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Abstract. A symbolic solver generator to deal with a system of partial differential equations (PDEs) in functions of an arbitrary
number of variables is presented; it can also handle arbitrary domains (geometries) of the independent variables. Given a system
of PDEs, the solver generates a set of explicit finite-difference methods to any specified order, and a Fourier stability criterion
for each method. For a method that is stable, an iteration function is generated symbolically using the PDE and its initial and
boundary conditions. This iteration function is dynamically generated for every PDE problem, and its evaluation provides a
solution to the PDE problem. A C++/Fortran 90 code for the iteration function is generated using the MathCode system, which
results in a performance gain of the order of a thousand over Mathematica, the language that has been used to code the solver
generator. Examples of stability criteria are presented that agree with known criteria; examples that demonstrate the generality
of the solver and the speed enhancement of the generated C++ and Fortran 90 codes are also presented.

1. Introduction

The solution of partial differential equations (PDEs)
is arguably one of most important tasks in the model-
ing and simulation of complex physical and engineer-
ing systems. The ubiquity of PDEs owes to the cir-
cumstance that often the laws governing a particular
situation express the relation between various physical
quantities in terms of their spatial and temporal vari-
ations. Very few known PDEs can be solved exactly,
and therefore a variety of approximate numerical tech-
niques have been developed over many decades to deal
with equations that arise in realistic situations. Exam-
ples of numerical techniques include finite-differences,
finite volumes, finite elements, and so on. Each has its
own strengths, weaknesses, and domains of applicabil-
ity.

Our motivation for this work is twofold. Firstly,
many computer packages have been developed over the
years presenting the user with a wide range of solvers
to choose from depending on the nature and complexity
of the PDE problem. Diffpack (see [2,9]) presents an
object-oriented problem solving environment for nu-
merical solution of PDE’s. It implements finite differ-
ence as well as finite element methods and provides

C++ modules with a wide selection of interchangeable
and application-independent components. ELLPACK
(see [3]) presents a high level interface language for
formulating elliptic PDE problems, and presents over
50 problem solving modules for handling complex el-
liptic boundary value problems. It is implemented as
a FORTRAN preprocessor and can handle a variety of
system geometries in two dimensions (both finite dif-
ference and finite elements), and rectangular geome-
tries in three dimensions (finite differences only). Two
more efforts include Cogito and COMPOSE, developed
at Uppsala University, Sweden (see [16–18]). Both im-
plement finite-difference schemes for time dependent
problems and exploit object-oriented technology to de-
velop a new kind of software library with parts that
can be flexibly combined, enhancing easy construction
and modification of programs. Cogito is a high perfor-
mance solver that comprises the three layers Parallel,
Grid and Solver, the lower two layers being Fortran
90 parallel code, while the Solver is written in C++.
COMPOSE is a C++ object-oriented system that ex-
ploits the Overture system [13] for grid generation. The
work on numerical PDE libraries is far too extensive
for us to be able to present an exhaustive review here
(see [1,6,8,11] for overviews). Our work is a contri-
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bution to this important field; the main features of our
work include high-level interactivity and exploitation
of the power of symbolic programming.

A second motivation for our work is the following.
In the last few years, there have been several efforts
to develop computer languages for modeling complex
engineering systems from various domains. One such
language, called Modelica (see [12]), is particularly
interesting because of its conceptual soundness: it is
an object-oriented modeling language that is equation
based and acausal. For such a language to be useful
for multi-domain modeling (i.e., modeling of multi-
physics systems, ex., electrical, mechanical, thermo-
dynamic, etc.), it is necessary to provide it with sup-
port for efficient solution of systems of equations en-
countered in such models. At present, there is no PDE
support available for Modelica, and our work is part-
ly motivated by this. Further, there is a Mathematica
environment for the Modelica language, a preliminary
version of which is available now [10,7], and our solver
generator can be easily integrated with this system.

Our chief design goals are flexibility and generality.
An important requirement for a PDE solver is flexibil-
ity: it should be capable of offering a wide range of
solution schemes from which the user might choose the
solution technique that is most appropriate for the given
PDE problem. The generality might here be interpret-
ed as the ability to handle systems of PDE’s for func-
tions in arbitrary number of variables and geometries,
as well as the generation of solution schemes to any
order of accuracy, at least in principle. We have been
able to meet these requirements to a large extent using
the symbolic power of Mathematica language. In addi-
tion, we are able to achieve appreciable computational
efficiency by employing the idea of code generation.

Our preliminary results were reported in the refer-
ences [19,15]. Here is a brief summary of our results
in the present work. Our solver generaor can accept
the PDE and the initial and boundary conditions, along
with the geometry of the system, in a simple format. In
principle, there could be any number of equations, and
the system could have an arbitrary dimensionality and
geometry. The solver generator can generate all possi-
ble finite-difference schemes to a specified approxima-
tion order and the Fourier stability condition for each
scheme. The user can then choose the scheme that
is most stable/appropriate. The solver generator then
symbolically produces an iteration function using the
stencil (i.e., the chosen finite-difference scheme) and
the initial and boundary conditions. Evaluation of this
function leads to the solution of the given PDE prob-

lem, and can be done directly in Mathematica. How-
ever, this stage involves only numerical computation,
and it is much more efficient to use the computation-
al power of a compiled language. We use the Math-
Code C++ code generator [4] to translate the itera-
tion function into optimized C++ code. The generated
C++ code runs about a thousand times faster than the
Mathematica function. We give several examples that
demonstrate the flexibility and efficiency of our solver
generator.

The work presented in this paper is restricted to ex-
plicit finite difference methods. However, the overall
design of the solver generator is such that other solu-
tion techniques can be straightforwardly incorporated.
We have done a preliminary implementation of implicit
schemes within our framework, but this will be pub-
lished elsewhere. We also plan to take up finite element
methods in the near future.

This paper is organized as follows. In Section 2 we
describe the symbolic aspects of the solver: in particu-
lar, we discuss the symbolic generation of all possible
difference schemes for the given PDE and their sta-
bility criteria, the generation of the iteration function,
which is essentially a loop nest containing a sequence
of assignment statements for the array of the dependent
variables, using the discretized PDE, and the initial and
boundary conditions. We have to make type declara-
tions of all the variables and arrays appearing in the
iteration function to generate C++ or Fortran90 code
for it using the MathCode compiler. These code gen-
eration aspects are explained in Section 3. In Section 4
we give several examples to illustrate discretization of
the PDE and the initial and boundary conditions, gen-
eration of finite-differences, stencils and the Fourier
stability conditions, flexibility to handle an arbitrary
number of dependent and independent variables, and
finally code generation and speed enhancement. Some
conclusions and possible future work are discussed in
Section 5.

2. Symbolic aspects

2.1. Format

To begin with, the problem is specified as a list of
three lists. To illustrate the format, we begin with the
example of a simple one-dimensional PDE problem,
the diffusion equation:

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
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Fig. 1.

with an initial condition

u(x, 0) = x/2 for x < 0.15 and

u(x, t) = 1 − x/2 for x � 0.15,

and boundary conditions

u(0, t) = 0 = u(1, t) for t � 0.

This problem is presented to the solver as a list of
three lists in Fig. 1.

The list parabolic1D has three sublists: equations,
geometries, and methods lists, respectively. The ge-
ometries list has a further sublist for each independent
variable; each element in this sublist is a list of the
form {variable, min, max} and specifies the limits of
the independent variables in a subdomain (i.e., a con-
tinuous segment along the variable, see Example 3 in
Section 2.6) of that independent variable in the stan-
dard Mathematica iterator notation. Further, min and
max here could depend on other independent variables:
this is how we are able to describe arbitrary geome-
tries. In the present case, there are just two independent
variables, one space variable x and time variable t, but
there could be any number of independent variables in

general; each variable can in general have any number
of subdomains (although there is only one for each in
the present simple example).

The equations and methods lists have the same num-
ber of elements: there is a method (see the discussion
below) for each equation. The equations list contains
all the equations in the problem: the PDE followed by
the initial and boundary conditions. The PDE could be
a single equation or a system of equations separated by
commas. In the present case there is just one equation.

Note the slight change in format between the PDE
and the initial and boundary conditions in the equations
list: the latter have to have the boundary specified; the
first element in these sublists specifies the boundary,
and the remaining elements, the conditions that hold at
this boundary.

We also note here that this format allows for a specifi-
cation of numerical boundary conditions as well. These
arise, for example, when a high-order approximation
method is used for the PDE, resulting in a stencil that
requires values of the solution vector outside the prob-
lem domain to be known for computing the solution
vector inside the domain, but close to a boundary. In
such cases, we need to provide the solution vector val-
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Fig. 2.

ues outside the domain, at a finite number of grid point
layers near a boundary. In our format, these values are
specified by simply adding more statements to the rel-
evant boundary condition list. An example will clarify
this. Suppose in the above problem parabolic1D

the boundary condition {x = 0, u[x, t] = 0} required
a modification to include the condition u[x, t] = nbc
at values of x one grid layer to the left of the boundary
x = 0. The modified boundary condition that takes this
numerical boundary condition into account is simply
{x = 0, u[x, t] = 0, u[x − 1, t] = nbc}. Note that
nbc can in general be a function of all the other inde-
pendent variables (in the present case, a function of t).
The choice and form of numerical boundary conditions
depend on the kind of method used for the PDE.

As we mentioned above, there is an element (that
we call a method) in the methods list for each element
in the equations list. In particular, the first element
in the methods list corresponds to the PDE. This first
element has only one element, since there is only one
PDE in this case, and is u[x[{}, {2, 2}], t[{1, 1}]]. In
general, if the largest derivative order of the depen-
dent variablewith respect to the independent variable
xi is Oi, then the general form of a methods element is
u1[x1[{m1, n1}, . . . , {mO1

, nO1
}],

. . . , {mO2
, nO2

}], . . .]. Here, an element {m, n} ap-
pearing as the kth argument of x, which in turn is an ar-
gument of u, specifies the way in which the kth deriva-
tive of u with respect to x is to be treated by the finite-
difference method: m is the approximation order, and
n is an integer from 0 to m + 1: n = 0 leaves the kth
derivative intact, n = 1 corresponds to forward differ-
ence, n = m + 1 corresponds to backward difference,
and n = 2 to m correspond to the various central dif-
ferences. We hereafter refer to lists such as {m, n} as
approximation specifications, since they specify how
the individual derivatives appearing in a PDE have to
handled.

The first approximation specification of x in the
above example is {}: since the PDE has no first deriva-
tive of u with respect to x, the solver ignores the con-
tents of this list, so we have kept it empty; it could
instead have been {−1, 0}, for instance. However, it is
important that this list be the first argument of x even

though there is no first derivative of u with respect to x:
this ensures that {2, 2}, the second argument of x, is the
approximation specification for the second derivative
of u with respect to x. We have {2, 2} here because
we have chosen to replace the second derivative of u
with respect to x by a second-order central difference.
The following shows the effect of the approximation
specification {2, 2} on a second derivative as shown in
Fig. 2.

Here, h is the step size. Also note that in the result-
ing expression, (1) x is the discretized variable corre-
sponding to the independent variable x; this is done so
as not to generate more variables, and should result in
no confusion, and (2) the arguments of u are expressed
in units of h, the step size.

In general, if the largest-ordered derivative with re-
spect to an independent variable in the equation is L,
then the number of approximation-specification argu-
ments of this variable must be exactly L, some of which
are possibly empty lists. However, if the PDE has kth
derivative appearing, then the kth basic method of the
corresponding independent variable has to be nonemp-
ty.

A similar explanation holds for the time derivatives in
the PDE. However, one comment about the order of ar-
guments of u in the methods list is in order. Some meth-
ods can result in an explicit finite-difference scheme,
in which case one of the independent variables acts as
the marching variable. It is important to specify the
marching variable as the last argument of u. In the
present case, we have a time-marching method, so the
time variable t is the last argument.

Finally, the same comments hold for the methods to
be used for the initial and boundary conditions, with
just one addition: in these, the last argument of the de-
pendent variable is the independent variable for which
the equation of the boundary has to be solved. Further,
we also need to specify in which subdomain of the in-
dependent variable this condition holds, and this is just
an integer; the latter is specified as the last argument of
the independent variable in the corresponding element
of the methods list. In the present example, since these
conditions have no derivatives appearing (i.e., L = 0),
the independent variables in the corresponding meth-
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ods lists have no arguments, except the last independent
variable in each element, which has a single-element
sublist specifying an integer (= 1 in our example of
rectangular geometry).

2.2. Methods generation

Now it can be seen why the above seemingly-
intricate format for methods specification has an un-
doubted advantage. Since the format has an approx-
imation specification for each distinct-ordered deriva-
tive appearing in the equation, it is very structured, and
can therefore be easily automated: we simply need to
specify the accuracy (which is the first element of the
approximation specification list) for each distinct or-
dered derivative appearing in the PDE to generate all
possible regular finite-difference schemes to that accu-
racy. Here, by a regular finite-difference scheme we
mean one that can be obtained by simply replacing the
derivatives appearing in the equation by finite differ-
ences. There are, however, some schemes (e.g. Lax-
Wendroff, see [8]) that are not obtainable in this man-
ner, and this approach obviously fails to generate such
schemes, since these are very special. But when we
know some irregular scheme for a problem, we can ex-
plicitly specify the difference equation for that scheme
in place of the PDE, and specify the corresponding
method as simply {u[x[], . . . , t[]]}. In this case, the
solver functions as a high-level interface to generate a
C++ code for the given PDE problem.

The idea behind automatically generating all the reg-
ular methods is very simple. In the approximation
specification {m, n} for each derivative, we have two
integers: the first specifies the order of accuracy and
the second, the kind of finite difference (forward, back-
ward, central, or identity). If the first integer is m, then
the second can assume the m+2 values 0, 1, . . . , m+1.
As a result, the number of possible regular methods
is simply

∏d

i=1[m(i) + 2] where m(i) is the order of
accuracy (and m(i) + 2 the number of approximation
specifications) for the ith distinct-ordered derivative,
and d is the number of distinct-ordered derivatives in
the given equation.

To illustrate for the above 1D parabolic example, we
have two distinct-order derivatives: ∂XXu(x, t)(i = 1)
and ∂XXu(x, t)(i = 2), so d = 2. If we choose
m(1) = 2 and m(2) = 1, then the total number of reg-
ular methods is (2 + 2) ∗ (1 + 2) = 12, one of which is
the standard method u[x[{}, {2, 2}], t[{1, 1}]] used for
this equation. In the next subsection we describe how
stability conditions for the generated methods are ob-

tained; it will be demonstrated in Section 4 that the sta-
bility criterion we obtain for the above standard method
agrees with the known criterion for this scheme, and
that the remaining 11 methods are all unstable.

2.3. Discretization of the equations

Once we have generated all the regular methods to a
certain order of accuracy, we can operate them on the
PDE and other equations (the initial and/or boundary
conditions) to obtain difference equations.

First we have to discretize the space of independent
variables by introducing the step sizes: the step size for
a variable is the smallest amount by which it can vary.
The set of all the points in the space of independent
variables that can be reached in an integer number of
steps from an origin is known as the grid. Subsequent
to this, all the functions of independent variables will
be defined only on the grid.

The discretization of an equation then involves (i)
identifying all derivatives appearing in the given equa-
tion, and (ii) replacing each derivative by a suitable
finite difference as specified in the method. The step
(i) is a simple instance of pattern recognition that can
be easily performed using Mathematica. Step (ii) can
be done in various (equivalent) ways, but we have fol-
lowed the method of Lagrange polynomials (see [11]
for a discussion) that helps us obtain a finite-difference
approximation of a derivative of an arbitrary order to
an arbitrary accuracy. By doing this we approximate
the derivative by an expression that involves the values
of the dependent variable at the given and neighbor-
ing grid points, and the various step sizes. Substitut-
ing such expressions for all the derivatives appearing
in the equation results in a difference equation. The
difference equation corresponding to the PDE can be
solved for the dependent variable at the largest value of
the marching variable appearing in the equation. The
relation that results is known as the stencil. Solving the
discretized initial and boundary conditions expresses
the dependent variable at points close to the boundaries
in terms of the parameters of the problem.

At this stage we can turn to the symbolic genera-
tion of the iteration function for the system of differ-
ence equations, providing the method leads to a stable
solution.

2.4. Stability analysis

We showed above how we can generate all possible
regular methods for a given PDE. However, we will
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Fig. 3.

have to choose from these methods one that leads to a
stable (and hence convergent) solution to the problem.
Moreover, there is no guarantee that one or more of
the regular methods will lead to a stable solution. It is
therefore desirable to perform a stability analysis before
generating the iteration function for the problem. There
are a few such stability techniques that are available,
one of the simplest being the Fourier stability analysis
(see [1], for example) that we have used in the present
work.

The Fourier stability condition is arrived at on the
basis of the following simple idea (see e.g. [1]). The
stencil for the PDE obtained using a method expresses
the value of the dependent variable at a given grid point
in terms of its values at a few neighboring grid points.
For explicit schemes, the given grid point corresponds
to the largest value of the marching variable, and the
neighboring points correspond to smaller values. In
the Fourier stability analysis, one assumes a solution
to this stencil in which the independent variables are
seperated, and demands that the absolute value of the
right-hand side of the stencil be between zero and unity
at all grid points, for the solution to be stable and to
converge to the correct solution of the PDE. This di-
rectly gives a relation between the various step sizes
that has to be satisfied for the method to be stable.

We can easily write a Mathematica function for per-
forming this analysis. We show in Section 4 that this
approach generates the correct Fourier stability condi-
tions for some well known equations. This gives us
confidence to use our solver generator for equations
that we have not previously encountered.

2.5. Symbolic generation of the iteration function

We now turn to the last phase of the symbolic part of
our solver, where a Mathematica code for the function
that performs the iteration of the stencil is generated.

We first note that the details of this code are problem
dependent, and only the structure of the code can be
ascertained a priori. The structure of the code is a
sequence of nested iteration loops, the body of which
involves discretized initial and/or boundary conditions.
The number of nested loops is equal to the number
of conditions specified in the problem. The last nest-
ed loop has as its body the stencil of the given PDE.
We remark here that at this stage, the dependent vari-
ables are replaced by arrays, and the discretized equa-
tions are simply assignment statements for the array
elements. There are no symbolic manipulations left
to be done, and all assignments involve purely arith-
metic operations. The number of assignment state-
ments in each nested loop depends on the nature of the
initial/boundary conditions and the PDE. As a result,
a different iteration function has to be generated for
every PDE problem.

The generated iteration function takes as its argu-
ments the numbers of discrete steps for all the indepen-
dent variables and the step size for the marching vari-
able; the step sizes for the other variables are calculated
from these arguments and the geometry.

Finally, we note that the body of the symbolically
generated iteration function also has the type declara-
tions of all the local variables, since we intend to gener-
ate a C++ or Fortran90 code for the iteration function
using the MathCode compiler [4].

2.6. A note on system geometry

As explained in Section 2.1, we are able to describe
arbitrary domains of independent variables. We have
managed to do this by making the “independent” vari-
ables depend on one another in general. A few exam-
ples to explain this are in order.

Fig. 3 A Rectangular Geometry: A geometry list of
the form {{{x, 0, 2}}, {{y, 0, 1}}}describes
a simple rectangle of sides 2 and 1 in the
xy-plane.

Fig. 4 A Circular Geometry: A geometry list of
the form {{{x,−Sqrt [1 − yˆ2], Sqrt [1 −
yˆ2]}}, {{y,−1, 1}}} describes a circle of
radius 1 in the xy-plane. The following fig-
ure shows a plot of the geometry:

Fig. 5 An Irregular Geometry: A geometry list of
the form{{{x, 0, If [y � y1, x1, 1]}, {x, If
[y � y1, x2, 1.0], 1.0}}, {{y, 0, 1}}, {{t, 0,
tmax}}} describes an irregular geometry: x
has two disconnected subdomains (“rectan-
gular wells”) up to a certain value y1 of y,
and only one beyond that.
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Fig. 4.

Fig. 5.

It is clear from the above three examples that we
are able to describe fairly general geometries in this
manner. However, we should note that we can obtain
only an approximation to the true boundary of the do-
main by our approach, since we generate our domain by
choosing a subset of points from a rectangular distribu-
tion of grid points. For certain geometries (like for in-
stance one in which the nonrectangular domain bound-
ary is made of straight line segments that are parallel to
the coordinate axes) this approximation becomes exact;
for others, the accuracy improves with decreasing step
sizes in the difference scheme used.

3. C++ code generation

We have separated the symbolic and numerical as-
pects of the problem with the idea of code generation
in mind. Accordingly, everything except the iterative
numerical computation part is done symbolically in the
first part of the package, the set-up part. The result
of this part is the iteration function referred to above.
The numerical part of the package, namely the run-time
part, performs the iteration and the time it takes increas-
es linearly with the problem size. Evidently, the effi-
ciency of the package is determined by how efficiently
the iteration is performed.



46 K. Sheshadri and P. Fritzson / A general symbolic PDE solver generator: Explicit schemes

For the numerical part, we employ the MathCode
C++ code generator [4] which generates optimized
C++ code for a suitably stated Mathematica task. The
Mathematica code generated for the iteration function
has the type declarations for all the local variables, as
we mentioned in the previous section. However, the
type declaration for the iteration function itself, and for
the solution array, has to be done separately; this part is
also problem specific, since the number of arguments
of the iteration function and the array dimension de-
pend on the problem dimensionality. We make these
declarations in the run-time part, after evaluating the
set-up part.

Once these declarations are done, we are ready to
compile and run the iteration function. The compila-
tion results in a C++ code that can be run transparently
as if the code was executed within Mathematica. This
is achieved by MathCode by loading the C++ code
into a separate process and automatically generating
communication code to make it callable. We can also
run the iteration function interpretively within Mathe-
matica before generating the C++ code. However, the
C++ code runs considerably faster, and we get a speed
enhancement of about a factor of one thousand.

4. Examples

In this section we demonstrate some important fea-
tures of our solver, including discretization of deriva-
tives, PDE, and the initial and boundary conditions. We
also demonstrate the automatic generation of regular
methods and the stability conditions for these; we show
how the iteration function is symbolically generated,
and finally demonstrate the generation of C++ code
for the iteration function and the speed enhancement
over Mathematica.

We would like to emphasize that our PDE solving
system provides an interactive problem solving envi-
ronment for PDE’s. The system presents a whole gamut
of tools for analyzing various aspects of the problem
to be solved: one can explore the PDE, the initial and
boundary conditions and different discretizations; one
can construct a method based on this analysis; one can
even automatically generate all possible discretization
schemes to a given order of approximation; one can
obtain a Fourier stability condition for each of these
methods, and select an appropriate method. Alterna-
tively, if one already knows that a particular method
works for the given problem, one can then use the sys-
tem to directly generate a program for implementing

it, bypassing a preliminary analysis. By virtue of the
advantages offered by the Mathematica environment,
one can then make a plot of the results obtained.

The plan for the rest of this section is the following.
We first describe some exploratory aspects of the PDE
solving system by demonstrating the use of the various
functions the solver is based on. We then present a
few complete PDE examples using the system: a one-
dimensional diffusion equation, a two-dimensional dif-
fusion equation in circular and dumb-bell geometries,
and a wave equation in a dumb-bell geometry.

4.1. Examples of tools available in the package

In Fig. 6 is an example of approximations to a first
derivative to an accuracy order 1 (note that there are
two approximations, one forward and one backward, in
this case).

The result is presented as a function with a head
(

u(1,0)[x, t]
)

which is the derivative being approxi-

mated, with arguments whose number is one greater
than the accuracy order: the first argument is the for-
ward difference, the last the backward difference, and
the intervening ones (none in this case) the various cen-
tral differences. The head of the output is made to be
the derivative itself so that we can extract the zeroth el-
ement of the output when no approximation is desired.
(The indexing function Part in Mathematica returns
the head of an indexed object when using zero as the
index. For example if x denotes then h2[a,b,c]

gives h2.) We could use this function to discretize
derivatives of any order to any accuracy.

Discretization of an equation involves replacing all
the derivatives appearing in the equation by suitable
finite difference approximations as specified by the
method. The function we have defined for discretiz-
ing the PDE, namely Discretize, takes as its two
arguments the equation and the method, and returns
the stencil. Figure 7 is a simple example of the one-
dimensional advection equation.

We have used the standard method for this equation
which consists in replacing the space derivative by a
first-order backward difference and the time derivative
by a first-order forward difference; we will show below,
using stability analysis, that the resulting stencil leads to
a stable solution. In the above example, h and k are the
step sizes for x and t, respectively. The Discretize
function works for any dimensionality of the geometric
domain.

We now give an example of discretizing the boundary
conditions. Discretizing these is the same as discretiz-
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Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

ing the PDE, except that in this case no stencil is gen-
erated, but the dependent variable at grid points close
to the boundary is expressed in terms of the problem
parameters, and the equations are accompanied by the
equation of the boundary where they hold. For these
reasons, we have defined a different function called
Discretize2 to be used for the initial and boundary
functions. In Figs 8 and 9 we give two examples, one
for the left boundary (x = 0) and another for the right

(x = 1).
We now turn to examples that show how the meth-

ods can be automatically generated, and stability con-
ditions for the stencils obtained. The methods are gen-
erated using a function that we have defined, name-
ly DiffMethods. This function takes as arguments the
equation and a list specifying the order of accuracy.
Figure 10 shows how all regular methods (see Sec-
tion 2) for the one-dimensional diffusion equation are
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Fig. 11.

Fig. 12.

generated to order 2 in space and 1 in time (there are
consequently 12 regular methods).

Now we can use each of these methods to generate a
stencil for the equation, and obtain the Fourier stability
condition for each. This is done by using the function
StableF that we have defined. We show in Fig. 11
the stability conditions for the above example; since
the output is too long, we have shown only the stability
conditions for the stable methods.

It turns out that only one of the 12 methods gen-
erated is stable, and it can be seen that this is pre-
cisely the method that is used often for this simple
one-dimensional diffusion equation. Further, from
the above stability condition, we see at once that this
method is stable only if k/h2 � 1/2, a well known
result [1,8]. In the same manner, we are able to gen-

erate stable methods and their correct Fourier stability
conditions (k/h � 1, see [1,8]) for other equations,
e.g. the advection and wave equations.

4.2. Diffusion equation in 1D

We illustrate the solution of the one-dimensional dif-
fusion equation as our first example. This problem
has been defined as a list parabolic1D in Section 2.1.
The function GenerateCodeSolvePDE takes the prob-
lem list and generates a C++/Fortran 90 code for solv-
ing it using the specified solution scheme; it also gen-
erates a few comments about the stability condition as
shown in Fig. 12.

We also need to specify the bounding rectangle: this
is the smallest rectangle that completely encloses the
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Fig. 13.

Fig. 14.
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system, and for the present simple case this is simply the
system itself. The second and third arguments above
do this, while the next argument specifies the maximum
problem size, useful for array declarations in the C++
code.

We also define a list of parameters whose values we
need not fix until runtime. These and their data types
are the next two arguments, while the last argument
specifies the folder name where the C++ code is saved.
Here, slice is a function to extract the solution array
for a particular value of the marching variable.

Once this is done, we can run the iteration function

on Mathematica. Figures 13 and 14 show the runs, re-
spectively, of the iteration function executed interpre-
tively within Mathematica and of the compiled C++
code.

We have run the iteration function 500 times in the
second box to get a good estimate for the time taken
for one run: this is because the latter is too small to be
accurately measured by the functionAbsTime. We see
that the C++ code for the function solvePDE speeds
up the Mathematica evaluation by about 1500 times.
We have also generated Fortran 90 code for the iteration
function in the same way as above, using the MathCode
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Fig. 17.

Fortran90 translator that has recently become available,
and achieve the same speed enhancement.

Finally, we plot the results obtained for the solution
array U . For this purpose, we have defined a function
slice (which is compiled alongwith solvePDE):
slice[i, nx, t] contains the solution vector for
the ith dependent variable for the time slice t. We can
directly plot this vector using the function ListPlot.
In Fig. 15 is the plot of the initial vector.

In Fig. 16 we show the plot of the solution vector for
the last time slice.

4.3. Diffusion equation in 2D: Circular geometry

We now present an example of a non-rectangular
geometry: the two-dimensional diffusion equation in
a circular geometry. The dependent variable is delta
at the boundaries at all times, and has an initial profile
that is a hemisphere with a coaxial cylinder removed.
The solution will then show how this profile evolves
with time. First we define the problem list testprob in
our notation as shown in Fig. 17.
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We then follow a procedure very similar to the pre-
vious example to generate a C++ code by employing
the MathCode compiler, and run it. We do not show
those details here, but only the results. Figures 18 and

19 show the intial profile and the profile at a later time.
The “hole” in the plot above is because of the fact

that the underlying grid is rectangular, although the
system geometry is circular. The size of the hole can
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Fig. 20.

be reduced by making the grid size smaller.

4.4. Diffusion equation in 2D: Dumb-bell geometry

We now present another example of a non-rectangular
geometry, this time a somewhat irregular, dumb-bell
geometry. The problem list is as defined in Fig. 20.

Again, we do not show those details of code genera-
tion here, but only the results. Two plots (Figs 21 and
22) show the intial profile and the profile at a later time.

4.5. Wave equation in 2D: Circular geometry

We now present an example of a wave equation in a
circular geometry (Fig. 23).

Figures 24 and 25 show the intial profile and the
profile at a later time.

5. Conclusions

In this section we discuss the strengths and limita-
tions of our PDE solving system. The system has three
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important merits. First, since it is based on symbolic
manipulation, it has a flexibility that makes it ideal for
multi-physics applications where the exact nature of
the problem is not known in advance. Further, because
of the symbolic power of Mathematica, we are able to
generate a set of methods for the given equation, and
analyze the stability properties of the stencil that results

on applying a method to the equation. However, as we
have noted in Section 2, the solver generator can still
be used for a PDE for which the user already knows a
stable difference method: this further adds to the flexi-
bility of the system. We also note that our system can
handle equations in any number of spatial dimensions.

The second important merit of our solver generator
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is the efficiency of generated solvers in performing nu-
merical computations. This is enabled by each gener-
ated solver being a compact efficient numerical code
for a particular combination of equation and boundary
conditions, and by our use of the MathCode compiler
that generates code for the iteration function in a com-

piled language. The resulting code, as we have demon-
strated, runs considerably faster than the Mathemati-
ca code. These two features combine the strengths of
symbolic programming and numerical computation in a
complementary way, resulting in a reasonably general-
purpose PDE solving system. The fact that we are using
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a high-level language like Mathematica means that the
system is very easy to use, which is of some practical
importance.

Thirdly, we have given examples of very different
geometries that the solver can handle. In fact, it is
clear from the way we handle system geometry that
our solver can describe any geometry, not necessarily
convex ones, subject however to the limitation that the
boundary of the region is approximated by a saw-tooth
curve, as remarked in Section 2.6. This we believe is a
very powerful practical feature of our system.

There are some limitations of our solving system for
which there is scope, and need, for improvement. One
of these is the limitation to explicit finite-difference
schemes. This is one thing we plan to work on in the
near future. There is also the important issue of nu-
merical boundary conditions that arises when we use
finite-difference schemes (see [8,5]). There is no gen-
eral resolution of this issue, and there are a few rules of
thumb. Our solver allows for a specification of certain
kinds of numerical boundary conditions, as discussed
in Section 2.1.

Our immediate goal is to provide PDE support for
the Modelica language [12,14] within the Mathematica
environment. Our solver can serve this purpose since it
is written in Mathematica, and there is presently some
work in progress on developing Modelica syntax in a
Mathematica environment [10]. However, our package
can also be used as a stand-alone PDE solver. We have

demonstrated how it works for some example problems
in the last section. We have not yet tested our solv-
ing system for nonlinear problems, but are presently
working on some examples. We believe that nonlin-
ear PDE’s in which the derivatives with respect to the
marching variable appear to first degree can be handled
without much difficulty by our solver, although there
could be numerical difficulties in this case.
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