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Abstract: Capacity planning decisions affect a significant portion of future revenue. In equipment intensive industries, these
decisions usually need to be made in the presence of both highly volatile demand and long capacity installation lead times. For a
multiple product case, we present a continuous-time capacity planning model that addresses problems of realistic size and complexity
found in current practice. Each product requires specific operations that can be performed by one or more tool groups. We consider
a number of capacity allocation policies. We allow tool retirements in addition to purchases because the stochastic demand forecast
for each product can be decreasing. We present a cluster-based heuristic algorithm that can incorporate both variance reduction
techniques from the simulation literature and the principles of a generalized maximum flow algorithm from the network optimization
literature. © 2005 Wiley Periodicals, Inc. Naval Research Logistics 53: 137–150, 2006
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1. INTRODUCTION

Because highly volatile demands and short product life
cycles are commonplace in today’s business environment,
capacity investments are important strategic decisions for
manufacturers. In the semiconductor industry, where the
profit margins of products are steadily decreasing, manufac-
turers may spend up to 3.5 billion dollars for a state-of-the-art
plant [3, 23]. The capacity decisions are complicated by
volatile demands, rising costs, and evolving technologies, as
well as long capacity procurement lead times. In this paper,
we study the purchasing and retirement decisions of machines
(or interchangeably, “tools”). The early purchase of tools
often results in unnecessary capital spending, whereas tardy
purchases lead to lost revenue, especially in the early stages
of the product life cycle when profit margins are highest.
The process of determining the sequence and timing of tool
purchases and possibly retirements is referred to as strategic
capacity planning.

Our strategic capacity planning model allows for multiple
products under demand uncertainty. Demand evolves over
time and is modeled by a set of scenarios with associated
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probabilities. We allow for the possibility of decreasing
demand. Our model of capacity consumption is based on
three layers: tools (i.e., machines), operations, and products.
Each product requires a fixed, product-specific set of opera-
tions. Each operation can be performed on any tool. The time
required depends on both the operation and the tool.

In our model time is a continuous variable, as opposed to
the more traditional approach of using discrete time buck-
ets. Our primary decision variables, one for each potential
tool purchase or retirement, indicate the timing of the corre-
sponding actions. In contrast, decision variables in typical
discrete-time models are either binary or integer and are
indexed by both tool groups and time periods. Our objective
is to minimize the sum of the lost sales cost and the capital
cost, each a function of tool purchase times and retirement
times. Our continuous-time model has the advantage of hav-
ing a smaller number of variables, although it may be difficult
to find global optimal solutions for the resulting continuous
optimization problem.

Many manufacturers, primarily those in high-tech indus-
tries, prefer to maintain a negligible amount of finished good
inventory because technology products, especially highly
profitable ones, face rapidly declining prices and a high risk
of obsolescence. In particular, building up inventories ahead
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of demand may not be economically sound for application-
specific integrated circuits. Because high-tech products are in
a sense “perishable,” we assume no finished goods inventory.
In addition, we assume that no back-ordering is permitted for
the following reasons. First, unsatisfied demand frequently
results in the loss of sales to a competitor. Second, delayed
order fulfillment often results in either the decrease or the
postponement of future demand. The end result approximates
a lost sale. We remark that these assumptions of no-finished-
goods and no back-ordering are also applicable to certain
service industries and utility industries, in which systems do
not have any buffer and require the co-presence of capacity
and demand. These assumptions simplify the computation
of instantaneous production and lost sales since they depend
only on the current demand and capacity at a given moment
of time.

In the case of multiple products, the aggregate capacity
is divided among these products according to a particular
policy. This tool-groups-to-products allocation is referred to
as tactical production planning. While purchase and retire-
ment decisions are made at the beginning of the planning
horizon prior to the realization of stochastic demand, allo-
cation decisions are recourse decisions made after demand
uncertainty has been resolved. When demand exceeds sup-
ply, there are two plausible allocation policies for assigning
the capacity to products: (i) the Lost Sales Cost Minimization
policy minimizing instantaneous lost sales cost and (ii) the
Uniform Fill-Rate Production policy equalizing the fill-rates
of all products. Our model primarily uses the former, but can
easily be extended to use the latter.

Our model is directly related to two threads of strategic
capacity planning models, both of which address problems
of realistic size and complexity arising in the semiconduc-
tor industry. The first thread is noted for the three-layer
tool-operation-product model of capacity that we use, orig-
inating from IBM’s discrete-time formulations. Bermon
and Hood [6] assume deterministic demand, which is later
extended by Barahona et al. [4] to model scenario-based
demand uncertainty. Barahona et al. [4] have a large num-
ber of indicator variables for discrete expansion decisions,
which results in a large mixed integer programming (MIP)
formulation. Standard MIP computational methods such as
branch-and-bound are used to solve this challenging prob-
lem. Our model differs from this work in the following ways:
(i) using continuous variables, we use a descent-based heuris-
tic algorithm as an alternative to the standard MIP techniques,
(ii) we model tool retirement in addition to acquisition, and
(iii) we consider the capital cost in the objective function
instead of using the budget constraint. Other notable exam-
ples of scenario-based models with binary decisions variables
include Escudero et al. [15], Chen, Li, and Tirupati [11],
Swaminathan [27], and Ahmed and Sahinidis [1]; however,
they do not model the operations layer explicitly.

The second thread of the relevant literature features
continuous-time models. Çakanyildirim and Roundy [8] and
Çakanyildirim, Roundy, and Wood [9] both study capacity
planning for several tool groups for the stochastic demand
of a single product. The former establishes the optimality
of a bottleneck policy where tools from the bottleneck tool
group are installed during expansions and retired during con-
tractions in the reverse order. The latter uses this policy
to jointly optimize tool expansions along with nested floor
and space expansions. Huh and Roundu [18] extend these
ideas to a multi-product case under the Uniform Fill-Rate
Production policy and identify a set of sufficient conditions
for the capacity planning problem to be reduced to a non-
linear convex minimization program. This paper extends their
model by introducing the layer of operations, the Lost Sales
Cost Minimization allocation policy and tool retirement. This
results in the non-convexity of the resulting formulation.
Thus, our model marries the continuous-time paradigm with
the complexity of real-world capacity planning.

We list a selection of recent papers on capacity planning.
Davis et al. [12] and Anderson [2] take an optimal control
theory approach, where the control decisions are expansion
rate and workforce capacity, respectively. Ryan [24] incorpo-
rates autocorrelated product demands with drift into capacity
expansion. Ryan [25] minimizes capacity expansion costs
using option pricing formulas to estimate shortages. Also,
Birge [7] uses option theory to study capacity shortages and
risk. An extensive survey of capacity planning models is
found in the article by Van Mieghem [28].

Our computational results suggest that the descent algo-
rithm, with a proper initialization method, delivers good
solutions and reasonable computation times. Furthermore,
preliminary computational results indicate that capacity plans
are not very sensitive to the choice of allocation policy, and
both policies perform comparably. With the Uniform Fill-
Rate Production policy, an instantaneous revenue calculation
that is used repeatedly by the subroutines of the heuristic
algorithm can be formulated as a generalized maximum flow
problem; the solution of this problem can be obtained by a
combinatorial polynomial-time approximation scheme that
results in a potentially dramatic increase in the speed of our
algorithm.

We assume that the stochastic demand is given as a finite
set of scenarios. This demand model is consistent with cur-
rent practice in the semiconductor industry. We also explore,
in Section 5, the possibility that demand is instead given as
a continuous distribution, e.g., the Semiconductor Demand
Forecast Accuracy Model [10]. Borrowing results from the
literature on Monte Carlo approximations of stochastic pro-
grams, we point out the existence of an inherent bias in the
optimal cost of the approximation when the scenario sample
size is small. We also describe applicable variance reduction
techniques when samples are drawn on an ad hoc basis.
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This paper is organized as follows. Section 2 lays out our
strategic capacity formulation under two capacity allocation
policies. Section 3 describes our heuristic algorithm, and its
computational results are reported in Section 4. Section 5
presents how our software can be efficiently used when the
demand is a set of continuous distributions that evolve over
time. We briefly conclude with Section 6.

2. MODEL

2.1. Formulation

Let the continuous variable t represent a time between 0
and T , the end of the planning horizon. We use p, w, and m to
index product families in P , operations in W , and tool groups
in M, respectively. All tools in a tool group are identical; this
is how tool groups are actually defined. We denote by M(w)

the set of tools that can perform operation w and by W(m)

the set of operations that tool group m can perform. Dur-
ing the planning horizon, we purchase NP

m (retire NR
m ) tools

belonging to tool group m.1 Purchases or retirements of tools
in a tool group are indexed by n, 1 ≤ n ≤ NP

m , or 1 ≤ n ≤ NR
m .

Random demand for product p is given by Dp(t) = Ds,p(t),
where s indexes a finite number of scenarios S.

Our formulation uses input data and variables presented
below. We reserve the usage of the word time for the calendar
time t , as opposed to the processing duration of operations or
productive tool capacities available. To avoid confusion, we
refer to the duration of operations or tool capacities available
at a given moment of time using the phrase machine-hours.

Input Data

bw,p Number of operations of type w required to pro-
duce a unit of product p (typically integer, but
fractional values are allowed).

hm,w Amount of machine-hours required by a tool in
group m to perform operation w.

uo
m Total capacity (productive machine-hours per

month) of tool group m at the beginning of the
time horizon.

u1
m Capacity of each tool in group m (productive

machine-hours per month).
P P

m (t) Purchase price of a tool in group m at time t

(a function of the continuous scalar t).
P R

m (t) Sale price for retiring a tool in group m at time t .
May be positive or negative.

cp(t) Per-unit lost sales cost for product p at time t .

1 In our model, we fix a priori the number of tool purchases and
retirements for each tool group. This is consistent with practice in
the semiconductor industry. When these numbers are unknown (e.g.,
specified by the minimum and maximum quantities), our model can
be a lower part of a two-level decision model, which determines the
optimal choice of NP

m and NR
m either by exhaustion or heuristically.

Ds,p(t) Instantaneous demand of product p in scenario
s at time t .

πs Probability of scenario s.

We eliminate subscripts to construct vectors or matrices
by listing the argument with different products p, opera-
tions w, and/or tool indices m. For example, B := (bw,p)

is the production-to-operation matrix and H := (hm,w) is the
machine-hours-per-operation matrix. Note that we concate-
nate only p, w, or m indices. Thus, Ds(t) = (Ds,p(t)) for
demand in scenario s, and c(t) = (cp(t)) for per-unit lost
sales cost vectors at time t . We assume the continuity of cp

and Ds,p and the continuous differentiability of P P
m and P R

m .

Primary Variables

τm,n The time of the nth tool purchase within group m.
γm,n The time of the nth tool retirement within group m.

Auxiliary Variables

Xs,w,m(t) Number of products that pass through oper-
ation w on tool group m in scenario s at
time t .

Um(t) Capacity of tool group m at time t .
Vs,p(t) Unmet demand of product p in scenario s at

time t .
V s,p(t) Satisfied demand of product p in scenario s

at time t . Thus, V s,t (t) = Ds,p(t) − Vs,p(t).

The decision variables of primary interest are the times
τm,n and γm,n of tool purchases and retirements. All the other
variables are consequences of these two sets of variables.

Capacity Planning Formulation

min
∫ T

t=0

∑
s

πs

∑
p

cp(t)Vs,p(t) dt

+
∑
m


 NP

m∑
n=1

P P
m (τm,n) −

NR
m∑

n=1

P R
m (γm,n)


 (1)

subject to Vs,p(t) + V s,p(t) = Ds,p(t) ∀s, p, t (2)∑
p

bw,pV s,p(t) =
∑

m∈M(w)

Xs,w,m(t) ∀s, w, t (3)

∑
w∈W(m)

hm,wXs,w,m(t) ≤ Um(t)∀s, m, t (4)

uo
m + u1

m[|{n : τm,n ≤ t}| − |{n : γm,n ≤ t}|]
= Um(t) ∀m, t (5)
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0 ≤ τm,1 ≤ τm,2 ≤ · · · ≤ τm,NP
m

≤ T ∀m (6)

0 ≤ γm,1 ≤ γm,2 ≤ · · · ≤ γm,NR
m

≤ T ∀m (7)

Um(t), Vs,p(t), V s,p(t), Xs,w,m(t) ≥ 0 ∀s, w, m, p, t . (8)

The objective function (1) minimizes the sum of the
expected lost sales cost and the capital cost, where capital
cost is the tool purchase cost minus the tool sale price upon
retirement. Note that the capital cost is a separable func-
tion of the τm,n’s and γm,n’s. Constraint (2) defines unmet
demand in terms of realized demand and satisfied demand.
Constraint (3) forces enough tool capacity to be allocated
to meet the satisfied demand for each product family. Con-
straint (4) indicates that the allocation of a tool’s capacity
across different product families is subject to the capacity
(machine-hours) of the tool group. The capacity of a tool
group is given in (5). Constraints (6) and (7) define the order
of purchases and retirements within a tool group. We can
easily accommodate additional timing constraints, such as
τ1,3 ≤ γ1,3. Non-negativity constraints on Um(t) in (8) assure
that only existing machines can be retired.

2.2. Remarks

We make several remarks about the formulation.

1. The Lost Sales and No Inventory Holding. To support
strategic capacity planning decisions, these simpli-
fying assumptions are made. These assumptions
are justifiable in many industries that face a high
risk of obsolescence, rapidly decreasing prices, and
demand volatility. They are used, for example, in the
semiconductor industry [6].

2. Capacity Allocation Policy. Tool purchase and retire-
ment decisions are made in the presence of demand
uncertainty at the beginning of the planning horizon.
These decisions determine the set of tools available
at any time t in the planning horizon. Tool capacity
is allocated to operations after the demand has been
observed, at each time t . Insufficient capacity to sat-
isfy the realized demand results in lost sales. Because
of the lost sales and no inventory assumptions, the
capacity allocation depends only on realized demand
and the set of available tools at a given time.

Our capacity allocation policy, the Lost Sales
Cost Minimization policy, minimizes the instanta-
neous lost sales cost at t . At time t , for a given
per-unit lost sales cost vector c := (cp(t)), tool
capacity vector U := (Um(t)), and realized demand
vector d := (dp(t)), the unmet demand V :=
(Vp(t)) is an optimal solution to the following linear
program (LP).

Capacity Allocation LP with the Lost Sales Cost
Minimization Policy

LS(c, U , D) := min
∑

p

cpVp (9)

s. t. Vp + V p = dp ∀p (10)∑
p

bw,pV p =
∑

m∈M(w)

Xw,m ∀w (11)

∑
w∈W(m)

hm,wXw,m ≤ Um ∀m (12)

Vp, V p, Xw,m ≥ 0 ∀w, m, p. (13)

As time t changes, the Capacity Allocation LP problem with
parameters c(t), U(t), and Ds(t) := (Ds,p(t)) becomes
a parametric linear program in which several parameters
change simultaneously. A closed form expression for the
expected lost sales cost in terms of available capacities for all
t cannot generally be obtained. Although the total expected
lost sales cost over the planning horizon is difficult to obtain,
the expected lost sales cost

∑
s πsLS(c(t), U(t), Ds(t)) at

time t can be easily computed by solving a linear program
for each scenario s.

For fixed (τ , γ ), define the lost sales cost and capital cost as

FLS(τ , γ ) :=
∫ T

t=0

∑
s

πsLS(c(t), U(t), Ds(t)) dt ,

FC(τ , γ ) :=
∑
m


 NP

m∑
n=1

P P
m (τm,n) −

NR
m∑

n=1

P R
m (γm,n)


 .

Now, the Capacity Planning Formulation in (1)–(8) is equiv-
alent to minimizing

F(τ , γ ) := FLS(τ , γ ) + FC(τ , γ )

over (τ , γ ) subject to constraints (6) and (7). We will see that
while it is difficult to obtain FLS , we can easily compute its
partial derivatives.

3. Lost Sales Minimization and Revenue Maximiza-
tion. When capacities are fixed, the minimization
of lost sales in the Capacity Allocation LP (9)–(13)
is equivalent to the instantaneous maximization of
revenue,

R(c, U , D) := Maximize
∑

p

cpV p (14)

subject to constraints (10)–(13). We nameR(c, U , D)

as the instantaneous revenue.
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4. Non-Convexity Properties. One of our main goals
is to find the boundary between the versions of the
capacity planning problem that are provably solvable
and those that are not. The boundary is drawn by the
Convexity Conditions summarized in Section 2.3.
Huh and Roundy [18] show the convexity of the
objective function F(τ , γ ) under these conditions
and present an efficient algorithm. In contrast, our
capacity planning problem is not convex. For such a
problem, we develop a heuristic solution technique.

2.3. Convexity Conditions

In this section, we list the Convexity Conditions and sum-
marize their implications. These conditions are sufficient for
the joint convexity of F .

A. Demand Ds,p(t) is non-decreasing with respect to
time t . Only tool acquisitions are considered, i.e.,
the number NR

m of possible tool retirements is zero.
B. The cost P P

m (t) of purchasing tool m is convex in
time t , and the per-unit lost sales cost cp(t) is non-
decreasing in t .

C. The product mix remains constant in each scenario s;
i.e., Ds,p(t) = �s(t) ·�s where �s(t) is a scalar and
�s is a deterministic product mix vector.

D. Each operation is performed by a unique tool group;
i.e., the machine-hours-per-operation matrix H =
(hm,w) is a square matrix, and all non-diagonal
entries are infinite.

E. For capacity allocation, use the Uniform Fill-Rate
Production policy (see [18]). It ensures that the fill-
rates of all products are the same. It can easily be
accommodated in our formulation by adding the
following constraints:

V s,p(t) = σs(t) · Ds,p(t) ∀s, t , (15)

0 ≤ σs(t) ≤ 1 ∀s, t , (16)

where variable σs(t) is the common fill-rate of all
product families in scenario s at time t .

We can show that without any one of the above five Con-
vexity Conditions, F(τ , γ ) may not be convex. To appreciate
the necessity of Condition A, suppose demand is determinis-
tic and that there is only one product family, one tool group,
and one operation type. If demand is non-decreasing over
time, then the marginal increase in the lost sales cost associ-
ated with a tool is non-decreasing in the purchase time of the
tool, i.e., the lost sales cost is convex. However, if demand
decreases, a similar reasoning shows that the lost sales cost
can be concave in the tool purchase times. Therefore, the vio-
lation of Condition A leads to non-convexity. An analogous

argument with constant demand shows that Condition B is
necessary for convexity. Examples illustrating the necessity
of Conditions C and D can be constructed.

Now we turn our attention to Condition E. The example
below shows that the convexity of the expected lost sales cost
does not necessarily hold if the Lost Sales Cost Minimization
allocation policy is used in place of Condition E.

EXAMPLE 1: Suppose that there are two product fam-
ilies, whose deterministic demand is 6 units each at time
t = 1. Their per-unit lost sales cost is 1000 dollars each.
The first product family requires b11 = 20 units of the
first operation and b31 = 20 of the third operation. The
second product family requires b22 = 20 units of the sec-
ond operation and b32 = 20 units of the third operation. Each
operation can be performed only by the corresponding dedi-
cated tool group and requires 20 units of processing. Let uo =
(1200, 1200, 3600) and (u1

1, u1
2, u1

3) = (1200, 1200, 3600).
Suppose that the current solution is τ o = (τ o

11, τ o
21, τ o

31) =
(1, 1, 2). It can be verified that the directional derivative of
the lost sales cost is ∇(−1,0,0)F

LS(τ o) = ∇(0,−1,0)F
LS(τ o) =

∇(−1,−1,0)F
LS(τ o) = 6000 − 9000 = −3000 dollars along

(−1, 0, 0), (0, −1, 0), and (−1, −1, 0). (Each of the direc-
tional derivatives corresponds to the change in production
from point A in Fig. 1 to point B, C or D). It follows that the
lost sales cost is not jointly convex in τ11 and τ21 at τ o.

Implications of the Uniform Fill-Rate Production Policy.
For capacity allocation, both lost sales minimization and uni-
form fill-rate policies exist in the capacity planning literature,
and variants of both are used in practice by semiconduc-
tor companies. Under the Uniform Fill-Rate Production
Policy, the instantaneous revenue maximization problem is
to optimize objective (14) subject to (10)–(13) and (15) and
(16). Under Convexity Conditions C and D, this computation

Figure 1. Instantaneous production at time t = 1 when τ11 and
τ21 are perturbed as in Example 1.
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is straightforward and is equivalent to finding a bottleneck
tool constraint. Without the Convexity Conditions, the propo-
sition below shows that the instant revenue maximization
problem can be solved by a fully combinatorial-time algo-
rithm. This is significant for efficiency because the bulk of
the running time of our heuristic algorithm in Section 3 is
spent on solving linear programs, in particular maximizing
instantaneous revenue computation. The proof is based on
the reduction of the instantaneous revenue maximization to a
network problem called the generalized maximum concurrent
flow problem.

PROPOSITION 1: Suppose that finite entries in the tool
requirement matrix H form a sparse matrix, i.e., the number
of finite entries is linear in ω, where ω = max{|W|, |M|}.
Assume the Uniform Fill-Rate Production policy. For any
ε > 0, a fully polynomial-time algorithm finds a feasible
solution of the instantaneous revenue maximization problem
such that the objective value of the feasible solution is at
least (1 − ε) times the optimal value. This algorithm runs in
O(ε−2ω2 log ω) time.

3. SOLUTION APPROACH

This section presents a heuristic algorithm to solve the
Capacity Planning Formulation presented in Section 2. Our
algorithm is a modification of the divide-and-conquer method
by Huh and Roundy [18].

In our algorithm, all potential tool purchases and retire-
ments are partitioned into clusters based upon when they
occur; all purchases and retirements in a given cluster are
made at the same time. At each iteration, we perform one of
the three following subroutines: (i) cluster descent: find an
optimal time for a cluster within a specific interval; (ii) cluster
splitting: divide a cluster into two clusters; and (iii) cluster
merging: combine two clusters with the same associated time
into one cluster.

Cluster Structure. Our algorithm is based on the concept of
clusters. Given the values of the primary decision variables
	 = {τm,n : m ∈ M, 1 ≤ n ≤ NP

m } ∪ {γm,n : m ∈ M, 1 ≤
n ≤ NR

m }, the associated cluster structure C is an ordered
partition of 	 such that two variables belong to the same
cluster of the partition if they have the same values. Such a
set is called a cluster. All variables in a cluster C assume the
common value tC . The order of the partition is consistent with
the order of the values of its clusters, i.e., if C = (C1, . . . , Ck),
then tC1 ≤ tC2 ≤ · · · ≤ tCk

. Note that not all primary variables
with the same value need to belong to the same cluster, i.e.,
there can be more than one cluster with the same value.

Description of the Algorithm. Given an initial feasible clus-
ter structure, the algorithm randomly selects one of the
clusters and attempts to perform one of the three subroutines.

It is a descent algorithm that repeatedly improves the value of
the solution in each iteration. The algorithm terminates when
no subroutine modifies the value or structure of any of the
clusters.

We describe below each subroutine in detail. These sub-
routines take an advantage of the following observation by
Huh and Roundy [18]. While the objective function F is not
separable, it is quasi-separable, i.e., its partial derivative with
respect to a variable τm,n depends on the value of other vari-
ables only through the set consisting of all variables that are
less than τm,n. The same can be said for a variable γm,n.

(i) Cluster Descent. This subroutine finds a good value
of a given cluster C ∈ C in the interval defined by
the values of the previous and subsequent clusters.
While the objective function of this problem is not
convex, it is a single-dimensional global optimiza-
tion problem with bounds. Essentially, this subrou-
tine looks for a better solution within a line segment.
Although it is easier to solve the single-dimensional
(non-convex) global optimization problem com-
pared to the multiple-dimensional case, there is no
straightforward algorithm to find the global mini-
mizer. Consequently, the cluster descent subroutine
finds a local minimizer in our heuristic algorithm.

In our problem, it is non-trivial to evaluate
F(τ , γ ) as discussed in Section 2, but we can obtain
the directional derivative of F(τ , γ ) in the inte-
rior of the interval, where the derivative is taken
along the direction of the characteristic vector ofχC .
(The entry of this binary vector χC corresponding
to a decision variable is 1 if and only if this vari-
able belongs to C.) Such a direction corresponds
to simultaneously moving all the variables in the
cluster. The subroutine uses the first-order condi-
tion of local optimality and seeks to find a time t

in the interval such that the directional derivative
changes its sign from non-positive to non-negative
at time t . The computational experiment in Section 4
uses Matlab’sfzero function. If no such t exists,
then it reports an appropriate end point.

(ii) Cluster Splitting. This subroutine subdivides a
given cluster C ∈ C into two clusters C− ∪ C+,
where C− precedes C+. We say C− is sent to the left
of the current value and C+ is sent to the right. Intu-
itively, this subroutine looks for a descent direction
within a subset of all possible descent directions.
Let tC be the value of cluster C. The cluster split-
ting C− ∪ C+ of C is optimal if the directional
derivative along the direction −χC− + χC+ at tC is
minimized. It can be shown that it is equivalent to
minimizing the directional derivative along −χC−

instead of along−χC−+χC+ . We describe an integer
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programming formulation for the optimal cluster
splitting problem. Let CL ⊆ 	 be the union of all
clusters preceding C in the cluster structure. Let
η(CL) denote a vector that is indexed by tool groups
and represents the net number of tool purchases cor-
responding to CL, i.e., the mth entry of η(CL) is
|{n : τm,n ∈ CL}| − |{n : γm,n ∈ CL}|. Recall that
LS(c(t), U(t), Ds(t)) represents the instantaneous
lost sales cost at time t for a given set of parameters
under demand scenario s. We also use the notation
LS(c(t), η(CL), Ds(t)) when there is no ambiguity.
Let yP and yR denote the number of purchases and
the number retirements in the cluster C that should
be perturbed to the left from tC . Then, the optimal
splitting is the solution of the following problem.

Cluster Splitting IP

Min
∑

s

πsLS(c(t), n̄(CL) + yP − yR , tC)

−
∑
m

[
yP

m

d

dt
P P

m (tC) − yR
m

d

dt
P R

m (tC)

]

s. t. 0 ≤ yP
m ≤ |{n : τm,n ∈ C}| ∀m

0 ≤ yR
m ≤ |{n : γm,n ∈ C}| ∀m

yP
m , yR

m integer ∀m.

We note that the Cluster Splitting IP is a single-
period capacity planning problem. When the size
of the cluster C is big, there is no efficient method
known to solve the above IP in general. In the paper
by Barahona et al. [4], a mixed integer capacity
planning problem is approached using a truncated
branch-and-bound procedure. In this paper, we pro-
pose and use a repeated probabilistic rounding
procedure. We solve the linear programming relax-
ation of the IP. Each fractional variable of the LP
relaxation solution is probabilistically rounded up
or down based on the fractional value. We then
compute the value of the objective function of
the IP corresponding to the rounded solution. We
repeat this process several times and select the best
rounded solution.

Both the truncated branch-and-bound procedure
and the repeated probabilistic rounding proce-
dure typically fail to efficiently produce the opti-
mal solution to cluster splitting. However, both
deliver a reasonably good solution, with the quality
of solution being dependent upon computational
effort. The branch-and-bound procedure also gives

bounds on the optimal value, but the repeated prob-
abilistic rounding procedure often produces a rea-
sonable solution faster. For our application, obtain-
ing the best possible splitting is not always crucial.
In the heuristic method we present below, a subopti-
mal decision in placing certain purchases or retire-
ments in the wrong cluster can later be detected and
corrected. Our heuristic method uses the repeated
probabilistic rounding procedure but can easily
incorporate a branch-and-bound procedure.

(iii) Cluster Merging. When two adjacent clusters have
the same value, we can replace these two clusters
with a combined cluster. Combining two clusters,
followed by a cluster split, allows for the possibility
that the variables in those clusters will be reordered.

Comparison to Huh and Roundy [18]. The capacity plan-
ning model by Huh and Roundy [18] assumes the five
Convexity Conditions, which ensure the joint convexity of F .
Thus, there is a globally optimal solution, which is found by
their algorithm. Their algorithm differs from ours in the fol-
lowing ways. Cluster Descent: The convexity of F implies
that the single-dimensional global optimization problem in
this subroutine is a convex program. Therefore, the first-order
condition is sufficient for optimality. Cluster Splitting: The
cluster splitting problem is a submodular function minimiza-
tion problem, which is solvable in strongly polynomial time.
Cluster Merging: There is no cluster merging subroutine.
Their algorithm starts with one big cluster and progressively
splits it into smaller clusters.

Our heuristic algorithm is an adaptation of their algorithm
to a more general problem. The following theorem shows
that this algorithm terminates with a locally optimal solu-
tion assuming the optimality of the cluster split subroutine.
The proof is omitted since it takes a similar approach to the
convexity case proof by Huh and Roundy [18].

THEOREM 2: If the cluster structure cannot be modi-
fied by any of the three subroutines, then the corresponding
capacity planning solution (τ , γ ) is a locally optimal solution
for the capacity planning problem, for some neighborhood
defined by any norm in the �	 space.

4. COMPUTATION

This section presents computational results. We describe
the implementation environment, data set, and initializa-
tion methods, followed by a discussion on the outcome of
experiments.

Implementation Environment. We implement our algorithm
using the Matlab 6.5 language. As seen in Section 3, we
frequently need to solve linear programs as part of both
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the cluster descent and the cluster split subroutines. We do
not use Matlab’s own function to solve linear programs;
instead, we use Cplex 6.6. Experience indicates that for
large linear programming problems, Cplex runs significantly
faster than Matlab. Warm-start strategies, starting a lin-
ear program with a good initial solution, perform better in
Cplex than in Matlab. We use a Matlab interface to
the Cplex Callable Library called MatCPX, developed by
Nathan Edwards [14]. Our experiments were conducted on a
Sun 420R Server, running the Solaris 8 operating system.

Data. The data set is obtained from two sources. The tool
data comes from the Sematech (Semiconductor Manufactur-
ing Technology) database, similarly used by Çakanyildirim
and Roundy [8]. We consider 155 tool groups, totaling 3100
potential purchases and the same number of potential retire-
ments. The number of operations is 714. The demand forecast
data is modeled using SeDFAM [10] and is based on an
industrial data set provided by a large U.S. semiconductor
manufacturer. For the experiments in this section, we use a
fixed set of four scenarios with equal probability. The plan-
ning horizon is 16 quarters, during which the total demand is
expected to grow from 16 thousand wafer-starts to 45 thou-
sand wafer-starts per quarter. Ten product families go through
various stages of the product life cycle.

Parameters. Two parameters define the precision attained
in subroutines. The first is the minimum number of splits.
It is used in the cluster split subroutine and is the mini-
mum number of probabilistic roundings used to select the
best subdivision of a cluster. If the subroutine fails to split
a cluster, it will continue with more roundings, up to five
times this number or until a split is found. The second
parameter is the descent tolerance, which is the termination
tolerance on the magnitude of the directional derivative in the
cluster descent subroutine. We choose the minimum number
of splits from {25, 50, 100} and the descent tolerance from
{0.1, 0.01, 0.001}.
Initialization. There are several methods to initialize pur-
chase times τ = (τm,n). Serial intialization is based on a
heuristic used by Barahona et al [4]. We select a set of dis-
crete times in the planning horizon, say {1.0, 2.0, . . . , 	T 
},
and set all τm,n’s to the least of this set. We choose t from
the set in increasing order starting with t = 1.0 and split the
cluster whose value is t , obtaining up to two subdivided clus-
ters. The minimum number of splits during the initialization
is fixed at 100. The left cluster, if it exists, remains at t , and
the right cluster, if it exists, is moved to the next t in the set.
We repeat this process with the next t in the set.

There are a couple of alternative ways to initialize. One
method is to randomly generate NP

m number of points in the
planning horizon, sort them, and assign them to {τm,n|n =
1, 2, . . . , NP

m } for each tool group m. This is called a random

initialization. Another method is to start with one cluster;
i.e., for all pairs (m, n), set τm,n = to for some to ∈ [0, T ].
We refer to this as a big-cluster initialization. This is the
initialization used in the divide-and-conquer method of Huh
and Roundy [18].

Cost Estimation. The evaluation of the solution produced
by the algorithm requires some explanation. Section 2 shows
the difficulty of precisely computing the expected lost sales
cost FLS(τ , γ ) since its integrand is the optimal value of a
linear program parameterized by the variable of integration.
The objective function (1) of the Capacity Planning Formu-
lation is the sum of the expected lost sales cost and the capital
cost. For the remainder of this paper, the reported cost val-
ues are obtained using an approximation of the expected lost
sales cost—replace integration with a summation having a
fixed time increment of 0.2. As a result, the reported cost
values are not exact.

Results. The experimental results are summarized in
Tables 1, 2, and 3, each corresponding to a different ini-
tialization method. The objective values of the algorithm’s
outputs are shown under the heading “Cost.” Under “CPU
Hours” we report the average CPU running time per repli-
cation in hours. The Cplex running time includes the time
spent by both the linear programming solver of Cplex and
the interface between Matlab and Cplex. (There is no direct
application program interface in the Matlab or C language
for retrieving the elapsed time by Cplex only.) The initial-
ization running time reported is for serial initialization. The
running times for Cplex and initialization are not mutually
exclusive because serial initialization calls Cplex.

Table 1 is the experimental outcome using serial initial-
ization. For each parameter setting we test the algorithm
three times, labeled “Best,” “Median,” and “Worst,” each with
a distinct randomized initial solution. Suboptimal solutions
arise from either the existence of multiple local minima or
the algorithm’s inability to detect a descent direction during
the cluster split subroutine. The best performance of 3 runs
for each parameter setting is at most 0.021 billion more than
4.222 billion dollars, the minimum objective value known for
this problem. We also note that initialization is fast, and the
quality of the initial solution is consistent and good, about
0.2 billion dollars greater than the best known solution. The
majority of the running time is spent by the linear program
solver and the Matlab–Cplex interface.

Tables 2 and 3 are based on random initialization and big-
cluster initialization, respectively. The best performance for
each parameter setting is often within 0.1 billion of 4.222
billion dollars. Increasing the minimum number of splits and
decreasing the descent tolerance produces a better solution
at the expense of increased computation. The improvement
in the quality of the solution is significant when the descent
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Table 1. Experimental results: Serial initialization.

Cost ($109)

Best Median Worst CPU Hours per Repl.
Min No.

Split
Descent

Tol. Init. Final Init. Final Init. Final Cplex Init. Overall

25 0.1 4.343 4.238 4.341 4.243 4.342 4.249 0.250 0.101 0.268
25 0.01 4.342 4.223 4.341 4.225 4.352 4.226 0.675 0.100 0.715
25 0.001 4.344 4.223 4.341 4.224 4.343 4.225 1.067 0.102 1.258

50 0.1 4.347 4.243 4.340 4.244 4.343 4.247 0.281 0.101 0.312
50 0.01 4.344 4.222 4.342 4.224 4.343 4.226 0.833 0.102 0.978
50 0.001 4.349 4.224 4.340 4.224 4.352 4.225 1.516 0.101 1.721

100 0.1 4.339 4.237 4.344 4.239 4.339 4.244 0.423 0.100 0.463
100 0.01 4.339 4.224 4.338 4.225 4.341 4.225 1.114 0.100 1.372
100 0.001 4.342 4.222 4.338 4.225 4.339 4.225 1.555 0.101 1.853

Note. Each row corresponds to three replications.

tolerance is changed from 0.1 to 0.01, but marginal from 0.01
to 0.001. This can possibly be explained by the gap size of
0.2 in the evaluation of the objective function. Repeatedly
running the algorithm with either of the initializations and
reporting the best solution will yield reasonably good solu-
tions. Both alternative initializations were unable to find
solutions better than those found by the serial initializa-
tion, suggesting that the algorithm with serial initialization is
unlikely to terminate with a bad solution.

The biggest limitation of our computational work is clearly
the fact that it is based on a single industrial data set. Real-
world forecast and demand data are politically very sensitive,
and we have not been successful in obtaining another large
data set. In the future we hope that computational results of
our algorithms based on other industrial data sets will emerge.

Capacity Allocation Policy. The capacity allocation policy
has a significant impact on running time. Does it also have a

significant impact on performance? In particular, how good
are the tool purchase and retirement times obtained using the
Uniform Fill-Rate Production Policy when evaluated using
Lost Sales Cost Minimization? In Table 4 we study this
question, using serial initialization. We note that increasing
computational effort, as controlled by parameter settings,
does not improve solution quality. Solution costs are slightly
higher than those reported in Table 1, but the difference is
only a few percentage points. However, CPU time is signif-
icantly lower. This experiment suggests that when we are
interested in the Lost Sales Cost Minimization, the Uniform
Fill-Rate Production policy yields reasonably good solutions
and reduces computational effort. A practical application of
the capacity planning model includes order acceptance and
lead-time quotation [13]. For such purposes, short computa-
tional running times are preferred, and one may prefer the
Uniform Fill-Rate Production policy in cost-minimization
settings.

Table 2. Experimental results: Random initialization.

Cost ($109) CPU Hours per Repl.
Min No.

Split
Descent

Tol. Best Median Worst Cplex Overall

25 0.1 4.286 4.613 4.753 1.039 1.516
25 0.01 4.261 4.281 4.513 1.459 2.034
25 0.001 4.254 4.263 4.266 1.707 2.348

50 0.1 4.335 4.489 4.551 0.984 1.469
50 0.01 4.265 4.271 4.282 1.395 1.979
50 0.001 4.296 4.441 4.750 1.732 2.384

100 0.1 4.298 4.687 4.693 1.061 1.566
100 0.01 4.250 4.253 4.270 1.876 2.606
100 0.001 4.266 4.528 5.009 2.347 3.229

Note. Each row corresponds to three replications.



146 Naval Research Logistics, Vol. 53 (2006)

Table 3. Experimental results: Big-cluster initialization.

Cost ($109) CPU Hours per Repl.
Min No.

Split
Descent

Tol. Best Median Worst Cplex Overall

25 0.1 4.356 4.382 4.398 0.147 0.154
25 0.01 4.254 4.255 4.255 0.542 0.631
25 0.001 4.252 4.256 4.259 0.981 1.165

50 0.1 4.298 4.363 4.365 0.208 0.226
50 0.01 4.251 4.253 4.256 0.697 0.825
50 0.001 4.252 4.258 4.258 1.351 1.639

100 0.1 4.270 4.351 4.364 0.296 0.334
100 0.01 4.248 4.252 4.259 1.136 1.399
100 0.001 4.251 4.251 4.255 1.738 2.219

Note. Each row corresponds to three replications.

5. REFINEMENTS AND EXTENSIONS

5.1. Extensions to Continuous Demand
Forecast Distribution

Continuous Demand Forecast Distribution. The demand
model D(t) = (Dp(t)) presented in Section 2 consists
of a fixed number of scenarios, each of which evolves
continuously over time. The instantaneous demand forecast
is specified by a discrete set of point forecasts with associ-
ated probability weights. Based on this demand model, the
algorithm in Section 3 makes tool purchase and retirement
decisions that minimize the weighted sum of costs over var-
ious scenarios. An alternative approach is that the demand
forecast at a given time has a continuous distribution in
the space of product families. (Here, terminologies such as
“discrete” and “continuous” refer to the support of the instan-
taneous demand D(t), not how time t itself is modeled.) In
this section, we discuss how our model and algorithm, orig-
inally designed to work with a set of demand scenarios, can
be employed with a continuous demand distribution.

The following reasons suggest that in modeling instanta-
neous demand forecasts, a continuous distribution is prefer-
able to a set of scenarios. The first two points are related to
the generation of demand forecasts while the third point is
specifically related to capacity planning. First, in many cases,
demand is inherently continuous. Unless demand arises from
a few buyers asking for fixed quantities, the possible set of
demand realizations is practically infinite. Second, the vari-
ance is often high. In practice, the point forecast for a fixed
time in the future evolves as the forecast is updated over time.
Forecasts are subject to error and revision. Çakanyildirim and
Roundy [10] present a scheme for modeling the evolution of
forecasts and estimating the variance of forecast errors. In the
semiconductor industry this variance is significant, advocat-
ing the use of a distribution for demand forecasts. Third, a
continuous demand distribution may generate a more robust
capacity plan than a finite number of discrete scenarios. If a
small number of demand scenarios are used in the scenario-
based model, the optimization may find a solution that caters
to those demand scenarios, but performs inconsistently for

Table 4. Experimental results: Serial initialization when the Uniform Fill-Rate Production allocation policy is used for the cluster
split subroutine.

Cost ($109)

Best Median Worst CPU Hours per Repl.
Min No.

Split
Descent

Tol. Init. Final Init. Final Init. Final Cplex Init. Overall

25 0.1 4.410 4.287 4.448 4.346 4.449 4.347 0.165 0.086 0.177
25 0.01 4.413 4.286 4.441 4.339 4.457 4.349 0.291 0.085 0.355
25 0.001 4.415 4.284 4.446 4.337 4.443 4.338 0.504 0.085 0.597

50 0.1 4.401 4.283 4.418 4.291 4.443 4.338 0.206 0.082 0.218
50 0.01 4.421 4.280 4.401 4.286 4.444 4.340 0.393 0.083 0.490
50 0.001 4.398 4.289 4.411 4.290 4.444 4.339 0.825 0.083 0.981

100 0.1 4.407 4.278 4.405 4.292 4.450 4.343 0.205 0.082 0.236
100 0.01 4.402 4.286 4.415 4.289 4.447 4.335 0.605 0.082 0.740
100 0.001 4.397 4.289 4.402 4.293 4.453 4.341 1.054 0.082 1.343

Note. Lost sales costs are computed using the Lost Sale Cost Minimization Policy. Each row corresponds to three replications.
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other possible demand outcomes. In the rest of Section 4, we
assume that demand is given as a continuous distribution and
that we can generate as many discrete samples from it as we
need.

The major drawback of the continuous distribution is com-
putational complexity. This is one of the reasons why nearly
all capacity planning practices in the semiconductor indus-
try use scenario-based models of demand. The instantaneous
lost sales cost needs to be evaluated repeatedly in the clus-
ter descent and cluster splitting subroutines. This evaluation
involves finding the expectation of the optimal value (9) of a
linear program, where the bounds on variables are stochastic.
It can be approximated using the Monte Carlo method by tak-
ing samples of demand from the distribution. For example, we
assume that the instantaneous demand is a correlated multi-
variate log-normal distribution, in which parameters depend
on time t . Generating a |P|-dimensional multivariate log-
normal distribution with the parameter (µ(t), �(t)) involves
generating a vector as a multivariate normal distribution with
mean µ(t) and covariance matrix �(t) and then exponenti-
ating it component-wise (see, for example, [21] for details).

The difference between the scenario-based model and the
continuous distribution model with the Monte Carlo method
is conceptual and subtle. Computationally, both models eval-
uate the expected lost sales using sets of discrete demand
points. The scenario-based model is an optimization prob-
lem that takes the set of input scenarios as given. This is
the approach taken in Section 4. In comparison, the continu-
ous distribution model is a simulation-optimization problem
that also needs to decide how to choose a good, finite set of
discrete forecasts.

Scenario Sampling. When the demand forecast is given by
a continuous distribution, one can use the following simple
idea: generate a set of scenarios based on the continuous dis-
tribution and then use it as an input to the scenario-based
model, which is an approximation to the continuous dis-
tribution problem. This is called scenario sampling. The
scenario-based demand model that we use in Sections 2–4
can be viewed as an implementation of a scenario sampling
technique. This method contrasts with ad hoc sampling
techniques in which independent sample points are picked
for each evaluation of the objective function. These tech-
niques potentially cause the optimization to be driven by
random noise, but scenario sampling provides stability to an
optimization algorithm.

If scenarios are chosen independently from a common dis-
tribution, then the following result implies a negative bias of
the optimal cost in the scenario-based model, and the bias is
reduced as the number of scenarios increases.

PROPOSITION 3: [22]. Let z∗ be the optimal value of
a stochastic minimization problem f (x, ξ) with decision

Table 5. The impact of the number of scenarios. Serial initializa-
tion.

Cost ($109) CPU Hours
No. of

Scenarios Mean Std Cplex Init. Overall Std

2 3.942 0.272 0.130 0.055 0.150 0.021
4 4.088 0.245 0.288 0.101 0.327 0.047
8 4.099 0.149 0.661 0.199 0.763 0.150

16 4.115 0.135 1.392 0.412 1.658 0.276

Note. The minimum number of splits is 25, and the descent tolerance
is 0.05. Each row corresponds to 20 replications. Demand scenarios
are randomly generated for each replication.

variables x and stochastic parameters ξ . Let ξ 1, ξ 2, . . . ,
be an i.i.d. sample from the distribution of ξ . Then,
Ez∗

n = E minx[ 1
n

∑n
i=1f (x, ξ i)] ≤ z∗. Furthermore, if

ξ ′1, ξ ′2, . . . , ξ ′n+1 is also i.i.d. from the distribution of ξ used
to define z∗

n+1, then Ez∗
n ≤ Ez∗

n+1.

The sequence ξ 1, ξ 2, . . . , ξn and the sequence ξ ′1, ξ ′2, . . . ,
ξ ′n+1 can be independent or otherwise. The intuition behind
the above proposition is that if a small sample of scenar-
ios is used, then the scenario-based model yields a solution
that caters to the specified sample only. To our knowledge,
no paper in the capacity planning literature has pointed out
the relationship between the sample size and the bias of the
optimal value. The rate of convergence is exponential in the
size of the sample (see [26], and [20] and the references
therein).

In Table 5 we report a result of an experiment in which the
number of demand scenarios varies. We use a data set similar
the one used in Section 4. As the number of demand scenar-
ios increases, the objective value increases as predicted by
Proposition 3. The sample standard deviation is statistically
significant, but it decreases with sample size.

5.2. Variance Reduction Techniques

Ad Hoc Sampling. One of the advantages of ad hoc tech-
niques is the freedom to select sample points for each lost
sales cost evaluation dynamically. For example, the choice
may depend on the current capacity U(t) = (Um(t)) of tool
groups.

We are interested in efficiently computing the expected
value of the instantaneous lost sales cost EDLS(c, U , D),
or equivalently, the expected revenue EDR(c, U , D). When
there is no ambiguity, we write R(D) in place of R(c, U , D).
We now study two variance reduction techniques for the
Monte Carlo method.

Importance Sampling. We choose h1(d) to be an approxi-
mation of R(d). Importance sampling works well when this
approximation is close to R(d) (see [19]). We use h1(d) =
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Table 6. Comparison of instantaneous revenue obtained using
naive sampling and importance sampling.

Naive Sampling Importance Samling

No. Mean Rev Mean Rev
Case Tools ($106) Std ($106) Std

1 5 129.49 12.020 129.61 9.484
2 25 136.57 12.854 136.51 9.821
3 203 162.81 20.382 162.76 13.774
4 485 177.81 29.066 177.59 19.441
5 545 183.79 31.834 184.21 20.424
6 583 187.11 34.354 187.39 19.489

Note. Each row corresponds to 10,000 replications. We use 4 demand
scenarios fixed for all cases; 10 product families.

min{c · d, R(∞)} where c · d is the revenue under infinite
capacity and R(∞) is revenue under infinite demand. Let
f (d) be the probability density function of D. We gen-
erate demands d using the density h(d) = h1(d)f (d)/∫

h1(y)f (y) dy via the acceptance–rejection method
(see [21]). We take the average of R(d)/h1(d) and multiply
it by

∫
h1(y)f (y)dy. Its expectation is

∫
y

h1(y)f (y) dy · Eh

[
R(d)

h1(d)

]

=
∫

y

h1(y)f (y) dy ·
∫

x

R(x)

h1(x)
h(x) dx = EDR(D).

There is no general analytic expression for
∫
h1(x)f (x)dx,

but we obtain it using another simulation with a larger sam-
ple size. In Table 6, experimental results using importance
sampling are reported in comparison to the results of a naive
sampling. We see the similarity of mean revenues obtained

by the two methods and a significant reduction of variance
using importance sampling.

Variance Reduction by Conditioning: Let �(d) = d/|d|
be the unit-length directional vector of d. We let g(·) be the
probability density of �(D) and condition on �(D) to obtain

EDR(D) = E�(D)[E[R(D)|�(D)]]

=
∫

φ

E[R(D)|�(D) = φ]g(φ) dφ.

If it is easy to evaluate or closely approximate E[R(D)|�(D)

= φ] for a given φ; then we approximate EDR(D) by gen-
erating φ from distribution g(·) and taking an average of
E[R(D)|�(D) = φ]. Conditioning provably reduces the
sampling variance (see [21]). Conditioning leads to a demand
model in which samples are taken as demand rays instead of
points. For a fixed φ, let Lφ be a random scalar correspond-
ing to the magnitude of D along direction φ, and let Rφ(l) =
R(lφ). How difficult then is it to evaluate ELφ

[Rφ(Lφ)]? The
scalar function Rφ(·) is the optimal value of a parametric lin-
ear program, and it follows that Rφ(·) is piece-wise linear,
concave, and increasing (see, e.g., [17]). Within each piece,
we can analytically compute ELφ

[Rφ(Lφ)]. For the Lost Sales
Cost Minimization allocation policy, there may potentially
be many break-points. However, for the Uniform Fill-Rate
Production policy, it can be shown that Rφ(·) has at most
one break point, and thus ELφ

[Rφ(Lφ)] may be computed
analytically.

Using the Uniform Fill-Rate Production Policy, Table 7 re-
ports the computational impact of conditioning. Conditioning
reduces variance, but the magnitude of this reduction is shown
to be small. This is likely attributed to the fact that ray-based

Table 7. Comparison of instantaneous Lost Sales Cost and Revenue obtained without conditioning (point-based)
and with conditioning (ray-based) when Uniform Fill-Rate Production allocation policy is used.

Point-based sampling Ray-based sampling

Case
No.

Tools Mean ($106) Std Mean ($106) Std

Lost Sales Cost 1 5 106.64 59.382 107.65 58.389
2 25 100.20 61.198 101.21 59.153
3 203 72.80 62.705 73.67 57.627
4 485 48.12 60.625 49.30 57.776
5 545 35.04 56.270 36.60 54.716
6 583 28.04 49.982 30.01 48.770

Revenue 1 5 96.79 16.539 96.79 16.538
2 25 103.24 17.770 103.24 17.764
3 203 130.63 28.584 130.77 28.429
4 485 155.32 29.572 155.14 28.304
5 545 168.40 28.728 167.85 26.613
6 583 175.40 29.437 174.43 27.412

Potential revenue 203.44 56.964 204.44 56.709

Note. Each row corresponds to 10,000 replications. Cases and demand scenarios are as in Table 6.
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Table 8. Comparison of instantaneous Lost Sales Cost and Revenue obtained without conditioning (point-based)
and with conditioning (ray-based) when the Uniform Fill-Rate Production allocation policy is used.

Point-based sampling Ray-based sampling
No.

Tools Mean ($106) Std Mean ($106) Std

Lost Sales Cost 5 17.282 30.159 17.210 22.811
9 15.469 29.196 15.391 22.052

18 13.479 27.857 13.416 20.916
35 10.657 25.499 10.633 18.879
48 10.152 25.074 10.138 18.563
88 7.079 22.027 7.077 16.184

116 6.728 21.732 6.729 16.041
148 6.567 21.586 6.575 15.967
199 3.671 16.943 3.718 12.205
245 3.552 16.645 3.594 12.029
252 3.552 16.645 3.594 12.029

Revenue 5 44.962 10.347 44.992 6.963
9 46.775 11.811 46.810 8.086

18 48.766 13.614 48.786 9.540
35 51.587 16.582 51.569 12.007
48 52.092 17.203 52.064 12.497
88 55.165 20.453 55.125 14.847

116 55.517 20.877 55.473 15.073
148 55.678 21.074 55.627 15.181
199 58.573 25.486 58.484 18.812
245 58.692 25.697 58.607 18.967
252 58.692 25.697 58.607 18.967

Potential revenue 62.244 35.441 62.202 27.287

Note. Each row corresponds to 10,000 replications; 4 product families.

conditioning reduces the dimensionality of the demand of
product families only by 1, from 10 to 9. It is supported
by another test, reported in Table 8, in which conditioning
demonstrates a greater reduction in variance when the number
of product families is 4 instead of 10.

6. CONCLUSION

In this paper, we presented a continuous-time strategic
capacity planning model that features multiple product fam-
ilies, flexible capacity allocation policy choices, the layering
of operations, and tool retirement. It is a generalization
of models by Çakanyildirim and Roundy [8], Çakany-
ildirim, Roundy, and Wood [9], and Hun and Roundy [18].
We devised a cluster-based heuristic algorithm, which per-
formed extremely well in our computational experiments.
We presented variance reduction techniques that are use-
ful when the stochastic demand is specified as an evolution
of a distribution. In addition, we also presented a reduc-
tion of the instantaneous lost sales cost computation under
the Uniform Fill-Rate production policy to a generalized
maximum concurrent flow problem. Due to the difficulty of
obtaining real-world demand and forecast data from leading
semiconductor companies, our computational results are

unfortunately based on the single industrial data set described
above. Our algorithms should be evaluated empirically using
more more industrial data sets to demonstrate the robustness
that we believe our solution approach to have.

APPENDIX

PROOF OF PROPOSITION 1: We describe the generalized maximum
concurrent flow problem. A network G = (N , A) consists of a set N of nodes
and a set A of directed arcs. Each arc a = (n1, n2) ∈ A has capacity υ(a) and
a gain factor ρ(a). When a volume g(a) of flow enters the arc a = (n1, n2),
a volume ρ(a) · g(a) of flow leaves the arc. The capacity υ(a) limits the
amount of flow entering the arc a. Given k source-sink pairs (sj , tj ) and
demands dj at sinks, the generalized maximum concurrent flow problem is
to maximize λ such that each sink receives λdj amount of flow sent from
sj , for all j . The following result shows the existence of a polynomial-time
approximation scheme for this problem.

PROPOSITION 4: [16]. For any error parameter ε > 0, a fully poly-
nomial-time algorithm finds a feasible solution of the generalized maximum
concurrent flow problem such that the objective value of the feasible solution
is at least (1 − ε) times the optimal value. This algorithm runs inO(ε−2(|A|+
|N | log |N |)(|A| + k)) time, where k is the number of source-sink pairs.

Under the Uniform Fill-Rate Production policy, the proportion of satisfied
demand is equal across all products. Similarly, the proportion of finished
work by operations is also equal across tools. Operation w faces

∑
p bw,pDp
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amount of work, but satisfies only σ
∑

p bw,pDp . The instantaneous revenue
computation problem can be recast as

max
X,σ

σ

s. t.
∑

w∈W(m)

hm,wXw,m ≤ Um ∀m

(∑
p

bw,pDp

)
σ −

∑
m∈M(w)

Xw,m ≤ 0 ∀w

0 ≤ σ ≤ 1

Xw,m ≥ 0 ∀w, m.

It can be shown that the above linear program is a generalized maximum
concurrent flow problem, in which the underlying network is a bipartite
graph. The node partition consists of the set M of tool groups and the set W
of operations. The arcs correspond to finite entries of the tool requirement
matrix H . The gain factor for arc (m, w) is 1/hm,w so that flow hm,wXw,m

enters the arc and Xw,m leaves it. Typically, the number of tool groups is
bounded above by the number of operations. From ω = max{|W|, |M|},
the running time in Proposition 4 becomes O(ε−2ω2 log ω).
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