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Abstract

Transcription factor cross-repression is an important concept in cellular differentiation.
A bistable toggle switch constitutes a molecular mechanism that determines cellular
commitment and provides stability to transcriptional programs of binary cell fate choices.
Experiments support that perturbations of these toggle switches can interconvert these
binary cell fate choices, suggesting potential reprogramming strategies. However, more
complex types of cellular transitions could involve perturbations of combinations of
different types of multistable motifs. Here we introduce a method that generalizes the
concept of transcription factor cross-repression to systematically predict sets of genes,
whose perturbations induce cellular transitions between any given pair of cell types.
Furthermore, to our knowledge, this is the first method that systematically makes these
predictions without prior knowledge of potential candidate genes and pathways involved,
providing guidance on systems where little is known. Given the increasing interest of
cellular reprogramming in medicine and basic research, our method represents a useful
computational methodology to assist researchers in the field in designing experimental

strategies.

Introduction

The central role of transcription factor cross-repression determining cell fate is one of the
most important concepts emerged from years of lineage differentiation research'™. In its
simplest formulation, two regulators that negatively influence each other establish a
bistable “toggle switch”, readily explaining the two mutual exclusive cell fate outcomes.

More complicated schemes also include transcription factors auto-regulation and
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antagonistic cross-regulation of target genes. Several examples of these binary cell fate
choice mechanisms have emerged in the last ten years®'*. Integration of this knowledge
can be represented in a binary decision tree from embryonic stem cells (ES cells) to
differentiated cells passing by different progenitors' (see figure 1). This tree defines

15-1
7 where

distinct paths between different cell types in a Waddington’s landscape
different cell types can be interpreted as steady stable states of cellular gene regulatory
networks termed as attractors. Cross-repression motifs not only determine binary
decisions in the tree, but based on their bistable behavior, characterized by mutually
exclusive gene expression states; they also play a key role in the stability of each possible
cell fate. Furthermore, experimental evidences have demonstrated that perturbations of
genes belonging to these motifs are able to trigger transitions between these binary cell

. 18,19
fate choices ™

. Indeed, although attractor’s stability is determined by a regulatory core
comprised of one or several interconnected positive feedback loops, known as positive
circuits™, these cross-antagonistic motifs are shown to be localized on the top of the
hierarchical organization of the set of positive circuits, whose attractor states change from
one binary cell choice to the other. Hence these motifs constitute master switches
between binary cell fate choices (intralineage transdifferentiation). The strategy of
perturbing top positive circuits in such hierarchical organization can be extended to
transitions between any given pairs of cellular phenotypes even if they are not derived
from a direct common progenitor. In particular, these transitions can include other types
of cellular reprogramming, i.e. the transition of a differentiated cell to another cell type,

either to a progenitor cell (dedifferentiation) or to another differentiated cell type coming

from a different progenitor cell (interlineage transdifferentiation). In these cases, a more
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complex set of positive circuits with mutually exclusive gene expression stable states
could determine these transitions. This strategy leads to the identification of a small
number of genes (reprogramming determinants) triggering the transitions between
different cellular phenotypes. Indeed, in the last decade several labs have experimentally
demonstrated that despite differences of cell types in the expression of thousands of
genes, perturbation of few reprogramming determinants are usually able to trigger

2123 Nevertheless, these

cellular transitions from one stable cellular phenotype to another
experiments”*** have relied on a brute force search of effective cocktails of transcription
factors to achieve desired cellular transitions, and therefore, due to the combinatorial
complexity of this problem, they constitute a time and resource consuming strategy.
Hence, this fact together with the increasing interest in cellular reprogramming urge to
develop strategies to systematically identify optimal combinations of reprogramming
determinants capable of inducing cellular transitions. A number of computational models
aiming at understanding cell fate and reprogramming have been proposed in literature®*
% They attempt to model the dynamic behavior of specific parts of the gene regulatory
network (GRN) that govern the dynamics of a larger network. Although these models
give some insights into the relevant network motifs in cell fate decisions, they are usually
quite complex, relying on large number of input parameters and constraints, and only
consider small fractions of previously known genes to model the regulatory mechanism,
and most importantly, they do not provide a systematic platform to identify key
regulatory motifs that guarantee cellular stability and are likely to be involved in the

transitions between different stable cellular states. One step forward in this direction is

the methodology developed by Chang and co-workers *° to test, compare and rank
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different recipes based on their simulated efficiency and fidelity to reprogram somatic
cells to iPS in a model that considers certain level of stochasticity. However, this
methodology lacks any strategy to look for better combinations or to improve the
efficiency and fidelity and relies on a preliminary list of candidate genes both for the
network reconstruction process and the selection of combinations to test.

Here we propose a cellular transition-dependent method that identifies candidates for
reprogramming determinants by focusing on stability motifs in gene regulatory networks.
Given that the approach does not require a preliminary list of candidates, it can be applied
to biological systems without prior knowledge on it. Our method initially searches for
differentially expressed positive circuits (DEPCs), for which the expression levels of their
genes change between two different cellular phenotypes. Further, a hierarchical
organization of these circuits is analyzed in order to identify master regulatory positive
circuits, which directly or indirectly regulate the states of the other DEPCs.

Finally, given the stochastic nature of molecular interactions and abundances in gene
regulatory networks affecting cellular reprogramming efficiency and fidelity, we use a
previously introduced network topological characteristic termed retroactivity®’, which
positively correlates with expression noise’', in order to detect combinations of genes in
master regulatory DEPCs that are more affected by expression noise and need to be
controlled in order to minimize information loss during signal transmission in gene
regulatory networks. These gene combinations are the best candidates for reprogramming
determinants according to our model.

We selected three representative biological examples of cellular reprogramming with

experimental information on reprogramming determinants inducing effective transitions
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between cellular phenotypes in order to assess the applicability of our method. These
examples are the transdifferentiation from T-helper lymphocyte Th2 to Thl (intralineage
transdifferentiation), from myeloid to erythroid cells (interlineage transdifferentiation),
and from fibroblast to hepatocyte (distant interlineage transdifferentiation). In the Th2-
Thl example, we identified GATA3 and T-bet as potential inducers of Th2 to Th1 T-
helper transdifferentiation, which is in full agreement with previously reported
experimental observations*>>. Our results showed that cells committed to become
megakaryocytes or erythrocytes in the erythroid lineage can be reprogrammed to the
myeloid lineage and become granulocytes or macrophages by perturbation of a single
reprogramming determinant, i.e. the activation of GATALI. This induced transition has
been experimentally validated'. Finally, the application of our method to the example of
fibroblast to hepatocyte reprogramming allowed us to detect combinations of
reprogramming determinants that induce this cellular transition. Among these detected
combinations, the combined activation of HNF4 and FOXAZ2 has been experimentally
validated by the work of Sekiya and Suzuki published in 2011°*,

In conclusion, here we propose, to our knowledge, the first method that systematically
identifies combinations of genes (reprogramming determinants), which are potentially
capable of inducing transitions between specific pairs of cellular phenotypes, without
prior knowledge of possible candidates for reprogramming determinants. Our method
generalizes the principle of transcription factor cross-repression in binary lineage
decisions in the sense that it searches for master regulatory positive circuits, which
contribute to the stability of cellular gene regulatory networks, and whose genes are

differentially expressed with respect to specific pairs of cellular phenotypes.
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Perturbations of combinations of genes belonging to these circuits that swap their steady
stable states are expected to induce transitions between these phenotypes. We believe that
considering the increasing interest of the research community in using cellular
reprogramming in the establishment of cell disease models and regenerative medicine,
our method constitutes a useful computational protocol that aims to assist researchers in

the field in designing experimental strategies.

Results
A popular framework for conceptualizing and describing cellular transitions is that of the

landscapes proposed by Waddington'"”

, where cellular phenotypes may be seen as
stable steady states (termed as attractors) of GRNs represented as wells separated by the
so-called epigenetic barriers. These barriers are established by those elements stabilizing
GRNs in their attractors. Given that cellular reprogramming implies a transition between
two cellular stable transcriptional programs (two attractors of the GRN)), it is necessary
that the corresponding GRN was at least bi-stable. The presence of positive circuits or
positive feed-back loops (the sign of a circuit is defined by the product of the signs of its
edges, being activation positive and inhibition negative) in a GRN is a necessary
condition for the existence of at least two attractors (multi-stability)zo. Hence, some of the
positive circuits constitute the stability elements of the GRN. In particular, there are
positive circuits whose genes are differentially expressed between two given attractors.
By swapping the states of these circuits it should be possible to induce transitions from

one attractor to another, similarly to how transitions between cell types derived from a

common progenitor cell can be induced by swapping the states of cross-repression
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motifs. Given the stochastic nature of molecular interactions in GRNs, perturbations of
different combinations of genes belonging to these positive circuits can trigger these
transitions with different efficacy.

Description of the method

Here we propose a method to design reprogramming protocols based on the topological
relationship between the elements involved in the stabilization of specific attractors. The
hierarchical organization analysis of strongly connected components (SCCs) formed by
one or more DEPCs allows us to identify combinations of genes belonging to master
regulatory DEPCs that should be perturbed in order to directly or indirectly target all
DEPCs and consequently to induce specific cellular transitions. Finally, we select among
these combinations of genes those with highest interface out-degree that refers to the
number of genes that are directly regulated by them. The reason for this step is to

30’31, which considers the

minimize the retroactivity effect on master regulatory circuits
increased time response of these circuits after noise or external perturbations. This allows
us to minimize the expression noise due to retroactivity contextualized to the specific
cellular transition under study. In other words, we select combinations of genes
participating in more transcriptional regulation events in order to minimize DEPCs time
response and the stochastic behavior of GRN under perturbation, and therefore to
minimize information loss during signal transmission. This strategy allows us to narrow
down a huge combinatorial searching problem to a set of minimal combinations that
constitutes alternative reprogramming protocols and the output of our method.

The method can be described with the following three steps, which are shown in figure 2:

1. Detecting master regulatory SCCs.

2. Determining master regulatory DEPCs for each master regulatory SCC.
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3. Detecting reprogramming determinant genes within master regulatory circuits.

Detecting master regulatory SCCs

In order to detect master regulatory SCCs or clusters of DEPCs that should be
independently perturbed it is necessary to detect and list all positive circuits or positive
regulatory feed-back loops. We also need to identify network attractors corresponding to
the two phenotypes of the cellular transition under interest. Once we have this
information we proceed to determine, among the entire set of positive circuits, which are
DEPC:s for this specific cellular transition, meaning that the expression levels of their
genes change between involved cellular phenotypes. These DEPCs can be clustered
forming SCCs, and these SCCs (if there is more than one) can be interconnected. In order
to detect which are the SCCs that should be independently perturbed to guarantee that all
DEPCs are reached by the perturbation signal, we analyze the hierarchical organization
of SCCs formed by DEPC:s. It is worth stressing that this hierarchical organization is
cellular transition dependent since it is based on positive circuits that change between
initial and final cellular phenotypes (See methods for details about the circuit’s detection,
attractor computation and hierarchical analysis).

Determining the master regulatory DEPCs for each master regulatory SCC

DEPC with higher degree interface is considered the master regulatory circuit of each
specific SCC. The degree interface of a circuit is the count of genes directly regulated by
genes belonging to the circuit. These DEPCs master regulators should be independently
perturbed in order to induce the desired cellular transition, and minimal combinations of
genes able to target all master regulatory DEPCs equal in number to the number of such
DEPCs. In other words, the perturbation of one gene per master regulatory DEPCs is

required. Since different minimal combinations (equal in number) can arise from this
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procedure, we aim to select the best combinations according to retroactivity contribution
criteria. It is worth stressing that despite the degree interface could be calculated for any
circuit in the GRN, the method only pay attention on those genes that belong to DEPCs
when comparing two attractors, given that they are the ones that are going to be
destabilized and re-stabilized in the original and final attractor respectively.

Detecting reprogramming determinant genes

Identification of genes belonging to DEPCs master regulators with maximum gene
degree interface, means that they are the most regulatory genes, and therefore main
responsible for DEPCs retroactivity. This set of genes constitutes the reprogramming
determinants. If more than one combination of reprogramming determinant candidates
equal in number of genes and interface out-degree, all of them are considered
reprogramming determinants according to our model, and they constitute alternative
solutions.

Application of the method to three illustrative biological examples

We selected three different biological examples of cellular reprogramming in order to
illustrate and validate the applicability of our method as generalization of transcription
factor cross-repression concept in illustrative biological cases. These examples provide
an experimental validation of the identified sets of reprogramming determinants as
effective inducers of transitions between cellular phenotypes. The Th2-Th1 and Myeloid-
Erythroid examples are based on GRNSs previously published by Mendoza et al. * and

Krumsiek et al. and Dore et al.>®*’

, respectively. These two networks were constructed to
describe the differentiation process of the corresponding human cell types. We showed

that the appropriate perturbations of these networks allow inducing transdifferentiation
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between cell types with the same cellular precursor. The mouse Fibroblast-hepatocyte
reprogramming example illustrates the case of a cellular transition between two cell types
that do not share the same direct cellular precursor. In this case we reconstructed a
literature based GRN of differentially expressed genes between both cell types®®. This
network was contextualized by an iterative network pruning described in the methods
section and previously published®®. This contextualized network is specific for the
cellular transition under study, and therefore suitable to describe input-output
relationships or network response under specific perturbations for a given initial network
stable state (stable expression pattern).

The networks for the three examples were enriched when it was possible with
information about miRNAs interactions experimentally validated and publicly

available***!

. Details about GRN for these three biological examples are included in
methods section and supplements.

Th2-Th1

T lymphocytes are classified as either T helper cells or T cytotoxic cells. T helper cells
take part in cell- and antibody-mediated immune responses and they are sub-divided in
ThO (precursor) and effector Thl and Th2 cells depending on the array of cytokines that
they secrete™’. T-helper differentiation network determines the fate of the T-Helper
lineage *°, with three different attractors corresponding with the three different
phenotypes (ThO, Thl and Th2). We applied our method on a GRN previously published
3> which represents the regulatory mechanisms determining T-helper basic types. This

network includes T-bet and GATA-3 forming a cross-repression motif responsible for the

differentiation either to Thl or to Th2 from a common precursor (Th0). We applied our

11
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method in order to detect reprogramming determinants for the Th2-Th1
transdifferentiation. The SCCs hierarchy analysis followed by the maximum retroactivity
criteria allowed us to identify one master regulatory SCC with one master regulatory
DEPC (named as circuit 16 in figure 3a and supplements) among five DEPCs of this
specific cellular transition. Circuit 16 corresponds to the positive feed-back loop formed
by GATA-3, T-bet, SOCS-1, IL-4R and STAT-6. The interface out-degree of this circuit
is 11, resulting of the sum of interface out-degree of all genes belonging to it. Within this
DEPC master regulator there are two genes with equal contribution to the circuit degree
interface: GATA-3 and T-bet have a degree interface of 4. According to the methodology
presented here both GATA-3 and T-bet constitute independent reprogramming
determinants, by inactivation and activation respectively. The predicted capability of T-
bet to induce the transition from Th2 to Thl is in full agreement with reported
experimental results'®. To our knowledge, there is no experimental evidence of either the
capability or incapability of GATAS3 to induce the transition from Th2 to Th1 when
inactivated.

It is worth mentioning that the cross-repression motif responsible for the binary cell
decision between Thl and Th2 from the precursor ThO is embedded in the master
regulatory SCC, and the detected master regulatory DEPC, named as circuit 16, is
composed of the two genes forming the cross-repression motif. This example illustrates
how a motif responsible for cell fate decision can also participate in the derived cellular
phenotypes stabilization and how its proper perturbation can trigger transitions between
them.

Myeloid-Erythroid

12
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Within the hematopoiesis there are several binary decisions from multipotent stem cells
to different type of blood cells. One of these decisions, the one determining if multipotent
stems cells become erythroid (later erythrocytes and megakaryocytes) or myeloid
precursor cells (later macrophages and granulocytes) requires the participation of the
transcription factor cross-repression motif including GATA-1 and PU.1. As it is shown in

36,37 .
d’’’, containing

figure 3a, the application of our method on a GRN previously publishe
this motif embedded and connected with other multi-stable motifs allowed us to identify
GATA-1 as a reprogramming gene able to induce the transition from myeloid to
erythroid precursor cells. This finding is in full agreement with the experimental results
obtained by Heyworth et al. '°, where the authors reported that myeloid precursors
infected with an inducible form of GATA-1 generated erythroid colonies when GATA-1
was induced. In figure 3 b it is shown that in this example we found a single master
regulatory circuit, named as Circuit 12, with an interface out-degree of 8, which is
formed by the mutual inhibition between GATA-1 and PU.1. In this particular case we
obtained two possibilities with identical gene degree interface of 4: activation of GATA-1
and inhibition of PU.1. The activation of GATA-1 refers to the experiment performed by

Heyworth et al. ©°."

. To our knowledge there is no experimental evidence to support that
the inhibition of PU.1 is neither able nor unable to produce the same effect yet. As in the
previous example, here we observe how a cross-repression motif not only participates in
binary cell fate decision, but also can be exploited to re-specify the cellular commitment

in cells sharing the same precursor,

Fibroblast-Hepatocyte

13
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Normally, hepatocytes differentiate from hepatic progenitor cells to form the liver during
the regular development. However, hepatic programs can also be activated in different
cells under particular stimuli or fusion with hepatocytes. The transition from mouse
fibroblasts to hepatocyte-like cells induced by the perturbation of specific combinations
of transcription factors has been previously reported by several authors®**. As it is
shown in the table included in figure 3 c, in this case the SCCs hierarchical analysis
allowed us to identify two master regulatory SCCs, one including circuit 2 (including
NRS5A2 and FOXA2) and one including circuits 0, 7 and 4 (including genes AGT,
PPARGCI1A, UCP2 and HNF4A). Within the latter SCC, the DEPC, named as circuit 0,
is the one with the highest interface out-degree of 20. Then, we proceeded to identify
reprogramming determinants by targeting both master regulatory circuits. Within circuit
2, the gene that contributes the most to the circuit retroactivity is FOXA2, with an
interface out-degree of 5. Within the circuit 0, HNF4A is the one with the highest
contribution to the circuit retroactivity with an interface out-degree of 9. Therefore, the
final combination of reprogramming determinants is HNF4A and FOXA2. Both genes
should be activated to trigger the transition from fibroblast to hepatocyte. This result is

1°*. These authors

supported by the work of Sekiya and Suzuki published in 201
experimentally validated three different combinations of two transcription factors able to
induce the transition from mouse fibroblast to hepatocyte, including HNF4A and
FOXAZ2. This cellular transition constitutes a good example of reprogramming cells
without a common direct precursor (interlineage transdifferentiation).

Details about attractors, circuits and genes interface out-degree o for the three biological

examples are included in the supplements.

14
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Discussion

Cellular reprogramming, including the conversion of one differentiated cell type

to another (trans-differentiation) or to a more immature cell (dedifferentiation),
constitutes an invaluable tool for studying cellular changes during development and
differentiation, and has an enormous relevance for regenerative medicine and disease
modeling. Although, substantial progress has been made in developing experimental
reprogramming techniques, to date the scientific community is still faced with challenges
such as the identification of optimal sets of genes whose repression and/or activation are
capable of reprogramming one cell type to another (reprogramming determinants), and
the elucidation of molecular changes and relevant pathways involved in these transitions
(9). Furthermore, there is currently no methodology able to systematically predict
reprogramming determinants that could guide the design of cellular reprogramming
experiments. The development of computational models of transcriptional regulation that
underlies cellular transitions would help to predict these reprogramming determinants.
Moreover, the analysis of gene regulatory network properties has allowed the
identification of functionally relevant motifs of interactions that could play a role in
cellular transitions. In particular, transcription factor cross-antagonism has been
described as a mechanism that plays a key role in cell fate decisions. A bistable toggle
switch constitutes a molecular cross-repression motif that determines cellular
commitment and provides stability to gene regulatory networks underlying transcriptional
programs of binary decision cell choices. Experimental evidences indicate that flipping
the stable states of these toggle switches produces interconversion between binary

decision choices. Nevertheless, interlineage transdiferentiation and dedifferentiation

15
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could involve perturbation of combinations of cross-repression motifs together with other
multistable motifs. Here we propose a method, which considers the connectivity of these
different multistable motifs, in order to systematically identify sets of reprogramming
determinants able to induce transitions from differentiated cells to other cell types, either
to progenitor cells (dedifferentiation) or to other differentiated cell types
(transdifferentiation). Our strategy rests on the identification of a subset of all network
positive circuits (necessary condition for network multistability), whose genes are
differentially expressed between the cellular states involved in these. We termed this
subset as differentially expressed positive circuits (DEPC). Further, a hierarchical
organization of these circuits allows us to detect master regulatory positive circuits,
which directly or indirectly regulate the states of the other DEPCs. By focusing on genes
belonging to these master regulatory circuits, we dramatically reduced the number of
possible combinations of reprogramming determinants.

However, some of these gene combinations in master regulatory DEPCs are more
influenced by expression noise, affecting signal transmission in gene regulatory
networks, and consequently decreasing reprogramming efficiency and fidelity. This is
due to the fact that they are participating in a bigger number of regulations, so a limited
concentration of the gene product has to interact with several targets a part from the one
that closes the DEPC. In other words, the gene product has to distribute to different
regulated targets, so the probability that the DEPC signal feed-back is broken by chance
is higher (neglecting considerations about different molecular affinities that are assumed
similar). Hence, in order to increase signal transmission our method proposes these gene

combinations as reprogramming determinants. It is worth mentioning that we have
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considered in our model some of the important events influencing reprogramming
efficiency and fidelity, such as the role of noise in network dynamics and the regulatory
interactions played by miRNAs. However, other factors, such as epigenetic modifications
that block activation of certain genes can affect the expected network behavior after
specific perturbations. Furthermore, it has been experimentally shown that epigenetic
modifications can prevent cellular reprogramming reversibility in some cases *. In
addition, our model does not take into account different delays in time response of
distinct regulatory interactions. Nevertheless, given that the purpose of our method is the
identification of reprogramming determinants, rather than a detailed description of
network dynamics, we consider that our model provides reasonable predictions. More
accurate predictions shall require addressing these considerations in the future.
Interestingly, despite there was no methodological constraint or theoretical limitation to
prevent that genes non-transcription factor are reprogramming determinants, to date, in a
blind application of the method, TFs always came up as reprogramming determinants.

It is worth mentioning that applicability of the method presented here is restricted to
cellular transitions between stable states or stable expression patterns and constraint by
the availability of information to reconstruct the corresponding GRN, as it is explained in
more detailed in methods’ section.

Thus, our method constitutes the first strategy that systematically provides lists of
combinations of reprogramming determinants for cellular reprogramming events
involving two given cellular phenotypes without prior knowledge on potential candidates
and pathways involved. Due to that, the method is easily exportable to different

biological systems, providing guidance even without having expertise in a biological
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process. In particular, this method is suitable for cellular transdifferentiation, especially
when transitions occur between different cellular lineages. Indeed, interlineage
transdifferentiation involves significant changes in several molecular mechanisms that
increase the complexity of this type of reprogramming, and therefore hinders the
prediction of reprogramming determinants.

Hence, given the increasing interest in various applications of cellular reprogramming in
medicine and basic research, our method represents a useful computational methodology
to assist researchers in the field in designing experimental strategies, especially when

very little about a specific biological system is known.

Methods

Networks reconstruction

Among the selected biological examples, Th2-Th1 and Myeloid-Erythroid
reprogramming illustrate the case of transdifferentiation between two cell types sharing a
direct common precursor. We based our analysis on previously published GRNs
describing the regular differentiation process of T-helper and cell fate decisions during
hematopoiesis®™’. These two published network were enriched with miRNA
interactions experimentally validated and publicly available in two different databases:
TransmiR* and miRTarBase, including information about miRNA regulatory genes
and miRNA regulated genes respectively. Only miRNA forming closed loops with
network genes and, therefore, able to affect the stability of the network were included

(see table 1).

18
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The Fibroblast-Hepatocyte reprogramming example illustrates a distant (interlineage)
cellular transdifferentiation. Therefore, no canonical previously published network can be
exploited to detect the reprogramming determinants. Such reprogramming requires the
reconstruction of a GRN contextualized to this specific cellular transition.

Given that the final goal is to induce the transition from one specific cell phenotype to
one another, the network is constructed based on changing elements between these two
states, 1. e., differentially expressed genes (DEG) between these two conditions or cell
types obtained from microarray experiments. We scanned the literature and collected 24
genes known to play a relevant role in liver development and function and differentially
expressed when comparing fibroblasts and hepatocytes according to previous works ***7 .
We proceed to try to connect these genes using interactions obtained from literature
harvested from the entire PubMed. For this specific purpose we used the information

contained in the ResNet mammalian database from Ariadne Genomics

(http://www.ariadnegenomics.com/). The ResNet database includes biological

relationships and associations, which have been extracted from the biomedical literature

y**4 More specifically, we included interactions

using Ariadne's MedScan technolog
annotated in the ResNet mammalian database in the category of Expression,
PromotorBinding and Regulation. In the Expression category interactions indicates that
the regulator changes the protein level of the target, by means of regulating its gene
expression or protein stability. In the PromotorBinding category interactions indicates
that the regulator binds the promotor of the target. Finally, in the Regulation category

interactions indicates that the regulator changes the activity of the target. Similar

resources for network reconstruction are the IPA tool of Ingenuity Systems

19
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(http://www.ingenuity.com/) and the Transfac tool (http://www.biobase-

international.com).

Once we had a raw GRN from literature, we proceed to remove interactions inconsistent
with expression data by an iterative network pruning. These removals represent
interactions apparently not active in the biological context under study. It should be taken
into account that interactions from literature usually come from different biological
contexts as cell types, tissues or even species. This network pruning allows us to reduce
the amount of “false” interactions and to obtain a contextualized network. The algorithm
applied for this network pruning® was originally conceived to predict missing expression
values in gene regulatory network, but could be applied to contextualize the network
when all the expression values in two given cellular phenotypes or stable transcriptional
programs are known. Basically, the algorithm exploits the consistency between predicted
and known stable states from experimental data to guide the iterative network pruning
that contextualizes the network to the biological conditions under which the expression
data were obtained. This process implies the booleanization of cellular phenotypes
coming from experimental expression data; genes considered as up-regulated and down-
regulated for a given p-value (usually < 0.05 for a regular t-test) are assumed as “1”” and
“0” respectively. This is due to the fact that a Boolean model is assumed to compute
network attractors. An evolutionary algorithm, more specifically an estimation of
distributions algorithm (EDA) *° samples the probability distribution of positive
feedback loops or positive circuits and individual interactions within the subpopulation of
the best-scored networks at each iteration of the pruning algorithm. The resulting

contextualized network is based not only on previous knowledge about local connectivity
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but also on a global network property (stability) providing robustness in predictions (the
remaining set of interactions) against noisy sources of information and network
incompleteness. Despite we tried to enrich this network with miRNA interactions as we
did in the two previous examples, none miRNA involved in regulatory loops or circuits
with genes differentially expressed were found experimentally validated for mouse. More
details about network reconstruction process for the Fibroblast-Hepatocyte
reprogramming example are included in the supplementary information.

Main properties of these three biological examples GRN are shown in table 2.

Network transformation in a directed acyclic graph (DAQG)

The first step of the method, named as “Detecting master regulatory SCCs” in results
section, requires the hierarchical analysis of a subnetwork of the complete GRN
including only DEPCs and all genes and interactions connecting them. This subnetwork
contains positive feed-back loops, so it should be transformed in order to be able to
analyze its hierarchy. The transformation of this subnetwork of connected DEPCs in a
DAG was performed by contraction of DEPCs strongly connected, i e, SCCs of
differentially expressed genes, in single super-nodes. This network transformation allows
the hierarchical analysis of the network following the method described by Jothi et al. >,
resulting in the location of SCCs at different levels of hierarchy with the subsequent
identification of master regulators SCCs on the top of the hierarchy pyramid.

During the application of this network transformation to the three examples included in
this work we also forced the method to work on differentially expressed negative circuits
(DENC) instead of DEPCs to illustrate the failure of the method when a wrong stability

element is considered. Interestingly, we could not found any single DENC in none of the
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three examples, despite the relative abundance of negative circuits in the three GRNs (17,
11 and 11 for Th2-Thl, Myeloid-Erythroid, and Fibroblast-Hepatocyte respectively,
whereas the corresponding number of positive circuits are 29, 25 and 19). Consequently,
it was not possible to perform the network transformation in a DAG and the subsequent
hierarchical analysis because there was no SCC of negative circuits to analyze. This
finding is consistent with the role of positive circuits or positive feed-back loops as
cornerstone of multi-stable behavior in networks of interacting elements.

Circuits’ detection

The Johnsons algorithm 2 was implemented to detect all elementary feedback circuits in
the network. A feedback circuit is a path in which the first and the last nodes are
identical. A path is elementary if no node appears twice. A feedback circuit is elementary
if no node but the first and the last appears twice. Once we have all elementary feedback
circuits, we select positive feedback circuits, or feedback circuits for which the difference
between the number of activating edges and the number of inhibiting edges is even. Both
elementary feedback circuit detection, positive feedback circuits sorting and DEPFCs
detection were implemented in Perl.

Attractor computation

We assumed a Boolean model to compute attractors with a synchronous updating scheme
>3 and using our own implementation® of the algorithm described by Garg et al., 2007 **.
The logic rule applied by default is the following: if none of its inhibitors and at least one
of its activators is active, then a gene becomes active; otherwise the gene is inactive. If

different regulatory rules are known for specific genes, this knowledge can be included in

the model. Results in the attractor computation were consistent with the results obtained
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using previously published software to compute attractors in Boolean systems (Boolnet
3 GenYsis™).

Minimal input data for the method usage and limitations

Given that our methodology considers transitions between attractor states, it requires the
availability of expression data of stable cellular phenotypes. In addition, if the GRN has
been experimentally validated and its attractors are consistent with the cellular
phenotypes under study, our methodology is readily to be applied. Otherwise, the GRN
has to be reconstructed from publicly available data, and therefore the applicability of our
methodology could be limited by the availability of information. In this case, the
reliability of the resulting GRN can be estimated by evaluation of how well the stable
states of this network coincide with the experimental expression data. We usually
assumed a threshold of 70 % to consider a GRN worth to be processed. For instance, in
the Fibroblast-Hepatocyte example after the network contextualization process, the
attractor computation of the resulting GRN revealed a matching with the expression data
of 76 % for both conditions (fibroblast and hepatocytes), meaning that 76 % of gene
expression values in the network are well predicted for these two conditions. The
remaining 24 % of the gene expression values are not well predicted due to two different
possibilities: incompleteness of the network or wrong assumed regulatory rules in
specific cases. It is worth noticing that our method for contextualizing GRNs rests on
removal of inconsistent regulatory interactions rather than on the addition of new
interactions, and therefore the possibility of adding new predicted interactions could
improve the description of the expression data. This is a very interesting and very

relevant point, and despite it is out of the scope of the present work, and the fact that it
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constitutes a challenging computational problem, it should be definitely pursued in order

to improve our methodology.
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Figure Legends

Figure 1| Cell identity cascading landscape representing the cellular transcriptional
program. Paths between pluripotent and differentiated cells, representing cellular
differentiation process pass through stable expression profiles corresponding to
multipotent progenitors. Binary cell fate decisions at multipotent rogenitor level are
characterized by cross-repression motifs of competing transcription factors.
Transdifferentiation between somatic cells are divided in those sharing a direct precursor
cell (intra-lineage transdifferentiation), where cross-repression motifs, which determine
cell fate decision, play a key role in stabilizing binary cell decisions and transitions
between them; and those without a direct precursor (inter-lineage transdifferentiation),
characterized by a more complex molecular mechanism underlying cellular transitions.
Blue and red colors in cross-repression motifs and GRN stability core represent mutually
excluding expression states for a given pair of cellular phenotypes, standing for down-

regulation and up-regulation respectively. ‘>’ represents activation or positive regulation
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and ‘-|” represents inhibition or negative regulation.

Figure 2| Design of cellular reprogramming protocol in three steps. a) Detecting
master regulatory strongly connected components (SCCs). In this first step, those positive
circuits or positive feed-back loops in the gene regulatory network (GRN) whose genes
change their expression levels between two cellular phenotypes are selected from the
population of network circuits. These differentially expressed positive circuits (DEPCs)
form SCCs. A hierarchical analysis in the space of these SCCs allows us to determine
master regulatory SCCs. SCC 1 and 2 are located on the top of the hierarchy of the
represented toy network without displaying connectivity between them. These SCCs
should be independently perturbed to guarantee that the perturbation signal reaches every
DEPC in the GRN. b) Detecting master regulatory DEPCs. Within each master
regulatory SCC, a master regulatory DEPC is determined based on a retroactivity score
(interface out-degree) or, in other words, based on the number of genes directly regulated
by this circuit. The master regulatory DEPC is the one with the highest interface-out
degree. In this toy example, Circuit 1 (composed by genes ‘a’, b’ and ‘c’) is the master
regulatory DEPC of the SCC 1, and Circuit 1 (composed by genes ‘p’ and ‘0”) of SCC 2
is the other master regulatory DEPC . These master regulatory DEPCs are colored in red
in the retroactivity ranking table. ¢) Detecting reprogramming determinants. Once the
master regulatory DEPCs have been determined, the selection of final reprogramming
determinants is based on maximizing the sum of individual gene interface out-degrees
included in the combination. In this toy example, gene ‘a’ is the one with highest

retroactivity within the Circuit 1 of the SCC 1. Similarly, gene ‘p’ has the highest
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interface out-degree in its respective circuit and SCC. Therefore, the reprograming
determinants are ‘a’ and ‘b’ (both should be perturbed to induce the hypothetical cellular
transition). Blue and red colors in network nodes represent mutually excluding expression
states for a given pair of cellular phenotypes, standing for down-regulation and up-
regulation respectively. ->’ represents activation or positive regulation and ‘-|’

represents inhibition or negative regulation.

Figure 3| Reprogramming determinants in three illustrative biological examples. a)
Th2-Thl reprogramming. Activation of T-bet and, alternatively, inhibition of GATA-3
are predicted as effective perturbations to induce this cellular transition. b) Cellular
reprogramming from myeloid to erythroid cells. Both, activation of GATA-1 or
inhibition of PU.1 are predicted as independently able to induce this cellular transition. c)
Cellular reprograming from fibroblast to hepatocyte. In this particular case no single gene
is able to induce the cellular transdifferentiation according to our predictions. On the
other hand, combined activation of HNF4A and FOXA?2 is predicted as an effective
combination of reprogramming determinants. Blue and red colors in network nodes
represent mutually excluding expression states for a given pair of cellular phenotypes,
standing for down-regulation and up-regulation respectively. ¢->’ represents activation or

ositive regulation and “-|’ represents inhibition or negative regulation.
p g p g g
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Tables
miRNA Interaction
Th2-Thl 1. mir-145 IFN-B -> mir-145
mir-145 -| STAT1
Myeloid-Erythroid 1. mir-34a mir-34A -| PU.1
CEBPA -> mir-34A
2. mir-155

mir-155 -| FLI1
PU.1 -> mir-155

mir-155 -| PU.1

Table 1| miRNAs included in the biological examples. ‘->’ represents activation and ‘-|’

represents inhibition.

Genes | Interactions | Activations | Inhibitions | miRNA
Th2-Thl 24 38 28 10 1
Myeloid-Erythroid 13 34 19 15 2
Fibroblast-Hepatocyte 27 56 46 10 0

Table 2| Main properties of the gene regulatory networks of the three biological examples

[Insert Running title of <72 characters]
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Cell identity cascading landscape

ES cells

Multipotent
progenitors

Differentiated

Intra-lineage Inter-lineage transdifferentiation Binary cell fate
transdifferentiation decision

Transcription factor |_.—‘ Transeription factor

cross-repression cross-repression
motif GRN stability core motif

Figure 1| Cell identity cascading landscape representing the cellular transcriptional program. Paths between
pluripotent and differentiated cells, representing cellular differentiation process pass through stable
expression profiles corresponding to multipotent progenitors. Binary cell fate decisions at multipotent
rogenitor level are characterized by cross-repression motifs of competing transcription factors.
Transdifferentiation between somatic cells are divided in those sharing a direct precursor cell (intra-lineage
transdifferentiation), where cross-repression motifs, which determine cell fate decision, play a key role in
stabilizing binary cell decisions and transitions between them; and those without a direct precursor (inter-
lineage transdifferentiation), characterized by a more complex molecular mechanism underlying cellular
transitions.

Blue and red colors in cross-repression motifs and GRN stability core represent mutually excluding
expression states for a given pair of cellular phenotypes, standing for down-regulation and up-regulation
respectively. '->' represents activation or positive regulation and *-|’ represents inhibition or negative
regulation.
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Figure 2| Design of cellular reprogramming protocol in three steps. a) Detecting master regulatory strongly
connected components (SCCs). In this first step, those positive circuits or positive feed-back loops in the
gene regulatory network (GRN) whose genes change their expression levels between two cellular
phenotypes are selected from the population of network circuits. These differentially expressed positive
circuits (DEPCs) form SCCs. A hierarchical analysis in the space of these SCCs allows us to determine master
regulatory SCCs. SCC 1 and 2 are located on the top of the hierarchy of the represented toy network
without displaying connectivity between them. These SCCs should be independently perturbed to guarantee
that the perturbation signal reaches every DEPC in the GRN. b) Detecting master regulatory DEPCs. Within
each master regulatory SCC, a master regulatory DEPC is determined based on a retroactivity score
(interface out-degree) or, in other words, based on the number of genes directly regulated by this circuit.
The master regulatory DEPC is the one with the highest interface-out degree. In this toy example, Circuit 1
(composed by genes ‘a’, ‘b’ and ‘c’) is the master regulatory DEPC of the SCC 1, and Circuit 1 (composed by
genes ‘p’ and '0’) of SCC 2 is the other master regulatory DEPC . These master regulatory DEPCs are colored
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in red in the retroactivity ranking table. c) Detecting reprogramming determinants. Once the master
regulatory DEPCs have been determined, the selection of final reprogramming determinants is based on
maximizing the sum of individual gene interface out-degrees included in the combination. In this toy
example, gene ‘a’ is the one with highest retroactivity within the Circuit 1 of the SCC 1. Similarly, gene ‘p’
has the highest interface out-degree in its respective circuit and SCC. Therefore, the reprograming
determinants are ‘a’ and ‘b’ (both should be perturbed to induce the hypothetical cellular transition). Blue
and red colors in network nodes represent mutually excluding expression states for a given pair of cellular
phenotypes, standing for down-regulation and up-regulation respectively. ‘->’ represents activation or
positive regulation and '-|’ represents inhibition or negative regulation.
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Supplementary information

Design of cellular reprogramming protocols in seven steps

1 ) Detecting all positive circuits

Gene Regulatory Network E

Circuit1

®

Circuit 2

Circuit 3

Circuit4

Positive circuits ﬂ
Circuit 5
Circuite

¢

@
o o

Circuit7

°p
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Supplementary figure 1| Positive circuit’s detections. Seven positive circuits or positive feed-back loops

(the sign of a circuit is defined by the product of the signs of its edges, being activation positive and
inhibition negative) are present in this illustrative toy network. ‘->’ represents activation or positive

regulation and

III

represents inhibition or negative regulation.
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2 ) Computing network attractors

Attractor 1 | Attractor 2 | Attractor 3

Supplementary figure 2| Network attractors computation. We assumed a Boolean model to compute
attractors with a synchronous updating scheme. In such a representation ‘0’ represents Down-
regulation and ‘1’ represents Up-regulation.



3 ) Detecting transition specific DEPCs

_, Circuit1
Circuit 2
Circuit3
‘ \@‘Q b Circuit4
o) L /_r Circuit 5
]; i ,/ o _/ Circuit 6
. Qr“'“ > |_) Circuit 7
.’/ \.._l_ -\\H‘_’-\I '| |' " 1
P N—v
i \
Tm)
Attractor 1 (/ 2 Attractor 2
o N\ o
—.ay —I\P_<I N
= == -3
N /ol TN 7 A
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Circuitl 2| e | ._ Lr";\- L CfrCUftS
Circuit2 = ' ___“{n}‘-f' i/ Circuité
Circuit3 s g B A
Circuit4 LY [
Y l/
e )—i(f)
- _Y)\_J L
A Im)
Attractor 3

Supplementary figure 3| Transition specific DEPCs detection. Differentially expressed positive circuits
(DEPCs) are those for which the expression levels of their genes change between two different
attractors corresponding to two different cellular phenotypes. White and grey colors stand for down-
regulation and up-regulation respectively. ->" represents activation or positive regulation and ‘-|”
represents inhibition or negative regulation. Transition between Attractor 1 and 2 requires the change

4

of all positive circuits in the network. Therefore, for this specific transition all positive circuits are DEPCs.

Notice that not all genes in the network are changing; gene ‘n’ is ‘inactive’ in Attractor 1 and 2.
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7 ) Identification of reprogramming determinants

Retroactivity ranking
’—‘} Interface

degree
4

O T 0 |T|o
N W W W

Perturbation

@ Inhibition

® “© +®
/@5

Activation

Supplementary figure 5 | Identification of reprogramming determinants. |dentification of genes
belonging to DEPCs master regulators with maximum gene interface out-degree. ‘->’ represents
activation or positive regulation and ‘-|’ represents inhibition or negative regulation.
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SOURCE INTERACTION TARGET PMID
GATA3 -> GATA3
GATA3 -> IL-10
GATA3 -> IL-4
GATA3 -1 STATA
GATA3 -1 T-BET
IFN-B -> IFN-BR
IFN-B -> MIR-145 20382746
IFN-BR -> STAT1
IFN-G -> IFN-GR
IFN-G -> MIR-145 20382746
IFN-GR -> JAK1
IL-10 -> IL-10R
IL-10R -> STAT3
IL-12 -> IL-12R
IL-12R -> STATA
IL-18 -> IL-18R
IL-18R -> IRAK
IL-4 -> IL-4R
IL-4R -> STAT6
IRAK -> IFN-G
JAK1 -> STAT1
MIR-145 -1 STAT1 20098684
NFAT -> IFN-G
SOCS1 -1 IL-4R
SOCS1 -1 JAK1
STAT1 -1 IL-4
STAT1 -> SOCS1
STAT1 -> T-BET
STAT3 - IFN-G
STAT4 -> IFN-G
STAT6 -> GATA3
STAT6 -1 IL-12R
STAT6 -1 IL-18R
T-BET -1 GATA3
T-BET -> IFN-G
T-BET -> SOCS1
T-BET -> T-BET

TCR -> NFAT
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Tho Thl Th2
GATA3
IFN-B
IFN-BR
IFN-G
IFN-GR
IL-10
IL-10R
IL-12
IL-12R
IL-18
IL-18R
IL-4
IL-4R
IRAK
JAK1
MIR-145
NFAT
SOCS1
STAT1
STAT3
STATA
STAT6
T-BET
TCR
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Circuit O
GATA3 -> GATA3

Circuit 6
IL-4 -> IL-4R
IL-4R -> STAT6
STAT6 -> GATA3
GATA3 -> IL-4

Circuit 15
T-BET -> T-BET

Circuit 16
T-BET -| GATA3
GATA3 -| T-BET

Circuit 17
T-BET -> SOCS1
SOCS1 -| IL-4R
IL-4R -> STAT6
STAT6 -> GATA3
GATA3 -| T-BET



GENE
GATA3
IL-4
IL-4R
SOCS1
STAT6
T-BET

INTERFACE OUTDEGREE
4

AR R R R
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SOURCE INTERACTION  TARGET PMID

CEBPA > MIR-34A 20889924
CEBPA > GFI1

CEBPA > PU1

CEBPA > CEBPA

CJUN > MIR-155 21515911
CJUN > EGR-NAB

CJUN > PU1
EGR-NAB - GFI1

EKLF - FLIL

FLIL > GATA1

FLIL - EKLF

FOG1 - GATA2

GATA1 > FOG1

GATA1 > scL

GATA1 > FLIL

GATA1 > EKLF

GATA1 - PU1

GATA1 - GATA2

GATA1 > GATA1

GATA2 - PU1

GATA2 > GATA1

GATA2 > GATA2

GFI1 - PU1

GFI1 - EGR-NAB

MIR-155 - PU1 6688
MIR-155 - FLI1 2313
MIR-34A - PUL 20598588
PU1 > MIR-155 21730352
PU1 > CJUN

PU1 - scL

PU1 > EGR-NAB

PU1 - GATA2

PU1 > PU1

PU1 -1 GATAl
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SCL

EGRNAB
MIR34A

PU1

FOG1
GFI1

CJUN

GATA2
CEBPA

MIR155
GATAl
EKLF

FLI1
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Circuit 0 Circuit 3 Circuit 11 Circuit 12
CJUN->PU1 PU1->PU1 GATAl1 -> GATA1 GATAl-| PU1
PU1 -> CJUN PU1-| GATAl
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GENE INTERFACE OUTDEGREE
CJUN 3
GATAl 5
PU.1 5
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SOURCE
AGT
AGT
AGT
AGT
AGT

APOA1l
APOA1l
APOB
APOC3
APOC3
APOE
APOE

CYP11A1

CYP19A1

CYP1Al1

CYP1B1

CYP27A1

CYP7A1

CYP7A1

CYP7A1

CYP7A1

F2
F2
FASN
FOXA2
FOXA2
FOXA2
FOXA2
FOXA2
HNF1A
HNF4A
HNF4A
HNF4A
HNF4A
HNF4A
HNF4A
HNF4A
HNF4A
HNF4A
HP
LDLR
LDLR
NR1H4
NR1H4
NR1H4
NR112
NR112
NR112
NR5A2

INTERACTION

->
->
->
->
->
->
->
->

TARGET
CYP11A1
F2
FASN
LDLR
ucp2
APOE
LDLR
FASN
APOA1l
APOB
APOB
CYP11A1
CYP1B1
CYP7A1
CYP1B1
CYP1Al1
CYP11A1
CYP11A1
CYP27A1
CYP46A1
LDLR
APOE
PLG

Type

Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression
Expression

PPARGCI1A Expression

APOA1l
APOB
CYP7A1
HNF1A
NR5A2
CYP2E1
AGT
APOA1l
APOB
APOC3
CYP7A1
FASN
HNF1A
NR1H4
NR112
F2
APOB
APOE
APOE
CYP7A1
ucp2
CYP27A1
CYP7A1
FASN
APOA1l

PromoterBinding
Expression
PromoterBinding
PromoterBinding
Expression
Expression
PromoterBinding
PromoterBinding
PromoterBinding
PromoterBinding
PromoterBinding
PromoterBinding
PromoterBinding
PromoterBinding
PromoterBinding
Expression
Expression
Expression
Expression
PromoterBinding
Expression
PromoterBinding
Expression
Expression
PromoterBinding



NR5A2
NR5A2
PPARGCI1A
PPARGCI1A
PPARGCI1A
PPARGCI1A
PPARGCI1A
UCp2

CYP19A1 PromoterBinding
FOXA2 PromoterBinding
CYP11A1 Expression
CYP7A1 Expression
FASN  Expression
HNF4A Expression
LDLR  Expression
PPARGCI1A Expression
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MedLine Reference

15887230:4, 1457080:2, 19221003:4, 7895901:4, 8175981:7, 10579324:1051, 2294118:100, 18308844:1147
10669632:2, 10691100:4, 11893585:8, 10079099:1152, 9564040:1233, 18678787:1115

19109942:6, 16203876:5, 11463364:1117, 15113941:1064, 16373953:1094, 15113738:1152

11564720:10, 16203876:1167, 17043664:1114, 17478552:1200, 18618022:1193

19109942:6, 20118013:6, 20814019:5, 19762685:1183

6712971:2,20534134:2, 8413767:5,9861782:8, 12773300:1227, 10488084:1283, 15066991:1187, 16207713:1347, 12
2151255:5, 12606523:1243

17277197:1345

18678879:1, 15109267:5, 10893424:7, 15649902:3, 9012660:6, 9988739:2, 12747582:2, 16051671:1237, 16338932:1
9012660:2, 18509206:1199, 8613278:1066

2344296:0, 17848837:2,11013310:7, 8696954:11, 12551940:1199, 15755832:1114, 12518038:1043, 11714857:1228,
12401891:1197

7744798:8

12933663:1250

8783816:6, 19460354:3, 17324381:5, 16484233:1235, 19047483:1339, 17511620:1185, 12376470:1146, 15142886:11
19460354:3, 19690180:1154, 12970067:1173, 17511620:1185, 12376470:1146, 15297627:1319, 15142886:1139, 158
9804849:1200, 9804848:1200

18621681:1044

14870923:7, 8891849:5, 14512880:11, 12588950:1251, 18621681:1044, 12597773:1048, 11701475:1097
18621681:1044

11907135:1088, 16609145:1069, 12213890:1147, 19815588:1198, 17456796:1247, 11397693:1140, 11788471:1121
16683250:3, 15145976:1256, 11145944:1124

8089219:5, 2151408:5, 15894352:0, 4262519:6, 6968239:3, 14699093:1277, 9345041:1125, 12724354:1215, 7749851
19719788:0, 17446185:1241, 19029118:1191

7961760:5,9512550:1106, 11714848:1391

11244563:100

16492670:1151, 15358835:1133

11875061:7, 9685261:3, 11805192:1179, 11904435:1041, 16912278:1176, 19074951:1195, 19417011:1210, 1046857
11595170:8, 14699589:1482, 11927588:1246

8810289:55

15067378:9, 21298017:4, 20684663:5, 10574924:1172, 14672953:1186, 12145290:1289

9012660:1114, 8613278:1191, 16140878:1120, 15123688:1053, 10085149:1032, 9202083:1220, 9153249:1114
18510493:3, 8344962:5, 20007910:1147, 16140878:1120, 10085149:1067, 16301212:1320, 8613278:1275, 9012660:1
9592157:2, 16223942:4, 20938723:8, 9760243:8, 11802721:1, 8760876:2, 9592159:1133, 14766742:1346, 10551874
15322103:7, 16488887:1193, 10627496:1267, 11907135:1259, 21245926:1307, 17145766:1236, 16492670:1274, 176
15310732:1176, 16800817:100

9812974:6, 10967120:8, 8735941:7, 1734282:3, 16670373:1273, 11679424:1044, 15141028:1179, 10606640:1046, 97
14729567:1160, 15146238:1302, 16051671:1072, 16603721:1096

12774017:7, 18305375:4, 10691738:6, 12601364:8, 16912278:1137, 17764444:1202, 14657421:1504, 16051671:1331
2069574:100

8732781:5, 18272520:1, 10683382:8, 151459845, 8187218:4, 11904390:100, 20028946:1215, 16537968:1264, 1639¢
18369154:3, 15888448:8, 20005821:4, 3956506:3, 10940295:4, 18497424:1207, 11060356:1473, 20686698:1277, 16¢€
12454263:1058, 12954636:1055, 15102878:1438

20699090:14, 18820241:1, 15694933:5, 18499494:4, 12897188:11, 17823457:4, 16168958:2, 19056864:5, 12006384
15980055:1245

17088262:5, 17456796:1230

15629111:1, 15331348:2, 12202460:1616, 17456796:1082, 11893771:1145, 12393840:1058, 11248085:1200, 150392
20185760:1118

15218078:4
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20607599:9, 20214950:10, 21273442:9, 19762543:1257, 14593077:1138, 11927588:1069, 16109788:1075, 16357189
10799577:3, 11145965:1168, 17075876:1139, 15143151:1057, 15614783:2201, 12972592:1263

21108604:4, 19389810:1104, 20133449:1150

14522988:7, 15329387:1, 15331348:8, 15576845:1237, 16051671:1072, 17636037:1101, 16037564:1168
14729567:1252

12107181:7, 19208857:5, 17636037:1187, 18664618:1318, 16603721:1285, 16825189:1297, 16885156:1207, 171457
19322023:6

21034559:6, 9163473565e7552cff17¢5039d90b0c5
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'951361:1063, 17303773:1131

079, 8613278:1327 <more data available...>

11024044:1228, 19667110:1123 <more data available...>

139, 11577022:1073
33926:1081, 11577022:1073

11262

8:1044, 10051618:1237

128, 15123688:1053, 8995295:1265 <more data available...>
1055, 10085149:1150 <more data available...>
36037:1220, 19389810:1192, 12815072:1219 <more data available...>

'92724:1047, 18184923:1139 <more data available...>

637:1544, 11734567:1070 <more data available...>
»44710:1199, 18045818:1137 <more data available...>
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87:1294, 15322103:1176, 19174369:1264 <more data available...>
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FOXA2
CYP19A1
CYP1A1
NR112
LDLR
CYP7A1
UCP2
CYP46A1
AGT
NR1H4
CYP1B1
CYP2E1
F2
APOA1
NR5A2
APOE
PLG
APOB

PPARGCI1A :

APOC3
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HNF1A
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Circuit 0
AGT -> UCP2
UCP2 -> PPARGC1A
PPARGCIA -> HNF4A
HNF4A -> AGT

Circuit 2
FOXA2 -> NR5A2
NR5A2 -> FOXA2

Circuit 7
HNF1A -> UCP2
UCP2 -> PPARGC1A
PPARGCI1A -> HNF4A
HNF4A -> HNF1A

Circuit 14
HNF4A -> NR1H4
NR1H4 -> UCP2
UCP2 -> PPARGC1A
PPARGCIA -> HNF4A
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GENE
AGT
FOXA2
HNF4A
NR1H4
NR5A2
PPARGC1A
UCP2

INTERFACE OUTDEGREE
5

= U1 w w o u



[e>ENoRN e IEN No )NV, N SN

11

12

Page 62 of 96

A general strategy for cellular reprogramming: the
importance of transcription factor cross-repression

Isaac Crespo1 and Antonio del Sol+,*

iLuxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362 Esch-Belval, University
of Luxembourg, L-1511 Luxembourg, Luxembourg

“Corresponding author: Antonio del Sol (antonio.delsol@uni.lu)

Keywords: Cellular reprogramming, differentiation, dedifferentiation, transdifferentiation,

network stability, cross repression, cross-antagonistic motif, retroactivity, positive circuit.
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Abstract

Transcription factor cross-repression is an important concept in cellular differentiation.
A bistable toggle switch constitutes a molecular mechanism that determines cellular
commitment and provides stability to transcriptional programs of binary cell fate choices.
Experiments support that perturbations of these toggle switches can interconvert these
binary cell fate choices, suggesting potential reprogramming strategies. However, more
complex types of cellular transitions could involve perturbations of combinations of
different types of multistable motifs. Here we introduce a method that generalizes the
concept of transcription factor cross-repression to systematically predict sets of genes,
whose perturbations induce cellular transitions between any given pair of cell types.
Furthermore, to our knowledge, this is the first method that systematically makes these
predictions without prior knowledge of potential candidate genes and pathways involved,
providing guidance on systems where little is known. Given the increasing interest of
cellular reprogramming in medicine and basic research, our method represents a useful
computational methodology to assist researchers in the field in designing experimental

strategies.

Introduction

The central role of transcription factor cross-repression determining cell fate is one of the
most important concepts emerged from years of lineage differentiation research'™. In its
simplest formulation, two regulators that negatively influence each other establish a
bistable “toggle switch”, readily explaining the two mutual exclusive cell fate outcomes.

More complicated schemes also include transcription factors auto-regulation and
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antagonistic cross-regulation of target genes. Several examples of these binary cell fate
choice mechanisms have emerged in the last ten years®'*. Integration of this knowledge
can be represented in a binary decision tree from embryonic stem cells (ES cells) to
differentiated cells passing by different progenitors' (see figure 1). This tree defines

15-1
7 where

distinct paths between different cell types in a Waddington’s landscape
different cell types can be interpreted as steady stable states of cellular gene regulatory
networks termed as attractors. Cross-repression motifs not only determine binary
decisions in the tree, but based on their bistable behavior, characterized by mutually
exclusive gene expression states; they also play a key role in the stability of each possible
cell fate. Furthermore, experimental evidences have demonstrated that perturbations of
genes belonging to these motifs are able to trigger transitions between these binary cell

. 18,19
fate choices ™

. Indeed, although attractor’s stability is determined by a regulatory core
comprised of one or several interconnected positive feedback loops, known as positive
circuits™, these cross-antagonistic motifs are shown to be localized on the top of the
hierarchical organization of the set of positive circuits, whose attractor states change from
one binary cell choice to the other.Hence these motifs constitute master switches between
binary cell fate choices (intralineage transdifferentiation). The strategy of perturbing top
positive circuits in such hierarchical organization can be extended to transitions between
any given pairs of cellular phenotypes even if they are not derived from a direct common
progenitor. In particular, these transitions can include other types of cellular
reprogramming, i.e. the transition of a differentiated cell to another cell type, either to a

progenitor cell (dedifferentiation) or to another differentiated cell type coming from a

different progenitor cell (interlineage transdifferentiation). In these cases, a more
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complex set of positive circuits with mutually exclusive gene expression stable states
could determine these transitions. This strategy leads to the identification of a small
number of genes (reprogramming determinants) triggering the transitions between
different cellular phenotypes. Indeed, in the last decade several labs have experimentally
demonstrated that despite differences of cell types in the expression of thousands of
genes, perturbation of few reprogramming determinants are usually able to trigger

2123 Nevertheless, these

cellular transitions from one stable cellular phenotype to another
experiments”*** have relied on a brute force search of effective cocktails of transcription
factors to achieve desired cellular transitions, and therefore, due to the combinatorial
complexity of this problem, they constitute a time and resource consuming strategy.
Hence, this fact together with the increasing interest in cellular reprogramming urge to
develop strategies to systematically identify optimal combinations of reprogramming
determinants capable of inducing cellular transitions. A number of computational models
aiming at understanding cell fate and reprogramming have been proposed in literature®*
% They attempt to model the dynamic behavior of specific parts of the gene regulatory
network (GRN) that govern the dynamics of a larger network. Although these models
give some insights into the relevant network motifs in cell fate decisions, they are usually
quite complex, relying on large number of input parameters and constraints, and only
consider small fractions of previously known genes to model the regulatory mechanism,
and most importantly, they do not provide a systematic platform to identify key
regulatory motifs that guarantee cellular stability and are likely to be involved in the

transitions between different stable cellular states. One step forward in this direction is

the methodology developed by Chang and co-workers *° to test, compare and rank
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different recipes based on their simulated efficiency and fidelity to reprogram somatic
cells to iPS in a model that considers certain level of stochasticity. However, this
methodology lacks any strategy to look for better combinations or to improve the
efficiency and fidelity and relies on a preliminary list of candidate genes both for the
network reconstruction process and the selection of combinations to test.

Here we propose a cellular transition-dependent method that identifies candidates for
reprogramming determinants by focusing on stability motifs in gene regulatory networks.
Given that the approach does not require a preliminary list of candidates, it can be applied
to biological systems without prior knowledge on it. Our method initially searches for
differentially expressed positive circuits (DEPCs), for which the expression levels of their
genes change between two different cellular phenotypes. Further, a hierarchical
organization of these circuits is analyzed in order to identify master regulatory positive
circuits, which directly or indirectly regulate the states of the other DEPCs.

Finally, given the stochastic nature of molecular interactions and abundances in gene
regulatory networks affecting cellular reprogramming efficiency and fidelity, we use a
previously introduced network topological characteristic termed retroactivity®’, which
positively correlates with expression noise’', in order to detect combinations of genes in
master regulatory DEPCs that are more affected by expression noise and need to be
controlled in order to minimize information loss during signal transmission in gene
regulatory networks. These gene combinations are the best candidates for reprogramming
determinants according to our model.

We selected three representative biological examples of cellular reprogramming with

experimental information on reprogramming determinants inducing effective transitions
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between cellular phenotypes in order to assess the applicability of our method. These
examples are the transdifferentiation from T-helper lymphocyte Th2 to Thl (intralineage
transdifferentiation), from myeloid to erythroid cells (interlineage transdifferentiation),
and from fibroblast to hepatocyte (distant interlineage transdifferentiation). In the Th2-
Thl example, we identified GATA3 and T-bet as potential inducers of Th2 to Th1 T-
helper transdifferentiation, which is in full agreement with previously reported
experimental observations*>>. Our results showed that cells committed to become
megakaryocytes or erythrocytes in the erythroid lineage can be reprogrammed to the
myeloid lineage and become granulocytes or macrophages by perturbation of a single
reprogramming determinant, i.e. the activation of GATAI. This induced transition has
been experimentally validated'. Finally, the application of our method to the example of
fibroblast to hepatocyte reprogramming allowed us to detect combinations of
reprogramming determinants that induce this cellular transition. Among these detected
combinations, the combined activation of HNF4 and FOXAZ2 has been experimentally
validated by the work of Sekiya and Suzuki published in 2011°*,

In conclusion, here we propose, to our knowledge, the first method that systematically
identifies combinations of genes (reprogramming determinants), which are potentially
capable of inducing transitions between specific pairs of cellular phenotypes, without
prior knowledge of possible candidates for reprogramming determinants. Our method
generalizes the principle of transcription factor cross-repression in binary lineage
decisions in the sense that it searches for master regulatory positive circuits, which
contribute to the stability of cellular gene regulatory networks, and whose genes are

differentially expressed with respect to specific pairs of cellular phenotypes.
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Perturbations of combinations of genes belonging to these circuits that swap their steady
stable states are expected to induce transitions between these phenotypes. We believe that
considering the increasing interest of the research community in using cellular
reprogramming in the establishment of cell disease models and regenerative medicine,
our method constitutes a useful computational protocol that aims to assist researchers in

the field in designing experimental strategies.

Results
A popular framework for conceptualizing and describing cellular transitions is that of the

landscapes proposed by Waddington'"”

, where cellular phenotypes may be seen as
stable steady states (termed as attractors) of GRNs represented as wells separated by the
so-called epigenetic barriers. These barriers are established by those elements stabilizing
GRNs in their attractors. Given that cellular reprogramming implies a transition between
two cellular stable transcriptional programs (two attractors of the GRN)), it is necessary
that the corresponding GRN was at least bi-stable. The presence of positive circuits or
positive feed-back loops (the sign of a circuit is defined by the product of the signs of its
edges, being activation positive and inhibition negative) in a GRN is a necessary
condition for the existence of at least two attractors (multi-stability)zo. Hence, some of the
positive circuits constitute the stability elements of the GRN. In particular, there are
positive circuits whose genes are differentially expressed between two given attractors.
By swapping the states of these circuits it should be possible to induce transitions from

one attractor to another, similarly to how transitions between cell types derived from a

common progenitor cell can be induced by swapping the states of cross-repression
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motifs. Given the stochastic nature of molecular interactions in GRNs, perturbations of
different combinations of genes belonging to these positive circuits can trigger these
transitions with different efficacy.

Description of the method

Here we propose a method to design reprogramming protocols based on the topological
relationship between the elements involved in the stabilization of specific attractors. The
hierarchical organization analysis of strongly connected components (SCCs) formed by
one or more DEPCs allows us to identify combinations of genes belonging to master
regulatory DEPCs that should be perturbed in order to directly or indirectly target all
DEPCs and consequently to induce specific cellular transitions. Finally, we select among
these combinations of genes those with highest interface out-degree that refers to the
number of genes that are directly regulated by them. The reason for this step is to

30’31, which considers the

minimize the retroactivity effect on master regulatory circuits
increased time response of these circuits after noise or external perturbations. This allows
us to minimize the expression noise due to retroactivity contextualized to the specific
cellular transition under study. In other words, we select combinations of genes
participating in more transcriptional regulation events in order to minimize DEPCs time
response and the stochastic behavior of GRN under perturbation, and therefore to
minimize information loss during signal transmission. This strategy allows us to narrow
down a huge combinatorial searching problem to a set of minimal combinations that
constitutes alternative reprogramming protocols and the output of our method.

The method can be described with the following three steps, which are shown in figure 2:

1. Detecting master regulatory SCCs.

2. Determining master regulatory DEPCs for each master regulatory SCC.
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3. Detecting reprogramming determinant genes within master regulatory circuits.

Detecting master regulatory SCCs

In order to detect master regulatory SCCs or clusters of DEPCs that should be
independently perturbed it is necessary to detect and list all positive circuits or positive
regulatory feed-back loops. We also need to identify network attractors corresponding to
the two phenotypes of the cellular transition under interest. Once we have this
information we proceed to determine, among the entire set of positive circuits, which are
DEPC:s for this specific cellular transition, meaning that the expression levels of their
genes change between involved cellular phenotypes. These DEPCs can be clustered
forming SCCs, and these SCCs (if there is more than one) can be interconnected. In order
to detect which are the SCCs that should be independently perturbed to guarantee that all
DEPCs are reached by the perturbation signal, we analyze the hierarchical organization
of SCCs formed by DEPC:s. It is worth stressing that this hierarchical organization is
cellular transition dependent since it is based on positive circuits that change between
initial and final cellular phenotypes (See methods for details about the circuit’s detection,
attractor computation and hierarchical analysis).

Determining the master regulatory DEPCs for each master regulatory SCC

DEPC with higher degree interface is considered the master regulatory circuit of each
specific SCC. The degree interface of a circuit is the count of genes directly regulated by
genes belonging to the circuit. These DEPCs master regulators should be independently
perturbed in order to induce the desired cellular transition, and minimal combinations of
genes able to target all master regulatory DEPCs equal in number to the number of such
DEPCs. In other words, the perturbation of one gene per master regulatory DEPCs is

required. Since different minimal combinations (equal in number) can arise from this
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procedure, we aim to select the best combinations according to retroactivity contribution
criteria. It is worth stressing that despite the degree interface could be calculated for any
circuit in the GRN, the method only pay attention on those genes that belong to DEPCs
when comparing two attractors, given that they are the ones that are going to be
destabilized and re-stabilized in the original and final attractor respectively.

Detecting reprogramming determinant genes

Identification of genes belonging to DEPCs master regulators with maximum gene
degree interface, means that they are the most regulatory genes, and therefore main
responsible for DEPCs retroactivity. This set of genes constitutes the reprogramming
determinants. If more than one combination of reprogramming determinant candidates
equal in number of genes and interface out-degree, all of them are considered
reprogramming determinants according to our model, and they constitute alternative
solutions.

Application of the method to three illustrative biological examples

We selected three different biological examples of cellular reprogramming in order to
illustrate and validate the applicability of our method as generalization of transcription
factor cross-repression concept in illustrative biological cases. These examples provide
an experimental validation of the identified sets of reprogramming determinants as
effective inducers of transitions between cellular phenotypes. The Th2-Th1 and Myeloid-
Erythroid examples are based on GRNSs previously published by Mendoza et al. * and

Krumsiek et al. and Dore et al.>®*’

, respectively. These two networks were constructed to
describe the differentiation process of the corresponding human cell types. We showed

that the appropriate perturbations of these networks allow inducing transdifferentiation

10
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between cell types with the same cellular precursor. The mouse Fibroblast-hepatocyte
reprogramming example illustrates the case of a cellular transition between two cell types
that do not share the same direct cellular precursor. In this case we reconstructed a
literature based GRN of differentially expressed genes between both cell types®®. This
network was contextualized by an iterative network pruning described in the methods
section and previously published®®. This contextualized network is specific for the
cellular transition under study, and therefore suitable to describe input-output
relationships or network response under specific perturbations for a given initial network
stable state (stable expression pattern).

The networks for the three examples were enriched when it was possible with
information about miRNAs interactions experimentally validated and publicly

available***!

. Details about GRN for these three biological examples are included in
methods section and supplements.

Th2-Th1

T lymphocytes are classified as either T helper cells or T cytotoxic cells. T helper cells
take part in cell- and antibody-mediated immune responses and they are sub-divided in
ThO (precursor) and effector Thl and Th2 cells depending on the array of cytokines that
they secrete™’. T-helper differentiation network determines the fate of the T-Helper
lineage *°, with three different attractors corresponding with the three different
phenotypes (ThO, Thl and Th2). We applied our method on a GRN previously published
3> which represents the regulatory mechanisms determining T-helper basic types. This

network includes T-bet and GATA-3 forming a cross-repression motif responsible for the

differentiation either to Thl or to Th2 from a common precursor (Th0). We applied our
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method in order to detect reprogramming determinants for the Th2-Th1
transdifferentiation. The SCCs hierarchy analysis followed by the maximum retroactivity
criteria allowed us to identify one master regulatory SCC with one master regulatory
DEPC (named as circuit 16 in figure 3a and supplements) among five DEPCs of this
specific cellular transition. Circuit 16 corresponds to the positive feed-back loop formed
by GATA-3, T-bet, SOCS-1, IL-4R and STAT-6. The interface out-degree of this circuit
is 11, resulting of the sum of interface out-degree of all genes belonging to it. Within this
DEPC master regulator there are two genes with equal contribution to the circuit degree
interface: GATA-3 and T-bet have a degree interface of 4. According to the methodology
presented here both GATA-3 and T-bet constitute independent reprogramming
determinants, by inactivation and activation respectively. The predicted capability of T-
bet to induce the transition from Th2 to Thl is in full agreement with reported
experimental results'®. To our knowledge, there is no experimental evidence of either the
capability or incapability of GATAS3 to induce the transition from Th2 to Th1 when
inactivated.

It is worth mentioning that the cross-repression motif responsible for the binary cell
decision between Thl and Th2 from the precursor ThO is embedded in the master
regulatory SCC, and the detected master regulatory DEPC, named as circuit 16, is
composed of the two genes forming the cross-repression motif. This example illustrates
how a motif responsible for cell fate decision can also participate in the derived cellular
phenotypes stabilization and how its proper perturbation can trigger transitions between
them.

Myeloid-Erythroid

12



268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

Within the hematopoiesis there are several binary decisions from multipotent stem cells
to different type of blood cells. One of these decisions, the one determining if multipotent
stems cells become erythroid (later erythrocytes and megakaryocytes) or myeloid
precursor cells (later macrophages and granulocytes) requires the participation of the
transcription factor cross-repression motif including GATA-1 and PU.1. As it is shown in

figure 3a, the application of our method on a GRN previously published*®~"’

, containing
this motif embedded and connected with other multi-stable motifs allowed us to identify
GATA-1 as a reprogramming gene able to induce the transition from myeloid to
erythroid precursor cells. This finding is in full agreement with the experimental results
obtained by Heyworth et al. '°, where the authors reported that myeloid precursors
infected with an inducible form of GATA-1 generated erythroid colonies when GATA-1
was induced. In figure 3 b it is shown that in this example we found a single master
regulatory circuit, named as Circuit 12, with an interface out-degree of 8, which is
formed by the mutual inhibition between GATA-1 and PU.1. In this particular case we
obtained two possibilities with identical gene degree interface of 4: activation of GATA-1
and inhibition of PU.1. The activation of GATA-1 refers to the experiment performed by

Heyworth et al. ©°."

. To our knowledge there is no experimental evidence to support that
the inhibition of PU.1 is neither able nor unable to produce the same effect yet. As in the
previous example, here we observe how a cross-repression motif not only participates in
binary cell fate decision, but also can be exploited to re-specify the cellular commitment

in cells sharing the same precursor,

Fibroblast-Hepatocyte

13
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Normally, hepatocytes differentiate from hepatic progenitor cells to form the liver during
the regular development. However, hepatic programs can also be activated in different
cells under particular stimuli or fusion with hepatocytes. The transition from mouse
fibroblasts to hepatocyte-like cells induced by the perturbation of specific combinations
of transcription factors has been previously reported by several authors®**. As it is
shown in the table included in figure 3 c, in this case the SCCs hierarchical analysis
allowed us to identify two master regulatory SCCs, one including circuit 2 (including
NRS5A2 and FOXA2) and one including circuits 0, 7 and 4 (including genes AGT,
PPARGCI1A, UCP2 and HNF4A). Within the latter SCC, the DEPC, named as circuit 0,
is the one with the highest interface out-degree of 20. Then, we proceeded to identify
reprogramming determinants by targeting both master regulatory circuits. Within circuit
2, the gene that contributes the most to the circuit retroactivity is FOXA2, with an
interface out-degree of 5. Within the circuit 0, HNF4A is the one with the highest
contribution to the circuit retroactivity with an interface out-degree of 9. Therefore, the
final combination of reprogramming determinants is HNF4A and FOXA2. Both genes
should be activated to trigger the transition from fibroblast to hepatocyte. This result is

1°*. These authors

supported by the work of Sekiya and Suzuki published in 201
experimentally validated three different combinations of two transcription factors able to
induce the transition from mouse fibroblast to hepatocyte, including HNF4A and
FOXAZ2. This cellular transition constitutes a good example of reprogramming cells
without a common direct precursor (interlineage transdifferentiation).

Details about attractors, circuits and genes interface out-degree o for the three biological

examples are included in the supplements.
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Discussion

Cellular reprogramming, including the conversion of one differentiated cell type

to another (trans-differentiation) or to a more immature cell (dedifferentiation),
constitutes an invaluable tool for studying cellular changes during development and
differentiation, and has an enormous relevance for regenerative medicine and disease
modeling. Although, substantial progress has been made in developing experimental
reprogramming techniques, to date the scientific community is still faced with challenges
such as the identification of optimal sets of genes whose repression and/or activation are
capable of reprogramming one cell type to another (reprogramming determinants), and
the elucidation of molecular changes and relevant pathways involved in these transitions
(9). Furthermore, there is currently no methodology able to systematically predict
reprogramming determinants that could guide the design of cellular reprogramming
experiments. The development of computational models of transcriptional regulation that
underlies cellular transitions would help to predict these reprogramming determinants.
Moreover, the analysis of gene regulatory network properties has allowed the
identification of functionally relevant motifs of interactions that could play a role in
cellular transitions. In particular, transcription factor cross-antagonism has been
described as a mechanism that plays a key role in cell fate decisions. A bistable toggle
switch constitutes a molecular cross-repression motif that determines cellular
commitment and provides stability to gene regulatory networks underlying transcriptional
programs of binary decision cell choices. Experimental evidences indicate that flipping
the stable states of these toggle switches produces interconversion between binary

decision choices. Nevertheless, interlineage transdiferentiation and dedifferentiation

15
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could involve perturbation of combinations of cross-repression motifs together with other
multistable motifs. Here we propose a method, which considers the connectivity of these
different multistable motifs, in order to systematically identify sets of reprogramming
determinants able to induce transitions from differentiated cells to other cell types, either
to progenitor cells (dedifferentiation) or to other differentiated cell types
(transdifferentiation). Our strategy rests on the identification of a subset of all network
positive circuits (necessary condition for network multistability), whose genes are
differentially expressed between the cellular states involved in these. We termed this
subset as differentially expressed positive circuits (DEPC). Further, a hierarchical
organization of these circuits allows us to detect master regulatory positive circuits,
which directly or indirectly regulate the states of the other DEPCs. By focusing on genes
belonging to these master regulatory circuits, we dramatically reduced the number of
possible combinations of reprogramming determinants.

However, some of these gene combinations in master regulatory DEPCs are more
influenced by expression noise, affecting signal transmission in gene regulatory
networks, and consequently decreasing reprogramming efficiency and fidelity. This is
due to the fact that they are participating in a bigger number of regulations, so a limited
concentration of the gene product has to interact with several targets a part from the one
that closes the DEPC. In other words, the gene product has to distribute to different
regulated targets, so the probability that the DEPC signal feed-back is broken by chance
is higher (neglecting considerations about different molecular affinities that are assumed
similar). Hence, in order to increase signal transmission our method proposes these gene

combinations as reprogramming determinants. It is worth mentioning that we have
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considered in our model some of the important events influencing reprogramming
efficiency and fidelity, such as the role of noise in network dynamics and the regulatory
interactions played by miRNAs. However, other factors, such as epigenetic modifications
that block activation of certain genes can affect the expected network behavior after
specific perturbations. Furthermore, it has been experimentally shown that epigenetic
modifications can prevent cellular reprogramming reversibility in some cases *. In
addition, our model does not take into account different delays in time response of
distinct regulatory interactions. Nevertheless, given that the purpose of our method is the
identification of reprogramming determinants, rather than a detailed description of
network dynamics, we consider that our model provides reasonable predictions. More
accurate predictions shall require addressing these considerations in the future.
Interestingly, despite there was no methodological constraint or theoretical limitation to
prevent that genes non-transcription factor are reprogramming determinants, to date, in a
blind application of the method, TFs always came up as reprogramming determinants.

It is worth mentioning that applicability of the method presented here is restricted to
cellular transitions between stable states or stable expression patterns and constraint by
the availability of information to reconstruct the corresponding GRN, as it is explained in
more detailed in methods’ section.

Thus, our method constitutes the first strategy that systematically provides lists of
combinations of reprogramming determinants for cellular reprogramming events
involving two given cellular phenotypes without prior knowledge on potential candidates
and pathways involved. Due to that, the method is easily exportable to different

biological systems, providing guidance even without having expertise in a biological

17
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process. In particular, this method is suitable for cellular transdifferentiation, especially
when transitions occur between different cellular lineages. Indeed, interlineage
transdifferentiation involves significant changes in several molecular mechanisms that
increase the complexity of this type of reprogramming, and therefore hinders the
prediction of reprogramming determinants.

Hence, given the increasing interest in various applications of cellular reprogramming in
medicine and basic research, our method represents a useful computational methodology
to assist researchers in the field in designing experimental strategies, especially when

very little about a specific biological system is known.

Methods

Networks reconstruction

Among the selected biological examples, Th2-Th1 and Myeloid-Erythroid
reprogramming illustrate the case of transdifferentiation between two cell types sharing a
direct common precursor. We based our analysis on previously published GRNs
describing the regular differentiation process of T-helper and cell fate decisions during
hematopoiesis®™’. These two published network were enriched with miRNA
interactions experimentally validated and publicly available in two different databases:
TransmiR* and miRTarBase, including information about miRNA regulatory genes
and miRNA regulated genes respectively. Only miRNA forming closed loops with
network genes and, therefore, able to affect the stability of the network were included

(see table 1).
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The Fibroblast-Hepatocyte reprogramming example illustrates a distant (interlineage)
cellular transdifferentiation. Therefore, no canonical previously published network can be
exploited to detect the reprogramming determinants. Such reprogramming requires the
reconstruction of a GRN contextualized to this specific cellular transition.

Given that the final goal is to induce the transition from one specific cell phenotype to
one another, the network is constructed based on changing elements between these two
states, 1. e., differentially expressed genes (DEG) between these two conditions or cell
types obtained from microarray experiments. We scanned the literature and collected 24
genes known to play a relevant role in liver development and function and differentially
expressed when comparing fibroblasts and hepatocytes according to previous works ***7 .
We proceed to try to connect these genes using interactions obtained from literature
harvested from the entire PubMed. For this specific purpose we used the information

contained in the ResNet mammalian database from Ariadne Genomics

(http://www.ariadnegenomics.com/). The ResNet database includes biological

relationships and associations, which have been extracted from the biomedical literature

y**4 More specifically, we included interactions

using Ariadne's MedScan technolog
annotated in the ResNet mammalian database in the category of Expression,
PromotorBinding and Regulation. In the Expression category interactions indicates that
the regulator changes the protein level of the target, by means of regulating its gene
expression or protein stability. In the PromotorBinding category interactions indicates
that the regulator binds the promotor of the target. Finally, in the Regulation category

interactions indicates that the regulator changes the activity of the target. Similar

resources for network reconstruction are the IPA tool of Ingenuity Systems
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(http://www.ingenuity.com/) and the Transfac tool (http://www.biobase-

international.com).

Once we had a raw GRN from literature, we proceed to remove interactions inconsistent
with expression data by an iterative network pruning. These removals represent
interactions apparently not active in the biological context under study. It should be taken
into account that interactions from literature usually come from different biological
contexts as cell types, tissues or even species. This network pruning allows us to reduce
the amount of “false” interactions and to obtain a contextualized network. The algorithm
applied for this network pruning® was originally conceived to predict missing expression
values in gene regulatory network, but could be applied to contextualize the network
when all the expression values in two given cellular phenotypes or stable transcriptional
programs are known. Basically, the algorithm exploits the consistency between predicted
and known stable states from experimental data to guide the iterative network pruning
that contextualizes the network to the biological conditions under which the expression
data were obtained. This process implies the booleanization of cellular phenotypes
coming from experimental expression data; genes considered as up-regulated and down-
regulated for a given p-value (usually < 0.05 for a regular t-test) are assumed as “1”” and
“0” respectively. This is due to the fact that a Boolean model is assumed to compute
network attractors. An evolutionary algorithm, more specifically an estimation of
distributions algorithm (EDA) *° samples the probability distribution of positive
feedback loops or positive circuits and individual interactions within the subpopulation of
the best-scored networks at each iteration of the pruning algorithm. The resulting

contextualized network is based not only on previous knowledge about local connectivity
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but also on a global network property (stability) providing robustness in predictions (the
remaining set of interactions) against noisy sources of information and network
incompleteness. Despite we tried to enrich this network with miRNA interactions as we
did in the two previous examples, none miRNA involved in regulatory loops or circuits
with genes differentially expressed were found experimentally validated for mouse. More
details about network reconstruction process for the Fibroblast-Hepatocyte
reprogramming example are included in the supplementary information.

Main properties of these three biological examples GRN are shown in table 2.

Network transformation in a directed acyclic graph (DAQG)

The first step of the method, named as “Detecting master regulatory SCCs” in results
section, requires the hierarchical analysis of a subnetwork of the complete GRN
including only DEPCs and all genes and interactions connecting them. This subnetwork
contains positive feed-back loops, so it should be transformed in order to be able to
analyze its hierarchy. The transformation of this subnetwork of connected DEPCs in a
DAG was performed by contraction of DEPCs strongly connected, i e, SCCs of
differentially expressed genes, in single super-nodes. This network transformation allows
the hierarchical analysis of the network following the method described by Jothi et al. >,
resulting in the location of SCCs at different levels of hierarchy with the subsequent
identification of master regulators SCCs on the top of the hierarchy pyramid.

During the application of this network transformation to the three examples included in
this work we also forced the method to work on differentially expressed negative circuits
(DENC) instead of DEPCs to illustrate the failure of the method when a wrong stability

element is considered. Interestingly, we could not found any single DENC in none of the
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three examples, despite the relative abundance of negative circuits in the three GRNs (17,
11 and 11 for Th2-Thl, Myeloid-Erythroid, and Fibroblast-Hepatocyte respectively,
whereas the corresponding number of positive circuits are 29, 25 and 19). Consequently,
it was not possible to perform the network transformation in a DAG and the subsequent
hierarchical analysis because there was no SCC of negative circuits to analyze. This
finding is consistent with the role of positive circuits or positive feed-back loops as
cornerstone of multi-stable behavior in networks of interacting elements.

Circuits’ detection

The Johnsons algorithm 2 was implemented to detect all elementary feedback circuits in
the network. A feedback circuit is a path in which the first and the last nodes are
identical. A path is elementary if no node appears twice. A feedback circuit is elementary
if no node but the first and the last appears twice. Once we have all elementary feedback
circuits, we select positive feedback circuits, or feedback circuits for which the difference
between the number of activating edges and the number of inhibiting edges is even. Both
elementary feedback circuit detection, positive feedback circuits sorting and DEPFCs
detection were implemented in Perl.

Attractor computation

We assumed a Boolean model to compute attractors with a synchronous updating scheme
>3 and using our own implementation of the algorithm described by Garg et al., 2007 **.
The logic rule applied by default is the following: if none of its inhibitors and at least one
of its activators is active, then a gene becomes active; otherwise the gene is inactive. If

different regulatory rules are known for specific genes, this knowledge can be included in

the model. Results in the attractor computation were consistent with the results obtained
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using previously published software to compute attractors in Boolean systems (Boolnet
3 GenYsis™).

Minimal input data for the method usage and limitations

Given that our methodology considers transitions between attractor states, it requires the
availability of expression data of stable cellular phenotypes. In addition, if the GRN has
been experimentally validated and its attractors are consistent with the cellular
phenotypes under study, our methodology is readily to be applied. Otherwise, the GRN
has to be reconstructed from publicly available data, and therefore the applicability of our
methodology could be limited by the availability of information. In this case, the
reliability of the resulting GRN can be estimated by evaluation of how well the stable
states of this network coincide with the experimental expression data. We usually
assumed a threshold of 70 % to consider a GRN worth to be processed. For instance, in
the Fibroblast-Hepatocyte example after the network contextualization process, the
attractor computation of the resulting GRN revealed a matching with the expression data
of 76 % for both conditions (fibroblast and hepatocytes), meaning that 76 % of gene
expression values in the network are well predicted for these two conditions. The
remaining 24 % of the gene expression values are not well predicted due to two different
possibilities: incompleteness of the network or wrong assumed regulatory rules in
specific cases. It is worth noticing that our method for contextualizing GRNs rests on
removal of inconsistent regulatory interactions rather than on the addition of new
interactions, and therefore the possibility of adding new predicted interactions could
improve the description of the expression data. This is a very interesting and very

relevant point, and despite it is out of the scope of the present work, and the fact that it
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constitutes a challenging computational problem, it should be definitely pursued in order

to improve our methodology.
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Figure Legends

Figure 1| Cell identity cascading landscape representing the cellular transcriptional

program. Paths between pluripotent and differentiated cells, representing cellular
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differentiation process pass through stable expression profiles corresponding to
multipotent progenitors. Binary cell fate decisions at multipotent rogenitor level are
characterized by cross-repression motifs of competing transcription factors.
Transdifferentiation between somatic cells are divided in those sharing a direct precursor
cell (intra-lineage transdifferentiation), where cross-repression motifs, which determine
cell fate decision, play a key role in stabilizing binary cell decisions and transitions
between them; and those without a direct precursor (inter-lineage transdifferentiation),
characterized by a more complex molecular mechanism underlying cellular transitions.
Blue and red colors in cross-repression motifs and GRN stability core represent mutually
excluding expression states for a given pair of cellular phenotypes, standing for down-
regulation and up-regulation respectively. ‘>’ represents activation or positive regulation

and ‘-|” represents inhibition or negative regulation.

Figure 2| Design of cellular reprogramming protocol in three steps. a) Detecting
master regulatory strongly connected components (SCCs). In this first step, those positive
circuits or positive feed-back loops in the gene regulatory network (GRN) whose genes
change their expression levels between two cellular phenotypes are selected from the
population of network circuits. These differentially expressed positive circuits (DEPCs)
form SCCs. A hierarchical analysis in the space of these SCCs allows us to determine
master regulatory SCCs. SCC 1 and 2 are located on the top of the hierarchy of the
represented toy network without displaying connectivity between them. These SCCs
should be independently perturbed to guarantee that the perturbation signal reaches every

DEPC in the GRN. b) Detecting master regulatory DEPCs. Within each master
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regulatory SCC, a master regulatory DEPC is determined based on a retroactivity score
(interface out-degree) or, in other words, based on the number of genes directly regulated
by this circuit. The master regulatory DEPC is the one with the highest interface-out
degree. In this toy example, Circuit 1 (composed by genes ‘a’, ’b’ and ‘c’) is the master
regulatory DEPC of the SCC 1, and Circuit 1 (composed by genes ‘p’ and ‘0”) of SCC 2
is the other master regulatory DEPC . These master regulatory DEPCs are colored in red
in the retroactivity ranking table. ¢) Detecting reprogramming determinants. Once the
master regulatory DEPCs have been determined, the selection of final reprogramming
determinants is based on maximizing the sum of individual gene interface out-degrees
included in the combination. In this toy example, gene ‘a’ is the one with highest
retroactivity within the Circuit 1 of the SCC 1. Similarly, gene ‘p’ has the highest
interface out-degree in its respective circuit and SCC. Therefore, the reprograming
determinants are ‘a’ and ‘b’ (both should be perturbed to induce the hypothetical cellular
transition). Blue and red colors in network nodes represent mutually excluding expression
states for a given pair of cellular phenotypes, standing for down-regulation and up-
regulation respectively. ‘->’ represents activation or positive regulation and ‘-|’

represents inhibition or negative regulation.

Figure 3| Reprogramming determinants in three illustrative biological examples. a)
Th2-Thl reprogramming. Activation of T-bet and, alternatively, inhibition of GATA-3
are predicted as effective perturbations to induce this cellular transition. b) Cellular

reprogramming from myeloid to erythroid cells. Both, activation of GATA-1 or
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inhibition of PU.1 are predicted as independently able to induce this cellular transition. c)
Cellular reprograming from fibroblast to hepatocyte. In this particular case no single gene
is able to induce the cellular transdifferentiation according to our predictions. On the
other hand, combined activation of HNF4A and FOXA?2 is predicted as an effective
combination of reprogramming determinants. Blue and red colors in network nodes
represent mutually excluding expression states for a given pair of cellular phenotypes,
standing for down-regulation and up-regulation respectively. ¢->’ represents activation or

ositive regulation and ‘-]’ represents inhibition or negative regulation.
p g p g g
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539  Tables
miRNA Interaction
Th2-Thl 1. mir-145 IFN-B -> mir-145
mir-145 -| STAT1
Myeloid-Erythroid 1. mir-34a mir-34A -| PU.1
CEBPA -> mir-34A
2. mir-155 mir-155 -| FLI1
PU.1 -> mir-155
mir-155 -| PU.1
540
541  Table 1] miRNAs included in the biological examples. ‘->’ represents activation and ¢-|’
542  represents inhibition.
543
Genes | Interactions | Activations | Inhibitions | miRNA
Th2-Thl 24 38 28 10 1
Myeloid-Erythroid 13 34 19 15 2
Fibroblast-Hepatocyte 27 56 46 10 0
544
545  Table 2| Main properties of the gene regulatory networks of the three biological examples.
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