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Abstract

Standard conservative discretizations of the compressible Euler equa-
tions have been shown to admit nonphysical oscillations near some
material interfaces. For example, the calorically perfect Euler equa-
tions admit these oscillations when both temperature and gamma jump
across an interface, but not when either temperature or gamma hap-
pen to be constant. These nonphysical oscillations can be alleviated to
some degree with a nonconservative modification of the total energy
computed by solving a coupled evolution equation for the pressure. In
this paper, we develop and illustrate this method for the thermally
perfect Euler equations.
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1 Introduction

Fully conservative numerical methods have been shown to admit nonphysical
oscillations near material interfaces, e.g. see [7] and [6]. In [5], fully conser-
vative discretization of the calorically perfect Euler equations was shown to
admit these nonphysical oscillations when there is a jump in both temper-
ature and gamma across an interface, but not when either temperature or
gamma happen to be constant. [6] and [5] propose nonconservative modifica-
tions of the fully conservative numerical method in regions where difficulties
may occur. These modifications give rise to conservation errors in the total
energy of the system, and thus yield a locally nonconservative formulation.
In general, nonconservative formulations give the wrong shock speeds, al-
though the errors in shock speeds can be reduced significantly if a special
viscosity term is added, see [8]. [6] and [5] do not make use of this special
viscosity term, however, their numerical methods are fully conservative ex-
cept on a set of measure zero under grid refinement and seem to produce
adequate shock speeds.

In [6], the examples seem to indicate that the mass fraction formulation
is nearly adequate in the fully conservative framework, while the level set
formulation (used carelessly) admits wild nonphysical oscillations on the
same problems. The cause of these oscillations for level set methods stems
back to [9] where the authors used the level set formulation in order to
reconstruct gamma as a perfect Heaviside function even though the density
was numerically smeared out. In fact, [1] shows that it is important for
gamma to have a special smeared out numerical profile near the discontinuity
in order to alleviate nonphysical oscillations. More recently, [10], [11] and
[12] have extended the seminal work in [1]. Using ideas from [1] most of the
large oscillations in the level set calculations of [6] can be removed producing
results comparable with the the mass fraction formulations in [6].

We follow along the lines of [6] and [5] formulating the problem in a
conservative fashion, only applying the nonconservative method as a local
correction to an existing conservative solver. Our nonconservative correction
method is based on the approach in [6].
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2 Euler Equations

Consider the two dimensional thermally perfect Euler Equations for multi-
species flow with a total of N species,

~Ut + [~F (~U)]x + [~G(~U )]y = 0, (1)
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E = ρe +
ρ(u2 + v2)

2
, h = e +

p

ρ
(3)

h =
N

∑

i=1

Yihi(T ), hi(T ) = h
f
i +

∫ T

0

cp,i(s)ds (4)

where t is time, x and y are the spatial dimensions, ρ is the density, u and
v are the velocities, E is the energy per unit volume, Yi is the mass fraction
of species i, e is the internal enery per unit mass, h is the enthalpy per unit
mass, p is the pressure, hi is the enthalpy per unit mass of species i, h

f
i is

the heat of formation of species i (enthalpy at 0K), T is the temperature,
and cp,i is the specific heat at constant pressure of species i. Note that YN =
1 −

∑N−1
i=1

Yi. Note that the pressure is a function of the density, internal
energy per unit mass, and the mass fractions, p = p(ρ, e, Y1, · · · , YN−1). See
[3] for more details.
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3 Pressure Evolution Equation

In order to apply a nonconservative correction to the total energy, [6] solves
a partial differential equation for the pressure. Here, we state this equa-
tion for the general equation of state p = p(ρ, e, Y1, · · · , YN−1) with partial
derivatives denoted by pρ, pe and pYi

. The convective derivative of the pres-
sure

Dp

Dt
= pρ

Dρ

Dt
+ pe

De

Dt
+

N−1
∑

i=1

(

pYi

DYi

Dt

)

(5)

can be rewritten as

pt + ~u · ∇p = −ρc2
∇ · ~u (6)

using

ρt + ~u · ∇ρ = −ρ∇ · ~u (7)

ut + ~u · ∇u = −
px

ρ
(8)

vt + ~u · ∇v = −
py

ρ
(9)

et + ~u · ∇e = −
p

ρ
∇ · ~u (10)

and

(Yi)t + ~u · ∇Yi = 0 (11)

which are all derived from the Euler equations in the previous section. Note
that ~u =< u, v > is the velocity vector and c =

√

pρ + p
ρ2 pe is the speed of

sound.
In some formulations of the equation of state, the pressure can depend on

the level set function, φ, or on gamma, γ. Since both the level set function
and gamma have a vanishing convective derivative,

φt + ~u · ∇φ = 0 (12)

4



γt + ~u · ∇γ = 0 (13)

they both drop out of the pressure evolution equation, similar to Yi, leaving
equation 6 unchanged.

Note that the pressure evolution equation reduces to the more familiar
form

pt + ~u · ∇p = −γp∇ · ~u (14)

when c =
√

γp
ρ

.

To obtain an upwind discretization of equation 6, we rewrite it as the
last equation of a quasilinear system,
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where the eigenvalues and eigenvectors for the 3 by 3 matrix associated with
convection in the x-direction are
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and the eigenvalues and eigenvectors for the 3 by 3 matrix associated with
convection in the y-direction are
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These eigensystems allow us to rewrite equation 15 as
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so that each of the 6 terms can be upwinded according to the sign of the
eigenvalue in that term.

The last equation in 22 is equivalent to equation 6, with px, ux, py, and
vy replaced by
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(
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where the superscript on each spatial partial derivative refers to the eigen-
value which determines the upwind direction for the discretization of that
spatial partial derivative. For example, pu−c

x is the spatial derivative of the
pressure discretized using the eigenvalue u − c to determine the upwind di-
rection. A positive eigenvalue indicates characteristic information coming
from the left, while a negative eigenvalue indicates characteristic informa-
tion coming from the right. If an eigenvalue is identically zero, then equation
22 illustrates that the spatial derivative does not contribute to the solution,
and can be assigned a zero value for practical purposes.

Note that in the case where the eigenvalues agree on the upwind direction
(supersonic flow), the two separate spatial derivatives in each set of paren-
thesis coalesce into a single value. Thus, the second term in each equation
vanishes, and equations 23 to 26 merely dictate upwind differencing in the
obvious direction.

Note that we do not use the special viscosity discussed in [8], although
it could be added to the quasilinear system, and the resulting system could
be discretized in a fashion similar to that outlined above.
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4 Modification of the Conservative Solver

In order to solve the two dimensional Euler equations, we utilize a fully
conservative high order accurate algorithm as outlined in [3] and [4], along
with the Complementary Projection Method in [2] which gives an efficient
method for eigensystem treatment with no loss of accuracy. While adequate
for many problems, the conservative solver occasionally admits large non-
physical oscillations, and a nonconservative correction to the total energy
needs to be applied in these regions.

Given an acceptable smooth solution for the conserved variables and
the pressure given by the equation of state, the fully conservative numeri-
cal method computes new values for the conserved variables which can be
used to find the new pressure again from the equation of state. It is this
new pressure that causes the oscillations in regions where the interface is
numerically problematic. An alternative pressure can be obtained from the
pressure evolution equation, and this new pressure can be used to define a
nonconservative energy using the equation of state. Then in regions where
the interface is numerically problematic, the energy computed with the fully
conservative numerical method is replaced with the nonconservative energy
computed using the pressure evolution equation.

There are many way to locate potentially problematic interfaces. [6] uses
jumps in the mass fraction and sign changes in the level set function. [5]
looks for regions where both temperature and gamma change sign. In gen-
eral, this procedure is dependent on the formulation of the problem, and one
may want to consider many things, e.g. mass fractions, level sets, gamma,
temperature, and equations of state. We recommend that the fully conser-
vative solution be compared with the nonconservatively corrected solution
in order to determine which flow features are physically authentic.
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5 Numerical Examples

5.1 Example 1

Consider an isolated contact discontinuity separating oxygen and argon.
Initially, velocity, pressure, and density are set to constant values while
temperature has a jump across the contact discontinuity. The conservative
scheme admits nonphysical oscillations as shown in figure 1. Application
of a local nonconservative correction to the total energy alleviates these
oscillations as shown in figure 2. The local correction was applied to about
3 to 5 grid points in the vicinity of the contact discontinuity.

5.2 Example 2

Consider a one dimensional shock tube problem with argon on the left and
oxygen on the right. Both gases are initially at rest with a jump in both pres-
sure and temperature across the interface initiating the formation of three
waves: a shock wave, a contact discontinuity and a rarefaction wave. The
fully conservative method admits small nonphysical oscillations as shown in
figure 3 which are fixed by the nonconservative correction method in figure
4. The conservative scheme is adequate, although the nonconservative cor-
rection method gives smoother results near the contact discontinuity. Note
that both schemes have a little trouble with the rarefaction corner. More
importantly, note that the spike in energy is present in both schemes, and
that it appears to be an authentic feature under grid refinement for the fully
conservative scheme even though it lacks any physical relevance.

5.3 Example 3

A shock tube is placed at x = .4 and a contact discontinuity with a temper-
ature jump is placed at x = .6. Oxygen gas is located to the left of x = .6
and argon gas is located to the right. The shock wave generated by the
shock tube travels to the right and hits the interface at x = .6. Figure 5
shows the computed solution computed with the fully conservative method
at a time where the shock wave has passed through the interface. Figure 6
shows the solution obtained using the nonconservative correction method.
Comparison of figures 5 and 6 indicate that the conservative method ad-
mits large nonphysical oscillations. The nonconservative correction method
performs much better, although there are still some imperfections in the
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solution. Figures 7 and 8 show the computed results for a similar problem
with different initial conditions.
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Figure 1: conservative method - contact discontinuity
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Figure 4: nonconservative correction - shock tube - 400 points
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Figure 5: conservative method - after collision - 400 points
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Figure 6: nonconservative correction - after collision - 400 points
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Figure 7: conservative method - after collision - 400 points
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Figure 8: nonconservative correction - after collision - 400 points
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6 Conclusions

In this paper, we stated and discretized the pressure evolution equation for
the thermally perfect Euler equations. The solution of the pressure evolution
equation was used to make a nonconservative modification of the total energy
computed with a fully conservative numerical method. The numerical results
imply that this nonconservative correction helps to alleviate the nonphysical
oscillations present in the fully conservative numerical method.
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