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Abstract 
 
A new test for time-dependent parameters is proposed. The Trig-test is based on a 
trigonometric expansion to approximate the unknown functional form of the variation in the 
parameters concerned. It is shown to have the correct empirical size and excellent power to 
detect structural breaks and stochastic parameter variation. The appropriate use of the Trig-
test is demonstrated by testing for structural breaks in the U.S. inflation rate. The test detects 
a statistically significant increase in the U.S. inflation rate beginning in the early 1970s and 
lasting through to the early 1980s.  
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In this paper, we propose a simple, yet powerful, test for time dependence in parameters. The 

null hypothesis is a linear model with time-invariant parameters; under the alternative 

hypothesis, the model is linear in variables but has time-varying coefficients. The central idea 

of the test is to use a trigonometric expansion to approximate the unknown functional form of 

a time-varying regression coefficient. The flexibility of this approximation means that the test 

is capable of detecting time-variation in coefficients that arise from a number of different 

sources, namely, structural breaks, seasonality or stochastic variation. Rigorous 

implementation of the testing strategy relies on bootstrapping to deal with the presence of an 

unidentified parameter under the null hypothesis. A version of the test based on OLS is also 

available that is very simple to implement but remains effective in detecting time variation in 

parameters. 

1. A test based on a trigonometric approximation  

Consider a model that is linear in the weakly stationary variable wt but has a time-varying 

coefficient β(t): 

 ( )2( ) ; ~ 0, .t t t ty w t N εβ ε ε σ= +  (1) 

Since any absolutely-integrable function â(t) can be approximated by means of a Fourier-

series expansion of appropriate order, we parameterize equation (1) as: 
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 (2) 

where β0, β1 and β2 are constant parameters and f is the frequency. Although many 

frequencies may be needed to mimic the actual behavior of the time-varying coefficient, for 

testing purposes, it seems reasonable to approximate the expansion by only one frequency. 

After all, if â1 = â2 = 0 cannot be rejected for all frequencies, the null hypothesis of time 

invariance is rejected. The proposed test, which we call the Trig-test, is the test of the null 

hypothesis β1 = β2 = 0 by means of a likelihood-ratio test, LR(f). 
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 The implementation of the Trig-test is not entirely straightforward because the 

frequency, f,  is unidentified under the null hypothesis. As in Davies (1987), Andrews and 

Ploberger (1994), and Stinchcombe and White (1998), the appropriate way to proceed is to 

consider the discrete set Γ containing G frequencies as its elements and the related G tests of 

the null hypothesis, H0: β1 = β2 = 0. Each test is constructed on the basis of a different 

frequency fi ∈ Γ, i = 1, … G. The information in these G values may then be used to compute 

the sup-norm (LRsup) , unweighted average (LRave) and exponentially weighted average 

(LRexp) tests suggested by Andrews and Ploberger (1994): 

 sup ave exp

( )1 1
sup ( ); ( ); and ln exp

2i i i

i
i i

f f f

LR f
LR LR f LR LR f LR

G G∈Γ ∈Γ ∈Γ

  = = =   
  

∑ ∑  (3) 

Obtaining critical values for these test statistics is non-trivial and bootstrapping using 

the approach suggested by Hansen (1999) is used here. First, J replications of the data, *
ty , 

may be generated using the general scheme: 

     * *
0

ˆ
t t ty w β ε= +         (4) 

where *
tε  is resampled (with replacement) from the empirical distribution of the rescaled and 

centered residuals obtained by estimating the model under the null hypothesis. Should wt 

contain lags of the dependent variable, as is the case in both the simulations and the empirical 

examples to follow, the realizations, *
ty , will need to be generated recursively. Second, for 

each bootstrap sample, *
ty , a test statistic LRj is computed. The proportion of the J 

bootstrapped test statistics, which exceed the LR test statistic computed from the observed 

data, is then an estimate of the p-value of the test. The empirical results obtained in the Monte 

Carlo exercises provided in the next section justify the conjecture that this bootstrapping 

procedure produces consistent inference. 
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There is a special case where bootstrapping is not required. Davies (1987) calculates 

the asymptotic distribution for the null hypothesis β1 = β2 = 0 when wt is a vector of 1’s, i.e, 

when: yt = β0 + β1sin(2 f πt/T) + β2cos(2 f πt/T) + εt. As shown by Davies (1987), the critical 

values depend only on the range of frequencies used in the test. This result suggests that the 

Trig-test can be implemented by OLS as follows. Estimate (2) by OLS for each value of f in 

Γ . Let f* be the frequency which yields the smallest residual sum of squares, RSS* and let 

* * *
0 1 2, andβ β β  be the coefficients associated with this frequency. The F-test, OLS

trigF of 

* *
1 2=β β = 0 is given by: 

    
*

*

( ) / 2

/( 1)
OLS r

trig

RSS RSS
F

RSS T k

−
=

− +
 (5) 

where RSSr is the residual sum of squares with the restriction imposed. Although the 

distribution of the test statistic is invariant under the null hypothesis, it does not follow a 

standard F-distribution. Davies (1987) provides a useful approximation to the asymptotic 

distribution, but it is also straightforward to tabulate critical values by simulation as 

demonstrated by Ludlow and Enders (2000).  

2. Empirical performance of the test 

Although the test is simple to implement, its usefulness will depend on its empirical size and 

power. While optimal tests may be available if the reason for the time-varying coefficients is 

known, the Trig-test will be shown to have the correct size and good power properties when 

the applied researcher has no information about the nature of the time variation.  

2.1 Empirical size 

Consider the two linear autoregressive processes given by 

    1

4

0.6 ~ (0,1),

0.9 ~ (0,0.04).
t t t t

t t t t

y y N

y y N

ε ε
ε ε

−

−

= +
= +

  (6)     
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The lengths of the simulated processes are T = 50, 100 and 200, respectively. The 

autoregressive coefficients of both these models and the constant of the AR[4] model are 

tested for time invariance by means of the Trig-test. All three LR tests are applied and the 

choice of frequencies is given by Γ = [1, (T/2)-1]. The results reported in Table 1 show that 

the Trig-test has the correct empirical size regardless of the mapping utilized and the length 

of the process (as one would expect for a bootstrapped significance level). 

2.2 Power 

The power of the test to detect seasonal parameter instability is not reported. Clearly the Trig-

test has excellent power in this case because inclusion of the relevant trigonometric terms is 

identical to the use of seasonal dummy variables. In this section, therefore, the focus is on 

Trig-test’s power to detect structural breaks and stochastic parameter variation.  

To investigate the power of the test to detect structural breaks, the example provided 

by Clements and Hendry (1999) 

 yt = α0 + α1txt + εt ; εt ~ N(0, 1) (7) 

is used, with six different specifications for α1t:  
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t t

t t

t t

t t
SB SB

t t

t t t t
SB SB

t t

t t

SB t SB t

t t

α α

α α

α α

≤ ≤ 
= = > > 

≤ > ≤ > 
= = < ≤ < ≤ 

≤ ≤ 
 = < ≤ = < ≤ 
 > > 

 

In all the models, α0, is set to zero, the values for xt are drawn from a normal distribution with 

mean and variance equal to unity and a sample size T = 60. 

The power of the Trig-test will be evaluated with reference to the optimal test for one 

breakpoint, proposed by Andrews, Lee and Ploberger (ALP) (1996), and the test for multiple 

breakpoints due to Bai and Perron (BP) (1998, 2003). The ALP test examines all possible 

breakpoints occurring within the middle 90% of the data [ 4 ≤ τ ≤ 56 ].  BP propose a number 
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of tests for multiple structural breaks. Since the Trig-test is designed for use when the number 

of breaks under the alternative hypothesis is unknown, its power is compared to that of the 

UDmax and the WDmax tests.1 The Trig-test includes frequencies in the range [(1/512), 6] in 

steps of 1/512. We use a maximum frequency of 6 since structural breaks are likely to be a 

low frequency phenomenon. Although all three mappings of the LR tests were computed, the 

performance of each was quite similar; as a result only those for LRexp are reported. 

The results reported in Table 2 confirm that the power of tests for structural breaks 

deteriorates, ceteris paribus, as the breakpoint moves towards the end of the sample. In the 

single breakpoint model, the ALP, BP and Trig-tests experience severe reduction in power as 

the breakpoint shifts from observation 40 to 50. Also note the relatively poor performance of 

the CUSUM and CUSUM2 tests relative to the ALP, BP and Trig-tests. When there is only 

one breakpoint (models SB1 and SB2), the ALP test has a slight advantage over the Trig-test 

and a moderate advantage over the BP tests. Differences arise for the two-breakpoint models 

(SB3 to SB6). The Trig-test performs better than the ALP test for those processes that have 

breakpoints close to the middle of the sample (SB3, SB4 and SB5). The ALP test is superior 

if the breaks are late in the sample and asymmetric (as in SB6). The ALP test and the Trig-

test outperform the two versions of the BP test considered here.  

The power of the Trig-test to detect stochastic parameter variation is evaluated using 

three data-generating processes. The first is a stationary autoregressive process (SPV1) for 

the time-varying parameter (Watson and Engle, 1985); the second (SPV2) specifies the time-

varying parameter as a martingale (Nyblom, 1989); and the third (SPV3) uses the bilinear 

specification of Lee et. al. (1993). The formal definitions are: 

SPV1: yt = βtyt-1 + εt; βt = 0.3 + 0.5βt-1 + vt ; εt ~ N(0, 1) ; vt ~ N(0, 0.25) (8) 

                                                 
1  Of course, the sequential tests for multiple breaks developed by BP are likely to have more power than the 
UDmax and Wdmax tests. The code for all their tests is available at the Journal of Applied Econometrics’ Data 
Archive and at www.econ.bu.edu/perron. 
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SPV2: yt = βtyt-1 + εt; βt = 0.3 + 0.5βt-1 + vt ; εt ~ N(0, 1) ; vt ~ N(0, 0.25) (9) 

SPV3: yt = βtyt-1 + εt; βt = 0.7εt-2; εt ~ N(0, 1) (10) 

The power results for the five tests against these alternatives are presented in Table 3. 

Once again, the power of the CUSUM test against the three processes is disappointing. The 

CUSUM2 test fares better, especially when the alternative is the martingale parameter 

process. The Watson-Engle test has satisfactory power against SPV1 and SPV2 but is poor 

against SPV3. The power of the Nyblom test is low in all three cases  (even against the 

martingale alternative for which it was designed). In implementing the three versions of the 

Trig-test, we used a frequency range Γ = [1, 49]. The performance of the LRave version of the 

Trig-test is impressive, indicating that averaging across different values for the unidentified 

parameter, f, is very valuable in this context. These results are the strongest demonstration yet 

of the usefulness of the Trig-test in detecting time dependence in parameters.  

3. Empirical Illustration: U.S. Inflation 

Bai and Perron (2003) present an example of a break in the U.K. inflation rate. In order to 

illustrate the OLS-based Trig-test, monthly values of the U.S. CPI (seasonally adjusted) were 

obtained from the website of the Federal Reserve Bank of St. Louis for the period 1947:1 to 

2001:11. As shown in Figure 1, inflation rates during the 1970's were substantially higher 

than those prevailing in other periods. Let yt denote the logarithmic change in the U.S. CPI, 

the following augmented Dickey-Fuller test (with t-statistics in parentheses) shows that the 

unit-root hypothesis can be rejected for the sample:2 

 ∆yt = 0.591 - 0.171yt-1 – 
11

1
i

i

β
=
∑ ∆yt-i + εt (11) 

                  (3.00)   (-4.22) 
 

                                                 
2 The AIC select the 12-lag specification while the SBC selects a model with 11-lagged changes. The essential 
results are virtually identical using either specification.  
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The key point to note is that standard diagnostic checks of the residuals indicate that the 

model is adequate. If ρi denotes the residual autocorrelation for lag i, the correlogram is: 

ρ1 ρ2 ρ3  ρ4 ρ5  ρ6  ρ7  ρ8 ρ9  ρ10  ρ11  ρ12 

-0.006 0.012 0.033 -0.008 0.022 0.052 -0.019  0.011 0.027 -0.012  -0.039  0.074 
 

To test the stationary inflation series for possible structural breaks, the OLS version of the 

Trig-test is implemented with the trigonometric expansion applied to the constant term. The 

resultant test regression is estimated for all  = [(1/512) , 3] jf ∈ Γ  in steps of 1/512. The 

“best” fitting frequency is * 1.178f =  yielding the regression model 

12
* *

1

1.33 0.900 sin(2 / ) 0.402 cos(2 / )

(5.17) ( 3.92) ( 2.31)
t i tt-i

i

y  = f t T f t T     yπ π β ε
=

− − + +

− −
∑  (12) 

 

The computed value of the Trig-test statistic is 9.911. Hence, the null hypothesis of linearity 

is rejected using the conservative 1% critical value of 9.17 (Ludlow and Enders, 2000). 

Figure 1 superimposes a scaled version of the time-varying intercept on the actual U.S. 

inflation rate. It is clear the time-varying intercept captures the behaviour of the inflation rate 

during the 1970’s.  

 For comparative purposes, the BP testing procedure was applied to the U.S. inflation 

data. Both the UDmax and Wdmax tests are unable to reject the hypothesis of parameter 

constancy. The test statistics recorded were 6.0634 (critical value at 10% is 7.46) and 7.3611 

(critical value at 10% is 8.20) respectively. This result is consistent with the simulation 

evidence presented above indicating that these tests have lower power than the Trig-test.  

However, the BP supF test statistic for 2 structural breaks, given the presence of 1 break, is 

12.3871 which is significant at the 1% level and the number of breaks chosen by the BIC is 

also 2. The dates for these two breaks are 1972:01 and 1980:09 which correspond nicely with 

the pattern revealed by the time-varying intercept in Figure 1. 
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4. Conclusion 

The framework presented in this paper develops a straightforward way of testing regression 

parameters for time dependence. A test based on a trigonometric expansion of the coefficient 

believed to be time varying is shown to capture the effects of variation due to either structural 

breaks or stochastic parameters. A rigorous implementation of the test uses bootstrapping to 

deal with the fact that the frequency of the trigonometric expansion is unidentified under the 

null hypothesis. A simple OLS version of the test, however, performs just as well. The Monte 

Carlo experiments reported in the paper provide empirical evidence that the Trig-test has the 

correct size and good power against all the alternative models considered. The Trig-test 

detects structural breaks as reliably as the ALP and BP tests. The test also proved to have 

better power against stochastic parameter processes than tests specifically designed for this 

purpose. The Trig-test detects the presence of structural breaks in the U.S. inflation rate. 

Specifically the test detects an increase in the U.S. inflation rate beginning in the early 1970s 

and lasting through to the early 1980s. 
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Table 1: Empirical size of the Trig-test 

      p-value     The AR(1) Model               AR[4] Constant Term          The AR[4] Coefficient           
         LRsup LRave      LRexp   LRsup      LRave      LRexp   LRsup      LRave      LRexp 

T=50 0.01 
0.05 
0.10 

0.012      
0.048 
0.095 

0.012      
0.055 
0.109 

0.012 
0.049 
0.101 

 0.016      
0.065 
0.123 

0.014      
0.058 
0.109 

0.011      
0.051 
0.102 

 0.013 
0.055 
0.107 

0.016 
0.064 
0.121 

0.014 
0.055 
0.105 

T=100 0.01 
0.05 
0.10 

0.009 
0.054 
0.100 

0.012 
0.047 
0.097 

0.010 
0.051 
0.097 

 0.015 
0.051 
0.111 

0.013 
0.051 
0.096 

0.014 
0.060 
0.121 

 0.013 
0.055 
0.103 

0.015 
0.049 
0.115 

0.013 
0.051 
0.099 

T=200 0.01 
0.05 
0.10 

0.013 
0.056 
0.109 

0.015 
0.060 
0.117 

0.014 
0.058 
0.109 

 0.014 
0.061 
0.111 

0.010 
0.050 
0.100 

0.016 
0.064 
0.123 

 0.013 
0.055 
0.104 

0.014 
0.062 
0.112 

0.011 
0.053 
0.099 

 
         Size computed from 5000 repetitions with 400 bootstrap replications per repetition. 
 



  

 
Table 2: Power of CUSUM, CUSUM2, ALP, BP and Trig-test against structural breaks. 

 
               p-value    SB1         SB2          SB3          SB4          SB5          SB6 

CUSUM 0.01 
0.05 
0.10 

0.015 
0.056 
0.116 

0.006 
0.030 
0.084 

0.012 
0.080 
0.157 

0.014 
0.044 
0.101 

0.007 
0.040 
0.099 

0.008 
0.036 
0.082 

CUSUM2 0.01 
0.05 
0.10 

0.032 
0.123 
0.193 

0.036 
0.112 
0.191 

0.008 
0.047 
0.098 

0.026 
0.104 
0.169 

0.052 
0.173 
0.278 

0.056 
0.178 
0.273 

ALP 0.01 
0.05 
0.10 

0.320 
0.544 
0.675 

0.174 
0.331 
0.450 

0.069 
0.196 
0.323 

0.121 
0.276 
0.375 

0.633 
0.814 
0.885 

0.105 
0.247 
0.364 

LRexp 0.01 
0.05 
0.10 

0.286 
0.485 
0.615 

0.140 
0.294 
0.407 

0.198 
0.408 
0.527 

0.121 
0.284 
0.383 

0.684 
0.877 
0.918 

0.065 
0.171 
0.270 

Udmax 0.01 
0.05 
0.10 

0.127 
0.276 
0.381 

0.058 
0158 
0.241 

0.039 
0.143 
0.221 

0.062 
0.165 
0.245 

0.332 
0.559 
0.675 

0.028 
0.100 
0.187 

WDmax 0.01 
0.05 
0.10 

0.109 
0.246 
0.349 

0.044 
0.156 
0.232 

0.047 
0.151 
0.230 

0.056 
0.157 
0.240 

0.326 
0.551 
0.662 

0.030 
0.108 
0.192 

 
Power computed from 1000 repetitions with 400 bootstrap replications (ALP and Trig-test) per repetition. 



  

 
 

Table 3: Power of tests for stochastic parameter variation 
 

SPV1 CUSUM CUSUM2 Watson- 
Engle 

Nyblom LRsup LRave LRexp 

0.01 0.060 0.533 0.818 0.052 0.723 0.831 0.747 
0.05 0.123 0.653 0.914 0.128 0.838 0.928 0.876 
0.10 0.207 0.723 0.954 0.215 0.892 0.960 0.912 
        
SPV2 CUSUM CUSUM2 Watson- 

Engle 
Nyblom LRsup LRave LRexp 

0.01 0.028 0.891 0.756 0.462 0.923 1.000 0.924 
0.05 0.039 0.895 0.758 0.466 0.989 1.000 0.989 
0.10 0.047 0.897 0.760 0.494 0.997 1.000 0.997 
        
SPV3 CUSUM CUSUM2 Watson- 

Engle 
Nyblom LRsup LRave LRexp 

0.01 0.028 0.501 0.051  0.118 0.600 0.808 0.634 
0.05 0.066 0.643 0.136  0.228 0.776 0.918 0.824 
0.10 0.102 0.741 0.252  0.301 0.843 0.944 0.887 

 
Sample size = 100. Power computed in 1000 repetitions using 400 bootstrap replications in each for the Watson-Engle and Trig-tests 

 
 



  

 

Scaled Intercept Inflation

Figure 1: A Structual Break in U.S. Inflation?
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