, we have that �(X t ) = �0 + �X X t and

Q(X t ) = Q0 +
∑N

i=1 Qv,ivt,i , where �0, �X , Q0, and Qv,i are known in closed

form (see, e.g., Fisher and Gilles, 1996). The disturbance vector wt+1 is iid. but

not Gaussian.

To apply the Kalman filter, which is designed for linear Gaussian state-

space models, to Equations (49) and (51), we need to linearize the h-function

in Equation (49) and make the assumption that the disturbance term wt+1 in

Equation (51) is Gaussian. With these modifications, we can apply the extended

Kalman filter to Equations (49) and (51) and in the process obtain the likelihood

function. For completeness the extended Kalman filter recursions are stated in

Appendix C.24 The use of a Gaussian distribution to approximate the true

21 A similar approach is taken by de Jong and Santa-Clara (1999) in their estimation of HJM models.

22 When the cap skew data is included in the estimation, the dimension of the yt -vector varies over time. This does
not present a problem, however, since the Kalman filter easily handles missing observations.

23 This is very similar to fitting the model to lognormal implied volatilities but is much faster, since computing
implied volatilities requires a numerical inversion for each swaption and cap, which would add an extra layer of
complexity to the likelihood function.

24 Classic references on the Kalman filter are Harvey (1989) and Hamilton (1994).

2025



The Review of Financial Studies / v 22 n 5 2009

distribution of wt+1 makes this a QML estimation procedure. In Appendix C,

we perform a Monte Carlo study to investigate the small-sample properties of

the QML/Kalman filter approach in our setting. We find virtually no biases in the

estimates of the parameters identified under Q and only small and insignificant

biases in the estimates of the drift parameters in the P-dynamics.

3.3 Numerical issues

The loglikelihood function is maximized by initially using the Nelder-Mead

algorithm and later switching to the gradient-based BFGS algorithm. The op-

timization is repeated with several different plausible initial parameter guesses

to minimize the risk of not reaching the global optimum. The ODEs (31) and

(32) are solved with a standard fourth-order Runge-Kutta algorithm, and the

integral (34) is evaluated with the Gauss-Legendre quadrature formula, using

40 integration points and truncating the integral at 8000.25 For the model with

N = 3 estimated on the entire dataset up to July 8, 2005, each evaluation of the

likelihood function requires calculating 60,480 swaption prices and 514,336

caplet prices,26 underscoring the need for fast pricing routines.

4. Estimation Results

4.1 Parameter estimates

We start by estimating our model for N = 1, 2, and 3 on the entire dataset up

to July 8, 2005. We also reestimate the model for N = 3 on the swaption and

cap data separately to address further the relative valuation of swaptions and

caps. In the following, these five models are denoted by 1SC, 2SC, 3SC, 3S,

and 3C, respectively.

The five sets of parameter estimates are given in Tables 1 and 2.27 For

all the models, the estimates of α0,i , α1,i , and γi imply that all forward rate

volatility functions are hump shaped. The need for such hump-shaped functions

to match interest rate derivatives has been stressed by Amin and Morton (1994);

Moraleda and Vorst (1997); Ritchken and Chuang (1999); and Mercurio and

Moraleda (2000), among others, in the context of single-factor HJM models.

For all the models with N = 3, σ f,1(t, T ) affects the entire forward rate curve,

25 We use 20 points on the interval 0–1000 and another 20 points on the interval 1000–8000. Increasing the number
of points and/or the truncation of the integral does not change the likelihood value. In fact, truncating at 8000
is very conservative at the optimum. However, the speed with which the integrand dies out depends on the
parameters and for some of the parameter vectors that are encountered during the optimization, 8000 appears an
appropriate cutoff point.

26 In the sample, there are a total of 15,120 swaptions, 43,560 caplets constituting 2520 ATMF caps, and 85,024
caplets constituting 4640 non-ATMF caps. Furthermore, the derivative (86) in Appendix C is computed numeri-
cally so we need to reprice the swaptions and caplets for small perturbations of v1(t), v2(t), and v3(t).

27 The asymptotic covariance matrix of the estimated parameters is computed from the outerproduct of the first
derivatives of the likelihood function. Theoretically, it would be more appropriate to compute the asymptotic
covariance matrix from both the first and second derivatives of the likelihood function. In reality, however, the
second derivatives of the likelihood function are somewhat numerically unstable.
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Table 1

Parameter estimates

N = 1 N = 2 N = 3
Swaptions + caps Swaptions + caps Swaptions + caps

i = 1 i = 1 i = 2 i = 1 i = 2 i = 3

κi 0.0553 0.3694 1.0364 0.5509 1.0187 0.1330
(0.0039) (0.0035) (0.0142) (0.0058) (0.0159) (0.0034)

σi 0.3325 0.8595 1.4397 1.0497 1.4274 0.5157
(0.0091) (0.0226) (0.0544) (0.0365) (0.0432) (0.0301)

α0,i 0.0045 0.0006 0.0004 0.0000 0.0020 −0.0097
(0.0001) (0.0000) (0.0002) (0.0001) (0.0001) (0.0003)

α1,i 0.0131 0.0071 0.0437 0.0046 0.0265 0.0323
(0.0004) (0.0001) (0.0006) (0.0001) (0.0003) (0.0010)

γi 0.3341 0.2643 1.3279 0.1777 1.1623 0.8282
(0.0011) (0.0008) (0.0101) (0.0016) (0.0072) (0.0028)

ρi 0.4615 0.2086 0.3125 0.3270 0.2268 0.1777
(0.0320) (0.0280) (0.0222) (0.0415) (0.0161) (0.0555)

κP
x,i 0.9767 1.0108 0.2358 0.7677 0.5650 0.8739

(0.5280) (0.4010) (0.3762) (0.6107) (0.4014) (0.3014)

κP
xv,i 3.4479 0.7650 1.0406 0.0988 1.7115 1.6425

(2.4111) (0.8154) (0.9727) (1.0023) (0.8517) (0.6079)

ηP
i 1.1964 −0.0500 0.3369 −1.1288 0.8528 1.0453

(1.9715) (1.5427) (0.4361) (2.0856) (0.6002) (0.3243)

κP
i 2.1476 1.8247 3.4793 2.3698 3.1794 1.7372

(0.3593) (0.4561) (0.9697) (0.7844) (0.7459) (0.1383)

θP
i 0.7542 1.9447 0.3890 2.1070 0.7875 0.6330

(0.0566) (0.2324) (0.1047) (0.2777) (0.1341) (0.2171)
ϕ 0.0832 0.0706 0.0680

(0.0003) (0.0002) (0.0003)
σrates 0.0054 0.0011 0.0004

(0.0000) (0.0000) (0.0000)
σderiv 0.0288 0.0166 0.0126

(0.0001) (0.0000) (0.0000)
Loglikelihood −58681.5 −41464.7 −32887.5

Maximum-likelihood estimates with outer-product standard errors in parentheses. σrates denotes the standard
deviation of interest rate measurement errors and σderiv denotes the standard deviation of swaption and cap price
measurement errors. θi is normalized to 1. The models are estimated on weekly data from August 21, 1998 to
July 8, 2005.

σ f,2(t, T ) affects only the short end of the curve, and σ f,3(t, T ) affects mainly

the intermediate part of the curve. Panel A in Figure 5 displays the forward rate

volatility functions in the case of the 3SC model.

For all the models, the first volatility state variable is more persistent than the

second volatility state variable under the risk-neutral measure. Interestingly, the

third volatility state variable is the most persistent for the 3SC and 3S models but

the least persistent for the 3C model. This implies that shocks to the volatility

state variables in the 3C model have different impacts on implied volatilities

than similar shocks in the 3SC and 3C model.28 This suggests that caps and

swaptions are not priced completely consistently—an issue we return to in

Section 4.4. The volatility state variables are always less persistent under P

28 As discussed in Section 2.3, the impact that a vi (t)-shock has on ATMF implied volatilities depends on both the
σ f,i (t, T ) function (and, hence, the Bxi

(τ) function) and the persistence of the shock. While the parameters of
the σ f,i (t, T ) functions are fairly similar across the 3SC, 3S, and 3C models, the persistence of vi (t)-shock are
not.
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Table 2

Parameter estimates (cont.)

N = 3 Swaptions N = 3 caps

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

κi 0.4462 1.4196 0.2997 0.2169 0.5214 0.8340
(0.0055) (0.0249) (0.0061) (0.0236) (0.0529) (0.0374)

σi 0.9447 1.6850 0.7742 0.6586 1.0212 1.2915
(0.0303) (0.0530) (0.0302) (0.0329) (0.0498) (0.0484)

α0,i −0.0000 0.0018 −0.0084 0.0000 0.0014 −0.0085
(0.0001) (0.0001) (0.0003) (0.0001) (0.0001) (0.0002)

α1,i 0.0045 0.0191 0.0255 0.0037 0.0320 0.0272
(0.0001) (0.0002) (0.0006) (0.0001) (0.0014) (0.0006)

γi 0.1791 1.0337 0.7733 0.1605 1.4515 0.6568
(0.0016) (0.0062) (0.0038) (0.0028) (0.0176) (0.0065)

ρi 0.2720 0.2127 0.2446 0.0035 0.0011 0.6951
(0.0759) (0.0512) (0.1073) (0.0480) (0.0128) (0.0112)

κP
x,i 0.7410 0.4469 0.6343 0.6389 0.7539 1.1133

(0.5811) (0.3970) (0.3483) (0.4059) (0.4392) (0.6281)

κP
xv,i 0.0405 1.2582 1.1604 −0.1765 1.6694 1.1955

(1.0299) (0.7289) (0.9510) (0.3673) (0.6164) (0.8149)

ηP
i −1.1188 1.1248 1.1100 −0.9336 0.7892 1.3072

(2.4353) (0.9697) (0.3525) (0.7350) (0.4881) (0.9074)

κP
i 2.2788 3.4535 1.6181 1.4594 3.4202 3.2223

(0.6564) (0.6868) (0.3609) (0.2192) (0.3376) (0.7326)

θP
i 2.1379 1.3648 0.8107 1.4235 0.7880 1.2602

(0.2818) (0.1982) (0.1683) (0.1706) (0.0994) (0.2255)
ϕ 0.0681 0.0668

(0.0002) (0.0006)
σrates 0.0004 0.0004

(0.0000) (0.0000)
σderiv 0.0109 0.0071

(0.0000) (0.0000)
Loglikelihood −18947.9 −3919.2

Maximum-likelihood estimates with outer-product standard errors in parentheses. σrates denotes the standard
deviation of interest rate measurement errors and σderiv denotes the standard deviation of swaption and cap price
measurement errors. θi is normalized to 1. The models are estimated on weekly data from August 21, 1998 to
July 8, 2005.

than under Q. Panel B in Figure 5 displays the volatility state variables in the

case of the 3SC model.29

As discussed in Section 2.1, the long-run means of the volatility state vari-

ables under Q are not identified and set to 1. All models with N ≥ 2 have at

least one volatility state variable with a long-run mean higher than 1 under P .

For square-root processes, the “completely affine” risk-premium specification

necessarily implies either faster mean reversion and lower long-run mean or

29 In general, the stochastic state variables are highly correlated with the principal components (PCs) of the term
structure and implied volatilities. In the case of the 3SC model, the correlations between changes in the three
term structure state variables, x1(t), x2(t), and x3(t), and changes in the first three PCs of the LIBOR/swap term
structure, often denoted “level,” “slope,” and “curvature” factors, are 0.941, 0.727, and 0.718, respectively. The
correlations between changes in the three volatility state variables, v1(t), v2(t), and v3(t), and changes in the
first three PCs of the normal implied swaption and cap volatilities are 0.911, 0.789, and 0.686, respectively. The
correlations with the PCs of the lognormal implied swaption and cap volatilities are lower, which is not surprising
since the volatility state variables are more directly related to the normal than the lognormal implied volatilities;
see the discussion in Section 2.3. In the 3S (3C) model, the correlations between the volatility state variables and
the first three PCs of the normal implied swaption (cap) volatilities are even higher.

2028



A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives

Panel A: σf,i(τ) Panel B: vi(t)
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Figure 5

σ f ,i (τ) and v i (t) for the N = 3 swaption and cap model

Panel A displays σ f,i (τ) and Panel B displays vi (t). ‘——’ denotes σ f,1(τ) and v1(t), ‘– · –’ denotes σ f,2(τ) and
v2(t), and ‘· · · · · ·’ denotes σ f,3(τ) and v3(t).

slower mean reversion and higher long-run mean under P than under Q. The

combination of faster mean reversion and higher long-run mean is possible

only with the “extended affine” risk-premium specification.30

For all the models, but the 3C model, all correlation parameters are mod-

erately positive and statistically significant. For the 3C model, the first two

correlation parameters are close to zero and insignificant while the third is

positive and statistically very significant. The reason why the correlation pa-

rameters in the 3C model differ from those of the 3SC and 3S models is that

shocks to the volatility state variables affect implied volatilities differently, as

we have discussed above, and consequently a different set of correlation pa-

rameters is needed to match the implied cap skews and the dynamics of implied

volatilities. We return to the role of the correlation parameters in Sections 4.5

and 4.6.

Finally, note that those parameters that are identified under Q are much

more precisely estimated than those that are identified only under P , which

is not surprising given the relatively short time series. Particularly, the drift

parameters in the P-dynamics of the xi (t) state variables are very imprecisely

estimated.

30 In all the estimations, the boundary nonattainment condition is binding for all the volatility processes under Q

but not under P . We have reestimated the models with the “completely affine” market price of risk specification,
which does not impose the boundary nonattainment conditions. This yields slightly lower κi -estimates and
somewhat higher σi -estimates. However, the models’ pricing performances are largely unchanged. Therefore,
the improvement in the models’ time series fit that comes from using the “extended affine” market price of
risk specification does not come at the expense of a noticeable poorer cross-sectional fit. This is consistent with
results reported by Cheredito, Filipovic, and Kimmel (2007) in the context of term structure estimation without
the use of derivatives.
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Table 3

Model fit

Model

1SC 2SC 3SC 3S 3C

Panel A: In-sample period
Interest rates 47.35 8.32 2.97 3.02 2.79
ATMF swaptions 10.45 6.37 4.32 3.79 12.28
ATMF caps 7.66 4.17 3.97 6.63 1.38
Non-ATMF caps 6.36 4.74 3.56 5.66 2.31

Panel B: Out-of-sample period
Interest rates 68.88 12.33 5.01 5.78 4.16
ATMF swaptions 11.21 8.84 4.71 3.63 14.89
ATMF caps 5.89 5.08 3.10 4.61 2.02
Non-ATMF caps 6.15 5.39 4.46 5.73 3.46

Mean of root-mean-squared pricing errors for interest rates and derivatives. For interest rates, the pricing errors
are the differences between the fitted and actual interest rates. For swaptions and caps, the pricing errors are the
differences between the fitted and actual prices divided by the actual prices. “1SC” denotes the N = 1 swaption
and cap model, “2SC” denotes the N = 2 swaption and cap model, “3SC” denotes the N = 3 swaption and cap
model, “3S” denotes the N = 3 swaption model, and “3C” denotes the N = 3 cap model. Interest rate pricing
errors are measured in basis points while derivatives pricing errors are measured in percentages. The in-sample
period is August 21, 1998 to July 8, 2005, and the out-of-sample period is July 15, 2005 to January 26, 2007.

4.2 Overall comparisons of models—in-sample and out-of-sample

For each of the estimated models, we compute the fitted LIBOR and swap rates

and swaption and cap prices based on the filtered state variables. For the LIBOR

and swap rates, we take the pricing errors to be the differences between the

fitted and actual interest rates. For the swaptions and caps, we take the pricing

errors to be the differences between the fitted and actual prices divided by the

actual prices.31 By taking the square root of the average of the squared pricing

errors at each date, we construct time series of RMSEs of LIBOR/swap rates,

ATMF swaptions, ATMF caps, and non-ATMF caps. Averaging these series

over time produces the overall RMSEs.

We make pairwise comparisons between the models’ pricing performance

using the approach of Diebold and Mariano (1995). Suppose two models gen-

erate time series of root-mean-squared cap pricing errors RMSE1,cap(t) and

RMSE2,cap(t). We then compute the mean of the difference RMSE2,cap(t) −
RMSE1,cap(t) and the associated t-statistics. A significantly negative mean im-

plies that model two has a significantly better fit to caps than model one

(according to the RMSE criterion).32

Table 3 displays the average RMSEs of LIBOR/swap rates, ATMF swaptions,

ATMF caps, and non-ATMF caps for each of the five models, and Table 4 makes

pairwise comparisons between the models. We report results for both the in-

sample and out-of-sample periods. Consider first the in-sample period. For the

31 This makes our results directly comparable to most other papers in the literature. Alternatively, we could take
derivatives pricing errors to be the differences between the fitted and actual lognormal (or normal) implied
volatilities.

32 When computing the t-statistics, we use Newey and West (1987) standard errors with 12 lags to correct for
heteroscedasticity and autocorrelation. The results are robust to variations in the lag length.
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Table 4

Comparisons of model fit

Model comparisons

2SC versus 1SC 3SC versus 2SC 3S versus 3SC 3C versus 3SC

Panel A: In-sample period
Interest rates −39.03∗∗∗ −5.36∗∗∗ 0.05 −0.18

(−9.07) (−9.06) (0.79) (−1.02)
ATMF swaptions −4.08∗∗∗ −2.05∗∗∗ −0.53∗∗∗ 7.96∗∗∗

(−16.07) (−13.43) (−9.13) (9.55)
ATMF caps −3.50∗∗∗ −0.20 2.66∗∗∗ −2.59∗∗∗

(−6.70) (−0.67) (9.01) (−5.13)
Non-ATMF caps −1.62∗∗∗ −1.19∗∗∗ 2.10∗∗∗ −1.25∗∗∗

(−2.59) (−4.42) (8.96) (−4.98)

Panel B: Out-of-sample period
Interest rates −56.55∗∗∗ −7.32∗∗∗ 0.77∗ −0.85∗

(−15.72) (−13.28) (−1.66) (−1.74)
ATMF swaptions −2.37∗∗∗ −4.13∗∗∗ −1.08∗∗∗ 10.18∗∗∗

(−5.03) (−10.29) (−5.54) (7.18)
ATMF caps −0.81 −1.98∗∗∗ 1.51∗∗∗ −1.08∗∗

(−1.30) (−5.19) (3.16) (−2.52)
Non-ATMF caps −0.76 −0.93 1.27∗∗ −1.00∗∗∗

(1.38) (−1.49) (2.23) (2.68)

Pairwise comparisons of the models’ fit using the Diebold and Mariano (1995) approach. The table reports
the mean differences in RMSEs with associated t-statistics in parentheses. The t-statistics are computed using
Newey and West (1987) standard errors with 12 lags. “1SC” denotes the N = 1 swaption and cap model, “2SC”
denotes the N = 2 swaption and cap model, “3SC” denotes the N = 3 swaption and cap model, “3S” denotes
the N = 3 swaption model, and “3C” denotes the N = 3 cap model. Interest rate pricing errors are measured
in basis points while derivatives pricing errors are measured in percentages. *, **, and *** denote significance
at the 10%, 5%, and 1% levels, respectively. The in-sample period is August 21, 1998 to July 8, 2005 and the
out-of-sample period is July 15, 2005 to January 26, 2007.

1SC, 2SC, and 3SC models, the fit improves with the number of factors and the

reductions in average RMSEs as N increases are generally strongly significant.

These results are consistent with principal component analyses, which show

that three factors are necessary to capture the variation in the term structure (see,

e.g., Litterman and Scheinkman, 1991) and that additional factors unrelated to

the term structure are necessary to capture the variation in ATMF swaptions

(Heidari and Wu, 2003), ATMF caps (Collin-Dufresne and Goldstein, 2002a),

and non-ATMF caps (Li and Zhao, 2006). The 3S model has a superior fit to

swaptions, but an inferior fit to caps (which are not used for estimation) than

the 3SC model. The converse holds for the 3C model, which has a superior

fit to caps but an inferior fit to swaptions (which do not enter the estimation)

compared with the 3SC model.33

The results for the out-of-sample period are similar to those of the in-sample

period. The ranking of the models is the same in terms of the fit to swaptions and

caps and the magnitudes of the RMSEs are similar, if only slightly larger. This

is comforting as it suggests that the models do not suffer from “over-fitting.”

33 It appears that removing swaptions from the estimation has a bigger impact than removing caps, which to some
extent has to do with the fact that there are more swaptions than caps in the sample, making the estimation
procedure focus more on matching the swaption prices than cap prices when both are included in the estimation.
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Figure 6

Time series of RMSEs for interest rates, swaptions, and caps

Panel A shows RMSEs of the basis point differences between the actual and fitted interest rates. Panel B shows
RMSEs of the percentage differences between the actual and fitted ATMF swaption prices. Panel C shows
RMSEs of the percentage differences between the actual and fitted ATMF cap prices. Panel D shows RMSEs of
the percentage differences between the actual and fitted non-ATMF cap prices. ‘· · · · · ·’ denotes the RMSEs of
the N = 3 model fitted to term structures and swaptions. ‘——’ denotes the RMSEs of the N = 3 model fitted
to term structures and caps. In Panels A–C, each time series consists of 360 weekly observations from August
21, 1998, to July 8, 2005. In Panel D, each time series consists of 184 weekly observations from January 4, 2002
to July 8, 2005.

4.3 The in-sample fit to interest rates and derivatives

We now take a closer look at the fit of the models with N = 3. Figure 6 displays

the time series of the RMSEs of LIBOR/swap rates, ATMF swaptions, ATMF

caps, and non-ATMF caps for the 3S and 3C models (dotted lines and solid

lines, respectively). The RMSE measure takes both variations and biases in

the pricing errors into account. To see if the pricing errors for the individual

interest rates and derivatives prices deviate systematically from zero, Tables 5–8

report the mean valuation errors and associated t-statistics for the LIBOR/swap

rates, ATMF swaptions, ATMF caps, and non-ATMF caps, respectively, for all

models with N = 3. We consider only the in-sample period. In this section,

we consider the fit to those derivatives that enter the estimation while, in the
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Table 5

Summary statistics for LIBOR and swap valuation errors

N = 3 N = 3 N = 3
Swaptions + caps Swaptions Caps

3 months −0.93 −1.40∗∗ −0.60
(−1.45) (−2.29) (−0.87)

6 months −0.72∗ −0.55 −0.95∗∗

(−1.73) (−1.27) (−2.40)
9 months 0.86∗∗ 1.23∗∗∗ 0.65∗

(2.10) (2.98) (1.75)
1 year 1.94∗∗∗ 2.26∗∗∗ 1.95∗∗∗

(4.22) (5.02) (4.56)
2 years −1.72∗∗∗ −1.95∗∗∗ −1.35∗∗∗

(−3.84) (−4.19) (−3.02)
3 years −0.53 −0.85∗∗ −0.63∗

(−1.42) (−2.25) (−1.85)
5 years 0.59 0.59 0.26

(1.08) (1.12) (0.55)
7 years 0.11 0.22 0.30

(0.28) (0.54) (1.13)
10 years 0.24 0.29 0.66∗∗∗

(1.20) (1.38) (2.90)
15 years −0.15 −0.14 −0.47

(−0.20) (−0.19) (−0.92)

The table reports the mean pricing errors for the individual LIBOR and swap rates for each
of the three N = 3 models. The pricing errors are defined as the differences between the
fitted rates and the actual rates and are reported in basis points. T -statistics computed from
Newey and West (1987) standard errors with 12 lags are in parentheses. Each statistic is
computed using 360 weekly observations from August 21, 1998 to July 8, 2005. ∗, ∗∗, and
∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

next section, we focus on the fit to those derivatives that are not part of the

estimation (caps for the 3S model and swaptions for the 3C model).

Consider first the RMSEs. For the 3S model, the swaption RMSE (dotted line,

Panel B in Figure 6) reaches about 15% in September 1998 during the LTCM

crisis. Longstaff, Santa-Clara, and Schwartz (2001) and Han (2007) also report

a significant increase in swaption pricing errors during this period. The swaption

RMSE reaches about 10% in July 2003, when a large increase in interest rates

from record low levels caused massive MBS-driven convexity hedging that also

seems to have caused temporary dislocations in the derivatives market. Apart

from these two episodes, the RMSE fluctuates in a range between 2% and 6%.

The RMSE is comparable to that reported by Han (2007) for his preferred

model with four term structure factors and three volatility factors during the

sample period that overlaps with ours. Note, however, that we include a larger

number of swaptions than his study. In particular, our dataset includes 1- and

3-month options and 10 year underlying swaps, which are not present in his

dataset. And it is precisely these swaptions on the “edges” of the volatility

surface that are the most difficult to fit.

For the 3C model, the ATMF cap RMSE (solid line, Panel C in Figure 6) also

spikes in September 1998. Otherwise it mostly fluctuates between 1% and 2%.

The non-ATMF cap RMSE (solid line, Panel D) also fluctuates in this range,

although it breaks out of the range towards the end of the sample. The RMSE is
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Table 6

Summary statistics for ATMF swaption valuation errors

Tenor Option length

1mth 3mth 6mth 1yr 2yr 3yr 5yr

N = 3, swaptions + caps
1yr −3.41∗∗∗ 2.52∗∗∗ 3.39∗∗∗ 3.16∗∗∗ 2.74∗∗∗ 1.92∗∗∗ 0.48

(−4.37) (3.66) (4.75) (6.67) (6.46) (4.21) (0.67)
2yr −0.24 0.52 2.39∗∗∗ 3.35∗∗∗ 2.95∗∗∗ 2.34∗∗∗ 1.51∗∗

(−0.34) (1.09) (5.56) (10.07) (9.39) (7.02) (2.32)
3yr 0.40 −0.13 0.63 1.86∗∗∗ 1.65∗∗∗ 1.33∗∗∗ 0.92

(0.45) (−0.19) (1.27) (5.13) (5.96) (3.82) (1.32)
5yr −0.73 −2.19∗∗∗ −1.69∗∗∗ 0.02 0.56 0.41 0.14

(−0.85) (−3.47) (−3.47) (0.04) (1.28) (0.75) (0.18)
7yr 1.73∗∗ −0.39 −0.58 0.59 0.43 −0.14 −0.95

(2.20) (−0.76) (−1.61) (1.22) (0.82) (−0.22) (−1.16)
10yr 3.11∗∗∗ 0.35 −0.41 0.13 −0.92 −2.06∗∗∗ −3.36∗∗∗

(3.25) (0.58) (−0.86) (0.26) (−1.51) (−2.93) (−4.09)

N = 3, swaptions
1yr −2.84∗∗∗ 0.80 −0.15 −1.73∗∗∗ −2.00∗∗∗ −1.38∗∗ −0.93

(−4.04) (1.19) (−0.20) (−3.08) (−3.71) (−2.54) (−1.19)
2yr 0.37 0.09 0.92∗∗∗ 0.88∗∗∗ 0.51 0.81∗∗ 1.09

(0.66) (0.30) (3.08) (3.10) (1.50) (2.13) (1.56)
3yr 1.54∗∗ 0.34 0.42 0.96∗∗∗ 0.74∗∗∗ 1.02∗∗∗ 1.27∗

(2.15) (0.71) (1.42) (3.33) (2.63) (2.68) (1.75)
5yr 0.04 −1.70∗∗∗ −1.47∗∗∗ 0.00 0.71∗ 0.99∗ 1.09

(0.04) (−2.90) (−3.46) (0.00) (1.80) (1.91) (1.45)
7yr 1.80∗∗ −0.41 −0.66∗ 0.51 0.72 0.58 0.07

(2.14) (−0.76) (−1.95) (1.23) (1.55) (1.02) (0.10)
10yr 2.52∗∗ −0.21 −0.90∗∗ −0.17 −0.70 −1.37∗∗ −2.40∗∗∗

(2.50) (−0.32) (−2.11) (−0.40) (−1.31) (−2.13) (−3.27)

N = 3, caps
1yr −5.54∗∗∗ 2.32∗ 5.54∗∗∗ 8.67∗∗∗ 11.14∗∗∗ 9.11∗∗∗ 3.79∗∗∗

(−4.65) (1.87) (5.17) (12.06) (15.92) (11.08) (5.16)
2yr 5.43∗∗∗ 7.08∗∗∗ 10.17∗∗∗ 12.65∗∗∗ 12.06∗∗∗ 8.71∗∗∗ 3.87∗∗∗

(2.88) (4.16) (6.53) (9.73) (11.54) (8.42) (4.63)
3yr 8.64∗∗∗ 8.47∗∗∗ 9.72∗∗∗ 11.22∗∗∗ 9.07∗∗∗ 5.65∗∗∗ 2.10∗∗

(3.31) (3.62) (4.76) (6.98) (7.74) (5.24) (2.44)
5yr 1.27 0.05 0.75 2.28 1.08 −0.80 −1.38

(0.43) (0.02) (0.33) (1.19) (0.75) (−0.63) (−1.32)
7yr −4.79 −6.32∗∗ −6.03∗∗ −4.52∗∗ −4.79∗∗∗ −5.41∗∗∗ −4.22∗∗∗

(−1.61) (−2.37) (−2.55) (−2.20) (−2.89) (−3.75) (−3.45)
10yr −10.77∗∗∗ −12.53∗∗∗ −12.43∗∗∗ −10.81∗∗∗ −10.22∗∗∗ −9.83∗∗∗ −7.26∗∗∗

(−3.50) (−4.55) (−5.03) (−4.91) (−5.56) (−5.99) (−5.04)

The table reports the mean pricing errors for the individual ATMF swaptions for each of the three N = 3 models.
The pricing errors are defined as the differences between the fitted and actual prices divided by the actual prices
and are reported in percentages. T -statistics computed from Newey and West (1987) standard errors with 12 lags
are in parentheses. Each statistic is computed using 360 weekly observations from August 21, 1998 to July 8,
2005. ∗, ∗∗, and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

significantly lower than for the preferred model in Jarrow, Li, and Zhao (2007)

with three term structure factors, three volatility factors, and jumps during the

sample period that overlaps with ours (they report that the RMSE fluctuates

around 5% during this period).

Consider next the average pricing errors in Tables 5–8. For the 3SC model,

the average swaption errors range from −3.41% to 3.39% the average ATMF

cap errors range from −3.08% to 0.12% and the average non-ATMF cap errors
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Table 7

Summary statistics for ATMF cap valuation errors

N = 3 N = 3 N = 3
Swaptions + caps Swaptions Caps

1 year 0.12 −2.15∗∗ 0.40
(0.15) (−2.01) (0.96)

2 years −2.14∗∗∗ −6.07∗∗∗ −0.01
(−3.43) (−7.41) (−0.06)

3 years −2.89∗∗∗ −6.78∗∗∗ 0.30∗∗∗

(−4.43) (−7.85) (4.52)
4 years −3.08∗∗∗ −6.69∗∗∗ 0.33∗∗

(−4.38) (−7.55) (2.38)
5 years −2.92∗∗∗ −6.26∗∗∗ 0.19

(−3.80) (−6.81) (1.19)
7 years −1.95∗∗ −4.93∗∗∗ 0.17

(−2.46) (−5.47) (0.75)
10 years −0.67 −3.48∗∗∗ 0.39

(−0.76) (−3.66) (1.36)

The table reports the mean pricing errors for the individual ATMF caps for each of the three
N = 3 models. The pricing errors are defined as the differences between the fitted and actual
prices divided by the actual prices and are reported in percentages. T -statistics computed
from Newey and West (1987) standard errors with 12 lags are in parentheses. Each statistic
is computed using 360 weekly observations from August 21, 1998, to July 8, 2005. ∗, ∗∗,
and ∗∗∗ denote significance at the 10%, 5%, and 1% levels, respectively.

range from −4.17% to 4.15%. Quite a few of the pricing errors are statistically

significant.

For the 3S model, the range of average swaption errors narrows to −2.84% to

2.52%. To put these numbers into perspective, the mean pricing errors reported

by Longstaff, Santa-Clara, and Schwartz (2001) for their four-factor string mar-

ket model estimated on swaptions, although for a different sample period and

with their model recalibrated at every date, lie in a range from −5.37% to 5.62%.

For the 3C model, the range of average pricing errors narrows to −0.01% to

0.40% for ATMF caps and −1.51% to 1.59% for non-ATMF caps. To put these

numbers into perspective, the mean pricing errors reported by Jarrow, Li, and

Zhao (2007) for their preferred model estimated on cap skew data, although not

for exactly the same sample period, lie in a range from −6.88% to 7.13%. Note

also that, for the 3C model, far fewer of the average cap errors are statistically

significant.

Finally, we briefly comment on the in-sample fit to interest rates. The RMSEs

fluctuate in a range between 1 and 10 basis points, and the average errors are

within a few basis points with no apparent differences between the models.

To visualize the fit, Panels A and B in Figure 7 displays the actual and fitted

normal implied swaption volatility surface, on average, for the 3SC model.34

These are clearly very similar. However, as discussed by Dai and Singleton

(2002), the fitted data depend not only on the properties of a model but also on

the properties of the historical data used for estimation. Therefore, comparing

34 We display the swaption surface in terms of normal rather than lognormal implied volatilities since the normal
implied volatilities exhibit a more pronounced hump shape that most dynamic term structure models have
difficulties matching.
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Table 8

Summary statistics for non-ATMF cap valuation errors

Moneyness Cap length

1 year 2 years 3 years 4 years 5 years 7 years 10 years

N = 3, swaptions + caps
0.80 0.22 0.11 0.25 0.11 0.20 0.56∗∗∗ 1.31∗∗∗

(0.80) (0.35) (1.12) (0.76) (1.36) (3.38) (4.94)
0.90 0.20 −0.46 −0.20 −0.22∗ 0.03 0.61∗∗∗ 1.44∗∗∗

(0.51) (−1.58) (−1.25) (−1.80) (0.24) (3.04) (4.40)
1.00 1.55∗∗∗ −1.06∗∗∗ −0.73∗∗∗ −0.69∗∗∗ −0.28 0.30 1.50∗∗∗

(2.73) (−3.46) (−4.85) (−3.93) (−1.40) (1.14) (3.17)
1.10 2.77∗ −2.19∗∗∗ −1.76∗∗∗ −1.58∗∗∗ −0.96∗∗∗ −0.22 1.51∗∗∗

(1.74) (−4.36) (−6.66) (−6.52) (−3.33) (−0.60) (2.90)
1.20 4.15 −4.17∗∗∗ −3.64∗∗∗ −2.83∗∗∗ −2.53∗∗∗ −1.20∗∗∗ 0.12

(1.17) (−6.37) (−11.52) (−6.41) (−6.66) (−3.08) (0.17)

N = 3, swaptions
0.80 0.02 −1.39∗∗∗ −1.56∗∗∗ −1.70∗∗∗ −1.57∗∗∗ −1.15∗∗∗ −0.40

(0.04) (−3.66) (−5.77) (−8.24) (−7.88) (−5.43) (−1.37)
0.90 −0.23 −2.60∗∗∗ −2.60∗∗∗ −2.58∗∗∗ −2.25∗∗∗ −1.58∗∗∗ −0.73∗∗

(−0.36) (−6.36) (−9.42) (−12.05) (−10.72) (−6.29) (−2.05)
1.00 0.38 −4.04∗∗∗ −3.85∗∗∗ −3.67∗∗∗ −3.16∗∗∗ −2.42∗∗∗ −1.19∗∗

(0.37) (−8.45) (−12.35) (−15.23) (−12.20) (−7.96) (−2.41)
1.10 −0.29 −6.16∗∗∗ −5.65∗∗∗ −5.27∗∗∗ −4.47∗∗∗ −3.49∗∗∗ −1.76∗∗∗

(−0.18) (−9.75) (−14.64) (−18.62) (−13.97) (−8.43) (−3.32)
1.20 −1.01 −9.17∗∗∗ −8.36∗∗∗ −7.21∗∗∗ −6.66∗∗∗ −5.09∗∗∗ −3.69∗∗∗

(−0.34) (−11.48) (−17.47) (−15.35) (−17.51) (−11.08) (−5.15)

N = 3, caps
0.80 0.24∗∗ 0.07 0.24 −0.04 −0.17 −0.22∗ 0.29

(2.02) (0.27) (1.00) (−0.28) (−1.39) (−1.87) (1.53)
0.90 0.05 −0.32 0.16 0.01 −0.02 −0.05 0.39∗∗∗

(0.32) (−1.12) (0.80) (0.09) (−0.31) (−0.66) (2.72)
1.00 0.48 −0.55∗∗∗ 0.31∗∗∗ 0.24 0.28 −0.03 0.48∗

(1.41) (−3.22) (5.11) (1.31) (1.51) (−0.18) (1.77)
1.10 1.29 −0.88∗∗∗ 0.44∗∗ 0.48 0.54 −0.04 0.62∗∗

(0.82) (−3.90) (1.97) (1.29) (1.36) (−0.11) (2.41)
1.20 1.59 −1.51∗∗∗ 0.31 0.76 0.31 −0.26 −0.54

(0.46) (−3.70) (0.73) (1.17) (0.46) (−0.72) (−1.11)

The table reports the mean pricing errors for the individual in-the-money and out-of-the-money caps for each of
the three N = 3 models. The pricing errors are defined as the differences between the fitted and actual prices
divided by the actual prices and are reported in percentages. T -statistics computed from Newey and West (1987)
standard errors with 12 lags are in parentheses. Each statistic is computed using a maximum of 184 weekly
observations from January 4, 2002 to July 8, 2005. *, **, and *** denote significance at the 10%, 5%, and 1%
levels, respectively.

the properties of the fitted data to the actual data may in some instances yield

misleading conclusions regarding the adequacy of a model. A “cleaner” way

of evaluating a model is to simulate data from the model and compare the

properties of the simulated data to the actual data. We, therefore, simulate

(under the actual measure) 1000 samples of implied swaption volatility surfaces

from the 3SC model. Each sample consists of 360 weekly observations similar

to our original dataset. From these, we obtain the small-sample distribution of

the average swaption volatility surface generated by the model. The mean and

95% confidence interval of this distribution are displayed in Panels C and D

in Figure 7. The mean of the small-sample distribution is close to the mean

of the actual data, and the mean of the actual data is certainly well within the
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Figure 7

Means of actual, fitted, and simulated normal implied swaption volatility surfaces

Panel A shows the mean of the actual normal implied volatility surface. Panel B shows the mean of the fitted
normal implied volatility surface in the case of the N = 3 swaption and cap model. Means are computed over 360
weekly observations from August 21, 1998 to July 8, 2005. In Panels C and D, we first simulate 1000 samples,
each of length of 360, of normal implied swaption volatility surfaces. We then compute the mean volatility
surface for each sample to obtain the small-sample distribution of the mean volatility surface generated by the
model. Panel C shows the mean of this distribution while Panel D shows the 2.5th and 97.5th percentiles of this
distribution.

95% confidence interval of the small-sample distribution.35 This underscores

the very good fit of our model.36

4.4 The relative valuation of caps and swaptions

We now consider the fit to those derivatives that are not part of the estimation—

i.e., the fit to caps for the 3S model and the fit to swaptions for the 3C model. We

35 Note that matching the mean volatility of the actual data depends crucially on the use of the “extended affine”
market price of risk specification as discussed in Section 2.4.

36 We have produced similar figures for the term structure and the normal implied ATMF cap volatility term
structure. These also show the means of the small-sample distributions being close to the means of the actual
data. To conserve space, we have not included these figures, but they can be found in the NBER Working Paper
version of the paper.
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are particularly interested in whether caps and swaptions are priced consistently

with each other. In Figure 6, the out-of-sample swaption RMSE (solid line,

Panel B) and out-of-sample cap RMSEs (dotted lines, Panels C and D) are

larger most of the time than their in-sample counterparts. This is particularly

the case in the first 2.5 years of the sample.

For the 3S model, the average cap errors in Table 7 are negative and signifi-

cantly so for all caps. This means that market prices of caps have been higher

on average than the prices implied by swaptions. In other words, there has been

a tendency for caps to be overvalued relative to swaptions.

For the 3C model, the average swaption errors in Table 6 are significantly

positive for swaptions with underlying swap maturities of 1, 2, and 3 years

(except for the 1-month–into–1-year swaption) and significantly negative for

swaptions with underlying swap maturities of 7 and 10 years. However, the

out-of-sample results are probably most reliable for swaptions with combined

swap and option maturity not exceeding 10 years, which is the maximum cap

maturity in the sample. If we limit our attention to these swaptions, 25 out of

34 have positive mean pricing errors, and the mean across all 34 swaptions

is 3.51%. Therefore, market prices of swaptions have generally been lower

on average than the prices implied by caps. In other words, there has been a

tendency for swaptions to be undervalued relative to caps consistent with the

conclusions from the 3S model.

Interestingly, Longstaff, Santa-Clara, and Schwartz (2001) reach the oppo-

site conclusion that the market has on average undervalued caps relative to

swaptions, while Han (2007) finds little misvaluation on average for his pre-

ferred stochastic volatility model. These differing conclusions may to some

extent be attributed to differences in models. But they may also be attributed

to differences in samples, since, as we discuss next, there appear to be large

variations in the relative valuation.

Figure 8 shows the average (out-of-sample) swaption valuation errors ac-

cording to the 3C model (the solid line) and the average (out-of-sample) cap

valuation errors according to the 3S model (the dotted line for ATMF caps and

the broken line for non-ATMF caps) at each date. The figure highlights that the

relative valuation between caps and swaptions fluctuates over time. According

to our model, swaptions were generally overvalued relative to caps during the

LTCM crisis. Subsequently, the situation reverses, and for an extended period

from mid-1999 to mid-2000, swaptions appear generally undervalued relative

to caps.37 However, since then there appears to be little systematic misvaluation

in the aggregate between swaptions and caps.

4.5 The role of correlation between interest rates and volatility

An important feature of our model is that it allows for nonzero correlation be-

tween innovation to forward rates and their volatilities. This is different from the

37 Han (2007) also finds that for his preferred model, swaptions were undervalued relative to caps during this period,
and he cites media reports that many hedge funds and proprietary traders shared this sentiment.
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Time series of misvaluations of caps and swaptions

‘——’ denotes the average ATMF swaption valuation errors at each date according to the N = 3 model estimated
on caps. In this case, averages are taken over swaptions with combined swap and option maturities not exceeding
10 years. ‘· · · · · ·’ denotes the average ATMF cap valuation errors and ‘– – –’ denotes the average non-ATMF
cap valuation errors at each date according to the N = 3 model estimated on swaptions.

stochastic volatility LIBOR market models of Han (2007) and Jarrow, Li, and

Zhao (2007), who impose zero correlation in order to obtain quasi-analytical

option prices. Here, we discuss in more detail the role of the correlation pa-

rameters for matching the implied cap skews and the dynamics of implied

volatilities.

4.5.1 Matching the implied cap skews As discussed in Section 2.3, con-

ditional on the volatility state variables, forward LIBOR and swap rates are

approximately normally distributed in our model (under the appropriate for-

ward measures). Suppose the correlation between innovations to the forward

rate curve and volatilities were zero. In that case, the forward LIBOR rate

distributions would have fatter tails than the normal distribution, and the model

would predict strongly downward sloping cap skews in terms of lognormal im-

plied volatilities, with ITM caps trading at higher lognormal implied volatilities
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Figure 9

The role of the ρ-parameters in matching the cap skews.

Panels A, B, and C show the derivatives of the differences between non-ATMF and ATMF lognormal implied
volatilities with respect to ρ1, ρ2, and ρ3, respectively. We assume that the zero-coupon curve and v1(t), v2(t),
and v3(t) are initially equal to their sample averages. The responses are computed on the basis of the parameter
estimates for the N = 3 swaption and cap model.

than OTM caps. Although this is qualitatively consistent with the data, the im-

plied cap skews predicted by such a model will be too steep. However, the

skewness of the forward LIBOR rate distributions and hence the steepness of

the implied cap skews depends on the correlation parameters. To illustrate this,

Figure 9 shows, for the 3SC model, the derivatives of the differences between

non-ATMF and ATMF lognormal implied volatilities with respect to the corre-

lation parameters. In all cases, increasing the correlation parameters decreases

the lognormal implied volatilities of ITM caps relative to OTM caps, which

decreases the steepness of the implied cap skews. It appears that ρ1 affects

mainly the implied skews of long-term caps, ρ2 affects mainly the implied

skews of short-term caps, while ρ3 has the largest effect on implied skews of

intermediate-maturity caps.

Figure 10 shows the average implied cap skews in the data (solid lines)

and the average fit for the 3SC model (dashed lines), for the 3C model (dash-

dotted lines), and for the 3C model reestimated with the correlation parameters

restricted to zero (dotted lines). We see that the 3C model with zero correlation

produces implied skews that are too steep on average. In contrast, the 3C model

with nonzero correlation has an almost perfect fit to the implied skews on

average. The 3SC model with nonzero correlation also has a very good fit

on average although it does slightly overestimate the average steepness of the

implied skews, particularly for caps of intermediate maturities.

4.5.2 Matching the dynamics of implied volatilities Figure 11, Panel A,

shows the correlations between changes in lognormal implied swaption volatil-

ities and changes in the underlying forward swap rates. For all the swaptions,

the correlations are negative, more so for longer swaptions. Panel D shows the
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Panel A: 1-year cap skew Panel B: 2-year cap skew

Panel C: 3-year cap skew Panel D: 4-year cap skew

Panel E: 5-year cap skew

Panel G: 10-year cap skew

Panel F: 7-year cap skew

Moneyness Moneyness

Moneyness Moneyness

Moneyness Moneyness

Moneyness
0.8 0.9 1 1.1 1.2

0.8 0.9 1 1.1 1.20.8 0.9 1 1.1 1.2

0.8 0.9 1 1.1 1.20.8 0.9 1 1.1 1.2

0.8 0.9 1 1.1 1.20.8 0.9 1 1.1 1.2
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Figure 10

Average fit to lognormal implied cap skews

‘——’ denotes the average of the actual skews. ‘– – –’ denotes the average of the fitted skews for the N = 3
model estimated on swaption and cap data. ‘– · –’ denotes the average of the fitted skews for the N = 3 model
estimated on cap data. ‘· · · · · ·’ denotes the average of the fitted skews for the N = 3 model estimated on cap data
with the correlation parameters restricted to zero. The skews are the differences between the implied volatilities
across moneyness and the implied volatilities of the corresponding ATMF caps. “Moneyness” of a given cap is
defined as the ratio between its strike and the strike on the ATMF cap with the same maturity. Averages are taken
over a maximum of 184 weekly observations from January 4, 2002 to July 8, 2005.
Data source: Bloomberg.
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Figure 11

Reproducing the implied volatility–interest rate correlations

Panel A shows the actual correlations between changes in lognormal implied swaption volatilities and changes
in the underlying forward swap rates, ρ(�σL N , �F). Panel D shows the actual correlations between changes
in normal implied swaption volatilities and changes in the underlying forward swap rates, ρ(�σN , �F). Each
correlation is computed using 360 weekly observations from August 21, 1998 to July 8, 2005. In Panels B, C,
E, and F, we first simulate 1000 samples, each of length of 360, of lognormal and normal implied volatilities
and the underlying forward swap rates, in the case of the N = 3 swaption and model. We then compute
ρ(�σL N ,�F) and ρ(�σN , �F) for each sample to obtain the small-sample distributions of the correlation
coefficients generated by the model. Panels B and C show the means and 2.5th and 97.5th percentiles, respectively,
of the ρ(�σL N ,�F)-distributions while Panels E and F show the means and 2.5th and 97.5th percentiles,
respectively, of the ρ(�σN ,�F)-distributions.
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correlations using normal rather than lognormal implied swaption volatilities.

In this case, all the correlations are positive.38

As discussed in Section 2.3, if we impose zero correlation between inno-

vations to the forward rate curve and volatilities, the model would predict

that changes in normal implied swaption volatilities were approximately un-

correlated with changes in the underlying forward rates, and that changes in

lognormal implied swaption volatilities were quite strongly negatively corre-

lated with changes in the underlying forward rates. However, with nonzero

correlation, the model has more flexibility to match the actual dynamics of

implied volatilities.

To see if this is the case in reality, we focus on the 3SC model and use

the simulated samples discussed in Section 4.3. For each sample, we compute

correlations between changes in normal and lognormal implied volatilities

and changes in the underlying forward rates. This way, we obtain the small-

sample distributions of the correlation coefficients generated by the model.

Panels B and E in Figure 11 display the means of these distributions, while

Panels C and F display the 95% confidence intervals. The model has a very

good fit to the normal implied volatility correlations. The means of the small-

sample distributions are generally close to the actual correlations and the actual

correlations are, in any case, well within the 95% confidence bands. The model

has a reasonable fit to the lognormal implied volatility correlations. The model

does tend to generate too-negative correlations, but for most of the swaptions

the actual correlations are within the 95% confidence bands.

4.6 Tests against nested models

The conclusion so far is that a model with three term structure factors that

generate hump-shaped innovations to the forward rate curve, three additional

unspanned stochastic volatility factors, and correlation between innovations

to forward rates and volatility has a very good fit to the data. In this section,

we investigate if the model can be simplified along certain dimensions. We

reestimate the 3S and 3C models subject to the constraints α1,i = 0, ρi = 1

or ρi = 0, where i = 1, . . . , M and M = 1, 2, or 3.39 The results are reported

in Table 9. Panel A shows the loglikelihood values, Panel B shows the mean

of root-mean-squared pricing errors for interest rates, and Panel C shows the

mean of root-mean-squared pricing errors for derivatives.40 In Table 10, we

compare the restricted models with the unrestricted ones using likelihood-ratio

38 These stylized facts are quite robust. For instance, computing the correlations using only the first half or the
second half of the sample yields similar results. These stylized facts also hold for caps, but, to avoid an overload
of figures, we concentrate on swaptions in this section.

39 We consider both the 3S and 3C models to highlight differences between the information contained in swaptions
and caps. We also reestimate the 3SC model and comment on those results when they yield additional insights.

40 We consider only the in-sample fit, so for the 3S model derivatives pricing errors refer to ATMF swaption pricing
errors, and for the 3C model derivatives pricing errors refer to ATMF and non-ATMF cap pricing errors.
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Table 9

Results for restricted models

α1,i = 0 ρi = 1 ρi = 0

3S 3C 3S 3C 3S 3C

Panel A: Loglikelihood values
Unrestricted −18947.9 −3919.2 −18947.9 −3919.2 −18947.9 −3919.2
i = 1 −20523.1 −5289.4 −21656.6 −5071.4 −18948.9 −3920.3
i = 1, 2 −25463.0 −7856.6 −25192.4 −9116.0 −18950.3 −3922.1
i = 1, 2, 3 −40874.8 −16638.5 −29114.1 −15762.9 −18952.7 −5523.3

Panel B: Interest rate RMSEs
Unrestricted 3.02 2.79 3.02 2.79 3.02 2.79
i = 1 5.11 4.44 5.25 2.85 3.02 2.79
i = 1, 2 8.84 5.99 7.73 2.94 3.02 2.80
i = 1, 2, 3 13.12 6.40 14.12 8.35 3.03 2.82

Panel C: Derivatives RMSEs
Unrestricted 3.79 2.01 3.79 2.01 3.79 2.01
i = 1 3.86 2.24 4.19 2.48 3.79 2.01
i = 1, 2 4.82 2.64 5.12 4.36 3.80 2.03
i = 1, 2, 3 11.73 10.95 8.06 12.16 3.81 3.25

The table reports results from reestimating the N = 3 swaption model (3S) and the N = 3 cap model (3C)
subject to the constraints α1,i = 0, ρi = 1, or ρi = 0, where i = 1, . . . , M and M = 1, 2, or 3. Panel A shows
the loglikelihood values. Panel B shows the mean of root-mean-squared pricing errors for interest rates with
pricing errors measured as the differences between the fitted and actual interest rates. Panel C shows the mean
of root-mean-squared pricing errors for derivatives with pricing errors measured as the differences between the
fitted and actual prices divided by the actual prices. We consider only the in-sample fit, so for the 3S model,
we consider the fit to ATMF swaptions and for the 3C model, we consider the fit to ATMF and non-ATMF
caps. Interest rate pricing errors are reported in basis points while derivatives pricing errors are reported in
percentages. The models are estimated on weekly data from August 21, 1998 to July 8, 2005.

tests and the Diebold and Mariano (1995) comparison of the models’ pricing

performance.41

4.6.1 Humped shaped versus exponentially declining shocks to forward

rate curve The specification in Equation (4) allows the model to accommo-

date a wide range of shocks to the forward rate curve. In particular, it allows

for hump-shaped shocks. Suppose that α1,1 = · · · = α1,M = 0, M ≤ N . In this

case, the first M term structure factors can generate only exponentially declin-

ing shocks to the forward rate curve. On the other hand, the dynamics of the

forward rate curve simplifies considerably. It is straightforward to show that

f (t, T ) is now given by

f (t, T ) = f (0, T ) +
M∑

i=1

Bzi
(T − t)zi (t) +

M∑

i=1

Bωi
(T − t)ωi (t)

+
N∑

i=M+1

Bxi
(T − t)xi (t) +

N∑

i=M+1

6∑

j=1

Bφ j,i
(T − t)φ j,i (t), (52)

41 The likelihood-ratio test is only approximate, since the QML/Kalman filter estimation approach is not consistent
in our setting. However, the Monte Carlo study in Appendix C shows the inconsistency problem to be of minor
importance and we therefore believe that the likelihood-ratio test remains informative.
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Table 10

Comparison between restricted and unrestricted models

α1,i = 0 ρi = 1 ρi = 0

3S 3C 3S 3C 3S 3C

Panel A: Likelihood-ratio test
i = 1 1575.2∗∗∗ 1370.2∗∗∗ 2708.7∗∗∗ 1152.2∗∗∗ 2.0∗∗ 1.1

(3150.4) (2740.4) (5417.4) (2304.4) (4.0) (2.2)
i = 1, 2 6515.1∗∗∗ 3937.4∗∗∗ 6244.5∗∗∗ 5196.8∗∗∗ 3.4∗∗ 2.9∗

(13030.2) (7874.8) (12489.0) (10393.6) (6.8) (5.8)
i = 1, 2, 3 21926.9∗∗∗ 12719.3∗∗∗ 10166.2∗∗∗ 11843.7∗∗∗ 4.8∗∗ 1604.1∗∗∗

(43853.8) (25438.6) (20332.4) (23687.4) (9.6) (3208.2)

Panel B: DM test of interest rate RMSEs
i = 1 2.09∗∗∗ 1.65∗∗∗ 2.23∗∗∗ 0.06 0.00 0.00

(5.14) (5.21) (4.42) (1.44) (1.01) (0.98)
i = 1, 2 5.82∗∗∗ 3.20∗∗∗ 4.71∗∗∗ 0.15 0.00 0.01

(10.70) (7.39) (10.48) (1.23) (1.39) (1.35)
i = 1, 2, 3 10.10∗∗∗ 3.61∗∗∗ 11.10∗∗∗ 5.56∗∗∗ 0.01 0.03∗∗

(11.90) (9.10) (10.95) (7.81) (1.47) (1.98)

Panel C: DM test of derivatives RMSEs
i = 1 0.07 0.23∗∗∗ 0.40∗∗∗ 0.47∗∗∗ 0.00 0.00

(0.79) (2.77) (7.38) (6.93) (1.51) (0.85)
i = 1, 2 1.03∗∗∗ 0.63∗∗∗ 1.33∗∗∗ 2.35∗∗∗ 0.01∗ 0.02

(5.33) (5.79) (9.93) (9.82) (1.70) (1.15)
i = 1, 2, 3 7.94∗∗∗ 8.94∗∗∗ 4.27∗∗∗ 10.15∗∗∗ 0.02∗ 1.24∗∗∗

(10.05) (7.99) (8.57) (6.27) (1.89) (7.02)

Panel A shows, for the N = 3 swaption model (3S) and N = 3 cap model (3C), the differences in loglikelihood
values between the unrestricted models and the restricted models that set α1,i = 0, ρi = 1, or ρi = 0, where
i = 1, . . . , M and M = 1, 2, or 3. In parentheses are the likelihood-ratio test statistics. These should be compared
with the critical values of a χ2(M)-distribution. Panels B and C compare the fit to interest rates and derivatives,
respectively, for the restricted models with the fit for the unrestricted models using the Diebold and Mariano
(1995) approach. Panel B shows the mean differences in RMSEs for interest rates, and Panel C shows the mean
differences in RMSEs for derivatives (ATMF swaptions for the 3S models and ATMF and non-ATMF caps for
the 3C models). In parentheses are t-statistics computed using Newey and West (1987) standard errors with
12 lags. Interest rate pricing errors are reported in basis points and derivatives pricing errors are reported in
percentages. The models are estimated on weekly data from August 21, 1998 to July 8, 2005. *, **, and ***
denote significance at the 10%, 5%, and 1% levels, respectively.

where

Bzi
(τ) = α0i e

−γi τ, (53)

Bωi
(τ) = −α0i e

−2γi τ (54)

and zi (t) and ωi (t) evolve according to

dzi (t) =
(

α0i

γi

vi (t) − γi zi (t)

)
dt +

√
vi (t)dW

Q
i (t), (55)

dωi (t) =
(

α0i

γi

vi (t) − 2γiωi (t)

)
dt, (56)

subject to zi (0) = ωi (0) = 0. Bxi
(τ) and Bφ j,i

(τ) and the evolution of xi (t) and

φ j,i (t) are given in Proposition 1. Therefore, the dynamics of the forward rate

curve are given in terms of only M × 3 + (N − M) × 8 state variables.

From Tables 9 and 10, we see that for both models the likelihood-ratio test

overwhelmingly rejects the constraint α1,1 = · · · = α1,M = 0 even for M = 1.
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For both models, the fit to interest rates and derivatives becomes worse as

M increases and the deterioration in the fit is strongly statistically significant

(except for derivatives in the case of the 3S model when M increases from zero

to one). The deterioration in the fit is particularly pronounced when M increases

from two to three, where all volatility functions are exponentially declining.

The problem with having exponentially declining shocks to the forward rate

curve is that the model overestimates the volatility of short-term interest rates

and hence overprices caps with short maturities and swaptions with short option

maturities and short underlying swaps.42

4.6.2 Unspanned versus spanned volatility factors The way we set up the

comparison between models in Section 4.2, a model with N term structure fac-

tors automatically allows for N unspanned stochastic volatility factors. Given

that it is well established that three factors are necessary to match the dynamics

of the term structure, it is perhaps not surprising that the N = 3 model was

favored. However, it could be possible that fewer than N unspanned stochastic

volatility factors are necessary to match the dynamics of interest rate deriva-

tives. We, therefore, investigate the restriction ρ1 = · · · = ρM = 1, M ≤ N . In

this case, there are only N − M unspanned stochastic volatility factors.

From Tables 9 and 10, we see that for both models the restriction ρ1 = · · · =
ρM = 1 is strongly rejected by the likelihood-ratio test even for M = 1. This

is also the case for the Diebold and Mariano (1995) test, which shows that

the fit to derivatives deteriorates significantly as M increases. This confirms

the studies cited above that multiple unspanned stochastic volatility factors are

needed to capture fully the dynamics of interest rate derivatives.43

4.6.3 Nonzero versus zero correlation between interest rates and

volatility In Section 4.5, we demonstrated that matching the implied cap

skews and the dynamics of implied volatilities depends crucially on the cor-

relation parameters. Here we investigate the statistical importance of nonzero

correlation. In particular, we test the restriction ρ1 = · · · = ρM = 0, M ≤ N .

In this case, there are only N − M volatility state variables that are instanta-

neously correlated with forward rates.

42 A priori, it might seem that stochastic volatility could alleviate the need for hump-shaped forward rate volatility
functions. For instance, if vi (t) is below θi for all i , volatility is expected to rise (under the risk-neutral measure)
and, combined with exponentially declining forward rate volatility functions, the effect could be a hump-shaped
implied volatility term structure (this follows from the analysis in Section 2.3), which, at least qualitatively,
would be consistent with the data. However, for short-term options, the swaption surface also exhibits a hump
along the swap maturity dimension; see Figure 7. Given that we have assumed independence between the term
structure factors, at least one hump-shaped forward rate volatility function is needed to match the hump in this
dimension.

43 While these results show that a model with three term structure factors needs three additional unspanned stochastic
volatility factors to fit interest rate derivatives, it might be the case that a model with six factors spanned by the
term structure would perform even better. One approach to test this would be to compare the performance of the
unrestricted N = 3 model with the performance of an N = 6 model subject to the restriction ρ1 = · · · = ρN = 1.
Here we take a different approach. For the 3SC model, we regress innovations to each of the three unspanned
factors on innovations to all LIBOR and swap rates. The R2s equal 0.062, 0.024, and 0.037, respectively, strongly
suggesting that the unspanned factors are indeed orthogonal to term structure innovations.
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Consider first the likelihood-ratio test. For the 3C model, we cannot reject

the restriction ρ1 = · · · = ρM = 0 for M = 1 and 2 but can strongly reject it

for M = 3. This is not surprising since Table 2 shows two of the correlation

parameter estimates being insignificant while the third is strongly significant.

For the 3S model, the likelihood-ratio test does reject, although not strongly,

the restriction for all M . This reflects the fact that while all the correlation

parameters in Table 2 are positive, their standard deviations are larger than for

the 3C model. To understand why the restriction for M = 3 is strongly rejected

for the 3C model but only marginally rejected for the 3S model (and why

the standard deviation of the correlation estimates are larger for the 3S model

compared with the 3C model), recall that in principle, the correlation parameters

can be identified from the variation in implied volatilities across both moneyness

and time. In practice, however, the variation across moneyness provides much

stronger identification than the variation across time and the former source of

information is available only for the model estimated on caps.44

Consider next the fit to derivatives. For the 3C model, the fit to caps deterio-

rates significantly as M increases from 2 to 3, since the model no longer has the

ability to match non-ATMF caps, as we demonstrated in Section 4.5.1. For the

3S model, the fit to swaptions is basically unchanged as M increases, which is

not surprising as ATMF derivatives are virtually insensitive to the correlation

parameters. However, for the 3S (and 3SC) model the fit to non-ATMF caps

does become progressively worse as M increases, although this is not reported

in the table since we display only in-sample results. Furthermore, if non-ATMF

swaptions had been part of our sample, we would have been able, presumably,

to reject the zero-correlation restrictions much more strongly for the 3S model.

5. Conclusion

We have developed a flexible stochastic volatility multifactor model of the term

structure of interest rates. It features multiple unspanned stochastic volatility

factors and nonzero correlation between innovations to forward rates and their

volatilities. Furthermore, the model accommodates a wide range of shocks to

the term structure including hump-shaped shocks. The model is highly tractable

with quasianalytical prices of zero-coupon bond options and dynamics of the

forward rate curve, under both the actual and risk-neutral measure, in terms of

a finite-dimensional affine state vector.

We estimate the model by quasi-maximum likelihood in conjunction with the

extended Kalman filter on an extensive panel dataset of LIBOR and swap rates,

ATMF swaptions, ATMF caps, and non-ATMF caps (i.e., cap skews). With

three term structure factors and three unspanned stochastic volatility factors,

the model has a very good fit to the data. Reestimating the model on swaptions

44 Consistent with these observations, for the 3SC model, the restriction ρ1 = · · · = ρM = 0 is strongly rejected
for all M . This model has point estimates of the correlation parameters that are similar to those of the 3S model
but estimated standard deviations that are comparable to those of the 3C model.
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and caps separately and pricing caps and swaptions out of sample reveals that

swaptions were mostly undervalued relative to caps during the first 2.5 years

of the sample (at least relative to our model). However, since then swaption

and cap prices appear largely consistent with each other. Testing the model

against a range of alternative nested models shows that all the key features of

our model are necessary to provide an adequate fit to the entire dataset.

A key result is the ability of the model to match simultaneously the implied

cap skews and the dynamics of implied volatilities. This hinges on the nonzero

correlation between innovations to forward rates and their volatilities.

Our model has many applications. First, the ease with which the risk-neutral

dynamics of the forward rate curve can be simulated makes it useful for pricing

complex interest rate derivatives by Monte Carlo simulations in which early

exercise features can be handled by the Least Squares approach of Longstaff

and Schwartz (2001). We believe that the model will be particularly useful

for valuation of mortgage-backed securities due to its careful modeling of

stochastic volatility, which is a key determinant of the value of the prepayment

option.45

Second, with the use of the flexible “extended affine” market price of risk

specification, we obtain a tractable description of the dynamics of the term

structure under the actual measure, which makes the model useful in risk-

management applications involving portfolios of interest rate derivatives.46

Third, with some adjustments, our model can be used to value derivatives

on other assets. Indeed, in Trolle and Schwartz (2007), we extend the model to

price commodity futures and options in a stochastic volatility HJM framework.

Appendix

A. Proofs

Proof of Proposition 1
Given Equation (4), Equation (3) becomes

µ f (t, T ) =
N∑

i=1

vi (t)

[
α0i α1i

γi

(
1

γi

+
α0i

α1i

)
(e−γi (T −t) − e−2γi (T −t)) −

α0i α1i

γi

(T − t)e−2γi (T −t)

+
α2

1i

γi

(
1

γi

+
α0i

α1i

)
(T − t)(e−γi (T −t) − e−2γi (T −t)) −

α2
1i

γi

(T − t)2e−2γi (T −t)

]
.

(57)

45 Many existing MBS pricing models have difficulties matching the implied volatility skews, which in turn lead
them to misprice deep-discount MBSs with significantly out-of-the-money prepayment options. The fact that our
model has a good fit to the implied cap skews presumably makes it easier to match MBS prices across coupons.

46 In a previous version of the paper, we showed that the model performs well in terms of forecasting interest
rates and interest rate derivatives, beating the random walk benchmark. This depends critically on the use of the
“extended affine” market price of risk specification. These results can be found in the NBER Working Paper
version of the paper.
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Straightforward, if slightly tedious, calculations show that

f (t, T ) = f (0, T ) +
∫ t

0

µ f (s, T )ds +
N∑

i=1

∫ t

0

σ f,i (s, T )
√

vi (s)dW
Q
i (s)

= f (0, T ) +
N∑

i=1

Bxi
(T − t)xi (t) +

N∑

i=1

6∑

j=1

Bφ j,i
(T − t)φ j,i (t), (58)

where Bxi
(T − t) and Bφ j,i

(T − t), j = 1, . . . , 6 are given in the text and

xi (t) =
∫ t

0

√
vi (s)e−γi (t−s)dW

Q
i (s), (59)

φ1,i (t) =
∫ t

0

√
vi (s)(t − s)e−γi (t−s)dW

Q
i (s), (60)

φ2,i (t) =
∫ t

0

vi (s)e−γi (t−s)ds, (61)

φ3,i (t) =
∫ t

0

vi (s)e−2γi (t−s)ds, (62)

φ4,i (t) =
∫ t

0

vi (s)(t − s)e−γi (t−s)ds, (63)

φ5,i (t) =
∫ t

0

vi (s)(t − s)e−2γi (t−s)ds, (64)

φ6,i (t) =
∫ t

0

vi (s)(t − s)2e−2γi (t−s)ds. (65)

Applying Itô’s Lemma to these expressions gives the dynamics stated in the text.

Proof of Proposition 2
The proof is similar to those of Duffie, Pan, and Singleton (2000) and Collin-Dufresne and Goldstein

(2003). We can rewrite Equation (29) as

e−
∫ t

0 rs dsψ(u, t, T0, T1) = E
Q
t

[
e−

∫ T0
0 rs dsψ(u, T0, T0, T1)

]
(66)

since

ψ(u, T0, T0, T1) = eulog(P(T0,T1)). (67)

Therefore, the proof consists of showing that the process

η(t) ≡ e−
∫ t

0 rs dsψ(u, t, T0, T1) (68)

is a martingale under Q. To this end, we conjecture that ψ(u, t, T0, T1) is of the form (30). Applying

Itô’s Lemma to η(t), and setting the drift to zero, shows that η(t) is a martingale provided M(τ)

and Ni (τ) satisfy Equations (31)–(32). Furthermore, Equation (67) holds provided that M(0) = 0

and Ni (0) = 0.

Proof of Proposition 3
Again, we follow Duffie, Pan, and Singleton (2000) and Collin-Dufresne and Goldstein (2003).

The time-t price of a European put option expiring at time T0 with strike K on a zero-coupon bond
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maturing at time T1, P(t, T0, T1, K ), is given by

P(t, T0, T1, K ) = E
Q
t

[
e−

∫ T0
t r (s)ds (K − P(T0, T1))1P(T0,T1)<K

]

= K E
Q
t

[
e−

∫ T0
t r (s)ds1log(P(T0,T1))<log(K )

]

− E
Q
t

[
e−

∫ T0
t r (s)dselog(P(T0,T1))1log(P(T0,T1))<log(K )

]

= K G0,1(log(K )) − G1,1(log(K )), (69)

where

Ga,b(y) = E
Q
t

[
e−

∫ T0
t r (s)dsealog(P(T0,T1))1blog(P(T0,T1))<y

]
. (70)

To evaluate Ga,b(y), note that its Fourier transform is given by

Ga,b(y) =
∫

R

eiuydGa,b(y)

= E
Q
t

[
e−

∫ T0
t rs dse(a+iub)log(P(T0,T1))

]

= ψ(a + iub, t, T0, T1), (71)

where i =
√

−1. Applying the Fourier inversion theorem, we have

Ga,b(y) =
ψ(a, t, T0, T1)

2
−

1

π

∫ ∞

0

Im[ψ(a + iub, t, T0, T1)e−iuy ]

u
du. (72)

B. Pricing of Swaps, Caps, and Swaptions

LIBOR and swap rates
The time-t LIBOR rate for the period t to T is given by

L(t, T ) =
1 − P(t, T )

(T − t)P(t, T )
. (73)

Similarly, the time-t forward LIBOR rate for the period T1 to T2 is given by

L(t, T1, T2) =
P(t, T1) − P(t, T2)

(T2 − T1)P(t, T2)
. (74)

In the following, consider a period length ν and a set of dates T j = t + νj , j = 1, . . . , n. The

time-t swap rate for the period t to Tn and fixed-leg payments at T1, . . . , Tn
47 is given by

S(t, Tn) =
1 − P(t, Tn)

ν
∑n

j=1 P(t, T j )
. (75)

47 Market convention for USD swaps is semiannual fixed-leg payments (but quarterly floating-leg payments).
Therefore ν = 1/2 in swap rate calculations. To ease notation, we assume a constant period length between
payment dates. In reality, USD LIBOR derivatives are quoted on an Actual/360 basis, and in all computations in
the paper, we take into account the slightly varying period length between reset dates.
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Similarly, the time-t forward swap rate for the period Tm to Tn and fixed-leg payments at

Tm+1, . . . , Tn is given by

S(t, Tm , Tn) =
P(t, Tm ) − P(t, Tn)

ν
∑n

j=m+1 P(t, T j )
. (76)

Cap prices
A cap with payments at T2, . . . , Tn consists of n − 1 caplets expiring at these dates.48 A caplet

expiring at T j with strike K is a call option on the LIBOR rate L(t, T j − ν, T j ) with the payoff

χ = ν(L(T j − ν, T j ) − K )+, (77)

where K is the strike. This payoff is fixed at time T j − ν. Easy manipulations show that the price

of the caplet at time T j − ν equals (1 + νK ) European put options, expiring at time T j − ν, with

strike 1/(1 + νK ) written on a zero-coupon bond maturing at time T j . The caplet price at time

t < T j − ν is therefore given as

Cpl(t, T j − ν, T j , K ) = (1 + νK )P

(
t, T j − ν, T j ,

1

1 + νK

)
. (78)

The time-t price of a cap with strike K and payments at T2, . . . , Tn is the sum of the prices of the

n − 1 underlying caplets, i.e.,

Cap(t, Tn, K ) =
n∑

j=2

Cpl
(
t, T j − ν, T j , K

)
. (79)

When the strike K equals the time-t forward swap rate for the period T1 to Tn with fixed-leg

payments at T2, . . . , Tn , the price of the cap equals the price of the corresponding floor and the cap

and the floor are ATMF.

Swaption prices by the stochastic duration approach
The time-t value of a forward payer swap for the period Tm to Tn with fixed-leg payments at

Tm+1, . . . , Tn and fixed rate K is given by

V (t, Tm , Tn) = P(t, Tm ) − P(t, Tn) − Kν

n∑

j=m+1

P(t, T j ). (80)

A payer swaption is an option to enter into a payer swap at a given fixed rate. A (Tm − t)–into–

(Tn − Tm ) payer swaption (i.e., an option expiring at Tm on a payer swap for the period Tm to Tn),

with strike K has a payoff at Tm of

χ = V (Tm , Tm , Tn)+ =

⎛
⎝1 − P(Tm , Tn) − Kν

n∑

j=m+1

P(Tm , T j )

⎞
⎠

+

. (81)

48 Market convention for USD caps is quarterly payments. Therefore ν = 1/4 in cap and caplet price calculations.
Furthermore, market convention is to exclude the first caplet expiring at T1 from the cap since its cash flow is
known already at time t .
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Hence, a payer swaption can be viewed as a put option with strike 1 on a coupon bond with coupon

rate K . In the following, we let Pc(t) denote the time-t value of this coupon bond. That is,

Pc(t) =
n∑

j=m+1

Y (T j )P(t, T j ), (82)

where Y (T j ) = Kν for j = m + 1, . . . , n − 1 and Y (Tn) = 1 + Kν.

The stochastic duration D(t) of a coupon bond is the maturity of the zero-coupon bond, that

has the same relative volatility as the coupon bond. In our model, the stochastic duration of Pc(t)

is therefore given implicitly as the solution to

N∑

i=1

vi (t)Bxi
(D(t))2 =

N∑

i=1

vi (t)

⎛
⎝

n∑

j=m+1

w j Bxi
(T j − t)

⎞
⎠

2

, (83)

where w j = Y (T j )P(t,T j )∑n
j=m+1 Y (T j )P(t,T j )

. D(t) must be found numerically, but it exists and is unique if

Bxi
(τ) is uniformly decreasing. See Munk (1999).49

Wei (1997) and Munk (1999) suggest approximating an option on a coupon bond with an

(scaled) option on a zero-coupon bond with maturity equal to the stochastic duration of the coupon

bond. Let Swpn(t, Tm , Tn, K ) denote the time-t price of a (Tm − t)–into–(Tn − Tm ) payer

swaption with strike K . According to Wei (1997) and Munk (1999) this swaption price is ap-

proximately given by

Swpn(t, Tm , Tn, K ) = ζP(t, Tm , t + D(t), ζ−1), (84)

where ζ = Pc(t)
P(t,t+D(t))

is a scaling factor.

C. Estimation Details

The extended Kalman filter
Let X̂ t = Et [X t ] and X̂ t |t−1 = Et−1[X t ] denote expectations of X t (respectively including and

excluding yt ), and let Pt and Pt |t−1 denote the corresponding estimation error covariance matrices.

Linearizing the h-function in Equation (49) around X̂ t |t−1, we obtain

yt = (h(X̂ t |t−1) − H ′
t X̂ t |t−1) + H ′

t X t + ut , ut ∼ iid. N (0, S), (85)

where

H ′
t =

δh(X t )

δX ′
t

∣∣∣∣∣
X t =X̂ t |t−1

. (86)

Assuming wt in Equation (51) is Gaussian, we obtain

X t = �0 + �X X t−1 + wt , wt ∼ iid. N (0, Qt ). (87)

The Kalman filter applied to Equations (85) and (87) is given by the following recursions:

X̂ t |t−1 = �0 + �X X̂ t−1, (88)

Pt |t−1 = �X Pt−1�
′
X + Qt (89)

49 At the parameter estimates reported in Table 1 and 2, some Bxi
(τ) exhibit a tiny hump for very short maturities.

However, over the relevant range of maturities all Bxi
(τ) are indeed uniformly decreasing.
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and

X̂ t = X̂ t |t−1 + Pt |t−1 H ′
t F−1

t ǫt , (90)

Pt = Pt |t−1 − Pt |t−1 H ′
t F−1

t Ht Pt |t−1, (91)

where

ǫt = yt − h(X̂ t |t−1), (92)

Ft = Ht Pt |t−1 H ′
t + S. (93)

The loglikelihood function is constructed from Equations (92) and (93) as

logL = −
1

2
log(2π)

T∑

i=1

Nt −
1

2

T∑

i=1

log|Ft | −
1

2

T∑

i=1

ǫ′
t F−1

t ǫt , (94)

where T is the number of observation dates and Nt is the dimension of ǫt . We follow standard

practice in the literature and initialize the Kalman filter at the unconditional mean and covariance

matrix of X t .

The small-sample properties of the QML/Kalman filter approach
While QML estimation has been shown to be consistent in many settings, it is in fact not consistent

when used in conjunction with the extended Kalman filter.50 More importantly, even if it were

consistent, the estimator might exhibit small-sample biases. Here we perform a Monte Carlo

analysis to assess the small-sample properties of the QML/Kalman filter approach in our setting. It

is based on 200 simulated data sets, each of which has the same length as the original dataset—i.e.,

360 observations at a weekly frequency. We perform only the analysis for the N = 1 model since

it is computationally burdensome to reestimate the model a large number of times.

To generate each dataset, we first simulate the state vector using a simple Euler discretization

of the process with 50 intermediate steps per week. The parameters are from Table 1 and the

simulation is initiated at the unconditional mean of the state vector.51 Second, we compute the

same LIBOR and swap rates, swaption and cap prices as in the original dataset.52 Third, we add

normally distributed and serially and cross-sectionally uncorrelated measurement errors to the

observations.53

Table 11 displays the results. It shows the true parameters, the asymptotic “outer-product”

standard errors, as well as the mean, median, and standard deviation of the estimates from the Monte

Carlo simulations. We see that there is virtually no bias in estimates of the parameters identified

under Q. Estimates of the parameters identified only under P do display some biases, although

these are small relative to the standard deviations of the estimates, rendering the biases insignificant.

These findings are consistent with those of other studies that investigate the small-sample properties

of the QML/Kalman filter approach in the context of estimating stochastic volatility term structure

models without derivatives—see, e.g., Lund (1997); Duan and Simonato (1999); and Duffee and

Stanton (2004). Note that for the parameters in the Q dynamics, the asymptotic standard errors are

50 This is due to the linearization of the h function, and the fact that the conditional covariance matrix Q in the
recursions depends on the Kalman filter estimate v̂t rather than the true, but unobservable, vt ; see Duan and
Simonato (1999) and Lund (1997) for more details on this issue.

51 An initial 200 observations are generated and then discarded to avoid dependence on the initial values.

52 To be consistent with the original dataset, we compute only non-ATMF cap prices for the last 184 observations.

53 We use the estimate for the standard deviations of the measurement errors reported in Table 1, i.e., 54 bp for
interest rates and 0.0288 × “vega” for derivatives prices.
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Table 11

Small-sample properties of the QML/Kalman filter approach

True parameter MC mean MC median “o-p” standard error MC standard deviation

κ1 0.0553 0.0587 0.0588 0.0039 0.0076
σ1 0.3325 0.3418 0.3429 0.0091 0.0220
α0,1 0.0045 0.0045 0.0045 0.0001 0.0001
α1,1 0.0131 0.0130 0.0130 0.0004 0.0003
γ1 0.3341 0.3340 0.3338 0.0011 0.0021
ρ1 0.4615 0.4633 0.4656 0.0320 0.0315
κP

x,1 0.9767 1.0142 1.0318 0.5280 0.4412

κP
xv,1 3.4479 2.5045 2.7230 2.4111 1.1938

ηP
1 1.1964 1.4046 1.3823 1.9715 1.2136

κP
1 2.1476 2.2534 2.1953 0.3593 0.2663

θP
1 0.7542 0.8091 0.8054 0.0566 0.0665

ϕ 0.0832 0.0831 0.0831 0.0003 0.0005
σrates 0.0054 0.0054 0.0054 0.0000 0.0001
σderiv 0.0288 0.0288 0.0288 0.0001 0.0002

We simulate 200 data sets from the N = 1 swaption and cap model with parameters equal to those given in Table
1. Then, we reestimate the model on each of the simulated data sets using the QML/Kalman filter approach. The
table shows the true parameter values followed by the mean and median estimates from the simulated data sets.
It then shows the asymptotic “outer-product” standard errors reported in Table 1 and the standard deviation of
the estimates across the simulated data sets.

fairly close to the finite-sample standard errors, while for the drift parameters in the P dynamics,

the asymptotic standard errors are typically larger than the finite-sample standard errors.

Although we have reported only results for the N = 1 model, we expect similar results to

hold for the N = 2 and N = 3 models. While these models have more parameters, they also have

smaller measurement errors, and the performance of the extended Kalman filter typically improves

with the “signal-to-noise” ratio—see, e.g., Pichard (1991).
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