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1. Introduction. In a variety of contexts, a number of authors [2], [4]-[8] have

considered the question of when a sequence of semigroups of linear operators

Tn(t):Ln^Ln

converge to a semigroup of linear operators

T(t):L^L

where the Ln and L are locally convex linear topological spaces.

Convergence of the Tn(t) means that for a sequence {/„}/„ eLn

(1-1) lim fin=feL
n-* oo

implies

(1-2) lim Tn(t)fn = T(t)fi
n-* oo

In all of these theorems the notion of convergence used in (1-1) and (1-2) has

essentially been strong convergence. It is the purpose of the present paper to prove

analogous theorems for a certain class of notions of convergence, which will

include, in the case of Banach spaces of functions with the sup norm, bounded,

pointwise convergence, and convergence of bounded sequences which is uniform

over compact sets.

To motivate the eventual abstract formulation of our problem, let us consider

the setting, due to Trotter, which was used in [4] and [7].

Here the Ln and L are Banach spaces. We assume there exist continuous linear

maps Pn:L^-Ln such that

"m |Fn/|| = ll/ll    for every fieL.
n->oo

We say

(1-3) lim/n=/
n-*co

if and only if limn_ ||/n-.rV| =0.
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24 T. G. KURTZ [March

Let f£ be the Banach space of bounded sequences with

(1-4) ||{/n}||   = SU? ll/J.
71

Let 2(P)<^ä' be the space of convergent sequences and observe that

P:{fn}e®(P)^ lim fieL
71-. CO

defines a continuous linear operator from 3>(P) onto L.

This, then, will be our basic assumption : that the notion of convergence of a

sequence {/„} defines a continuous linear operator P from a subspace 2(P) of the

space of bounded sequences ££ to the limiting linear space L.

What is meant by a bounded sequence when the Ln are different locally convex

linear topological spaces (lclts) will be clear when we discuss the topology on =«?.

Seidman [6] considers nets instead of sequences, but it should be clear from the final

formulation that this does not introduce any real complications.

If the Ln are Banach spaces then (1-4) defines the primary topology t on f£.

If the Ln are all the same sequentially complete lclts then we define a family of

seminorms

F({/J) = sup/>(/„)
n

for every continuous seminorm p on Ln, and these determine the topology t. If

the Ln are different lclts, let </>n denote the collection of continuous seminorms on

Ln and let </> he some collection of sequences {pn}, pn e </>n such that {pn : pn is in

some sequence in </>} determines the topology rn on Ln. Then for every sequence

{/?„} e ci we define a seminorm

p(fn) = sup pn(fn),
n

and these seminorms determine the topology r. We observe

r-lim {/„*} = {/„}
ÍC-.00

implies

rn-lim/nk = fn,
k-. oo

and SC is sequentially complete in the topology t.

We now assume that ^(t){fn} = {Tn(t)fn} defines an equicontinuous semigroup

on £?. This is the same as assuming some sort of mutual equicontinuity on the

Tn(t) and is implied by the assumptions made in the earlier papers, at least after

multiplying each Tn(t) by e~Kt for some K independent of n.

We observe that the statement: //{/„} is a convergent sequence then {Tn(t)fn} is a

convergent sequence is the same as saying

(1-5) g-(t):@(P)^3)(P),

and

(1-6) F(0F{/n} = psr(t){fn)
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defines a semigroup on L if in addition

(1-7) áT(t):jV(P)^jV(P),

where ¿V(P) is the null space of P.

For the notion of convergence given by (1-3), (1-7) is trivial, but it may not be

for other types of convergence satisfying our conditions.

We will assume for the moment that Tn(t) is a C0-semigroup on (Ln, t„), but we

will see later that there are situations in which this assumption may be profitably

altered.

Even under this assumption, 9~(t) is almost never a C0-semigroup on (=Sf, t).

However, if we define a second topology o on 1£ by seminorms of the form

CO 00

4>({fn}) = 2 anPn(fn),   {Pn} e <f>,    an ^ 0    and    ^ an < CO,
n=l n=l

3~(t) is (7-continuous and every a-bounded set is r-bounded. (In fact 3? is o-

sequentially complete, but this fact is not used in what follows.)

Let An be the infinitesimal operator of Tn(t) and define si{fn}={Anfn} for every

{/„} such that/; e @(An) and {Anfn} e 3. We observe that (X-sf)'1 is defined on

f£ and is given by the o-Riemann improper integral

(A-jO-M/»} = J" e-^(t){fn}dt = [£ e-"Tn(t)fndty

The subspace ^ciCon which 2T(t) is a C0-semigroup in t is just the closure of

3>(s4), the domain of si.

The main problem is to find conditions under which (1-5) holds. To do this we

will exploit the following corollary to the Hille-Yosida Theorem.

Proposition (1-8). Let ^ be a lclts with topology r and suppose 9~(t) is a C0

T-equicontinuous semigroup of linear operators on &o and that s/0 denotes its

infinitesimal operator. If D is a closed linear subspace of £f0 then

(X-sfoY1: D->D   for some A>0

implies

y(t):D->D   allt^O.

We will now restate our problem in a slightly more general context which will

suppress the sequential nature of SC.

Let f£ and L be lclts, and let P be a continuous linear operator from a closed

subspace £$(P)'^J£' onto L. When does there exist a subspace D^2(P) such that

T(t)Pf = P3-(t)fi      fieD

defines a semigroup on the subspace P(D)<=Lr!

This is the form in which the problem is considered in §2.

2. Transformation of a semigroup. The following assumptions are all satisfied

by the corresponding objects considered in the introduction.
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Let if be a linear space and let t and a be locally convex topologies on SC

satisfying

(2-1) crcr;

(2-2) a set Tc if is <r-bounded if and only if it is T-bounded;

(2-3) S£ is T-sequentially complete.

Let 3~(t): f£ -> f£ be a semigroup of linear operators satisfying

(2-4) 3~(t) is T-equicontinuous ;

(2-5) cT-limf_0 9~(t)f=f for every fe S?;

(2-6) o-limn^„fin=f implies tr-limn_ ^(t)fin=^(t)f;

(2-7) $l¿F(t)fdt exists in £? for every b>a>0 and /eif as a a-Riemann

integral ;

(2-8) J¿° e-My~(t)fdt exists in if for every A>0 and /e if, as an improper

CT-Riemann integral.

Define

,.    y(t)f-f
stffi = CT-hm —v "   J

t-o        I

and

,.    &(t)f-f
(-0 t

when these limits exist in S?. Clearly s¡¿ is an extension of s/0. It follows that

(X-s/)-fi= (" e-T(t)fdt   for every fie if,

and (A—j^o)-1 is given by the same formula but is defined only on the subspace

if0cif on which !T(t) is a C0-semigroup in t.

From the Hille-Yosida Theorem, (2-2) and the definition of j/, it follows that

S?0 is the T-closure of both 3i(sf) and @(sf0).

We note in passing that Komatsu [3] has considered what he calls (t, o) semi-

groups under assumptions closely related to ours.

From here on, all statements involving a topology on äT will be understood to

mean t unless explicitly stated otherwise.

Let L be another lclts, S>(P)<^S¥ a r-closed subspace and P a r-continuous

linear operator from Sl(P) onto L with null space Af(P).

The space L is said to have the induced topology or the topology induced by P

if the topology is given by {v : P " 1(v) e t}. The following lemma collects some

conditions under which L has the induced topology.

Lemma (2-9). Denoting the closure of a set B by B, the following are equivalent:

(i) L has the induced topology;

(ii) B=P(p-\B))for every B^L;

(iii) if q is a continuous seminorm on Si then

q(g) = inf{q(f):Pfi=g}      .
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defines a continuous seminorm on L and the topology on L is determined by seminorms

of this form.

In particular L has the induced topology if there exists a continuous linear

operator Q: L -> 2¡(P) such that PQf=f for every feL.

The following is a consequence of Proposition (1-8).

Proposition (2-10). Suppose

(2-11) F(t):Jf(P)-^Jf(P)

and for some X > 0

(2-12) (A-.j*)-1:0(/,)-»"0(P).

Then

$-(t): 2(P) n¿e0^ 2(P) n JSf0

and hence by (2-11)

y(t): p-\P(®(P) n ¿?0)) = r^r,

and T(t)Pf=P¡T(t)fi,fie Y defines a semigroup of linear operators on P(F)<=L.

Finally we have the main theorem.

Theorem (2-13). Suppose

(2-14) Sr(t):JV(P)-^jV(P)

and for some A > 0

(2-15) (\-s/)-l\^{.P)^>-^{.P).

We define a possibly multivalued operator A : @(A)<^L -> L by

Ag = {Psifi : fi s/fe <2>(P) and Pfi = g},

9(A) = {g: Ag / 0}.

Then there exists X > 0 such that the range 3%(X — A) ofX — A satisfies

(2-16) ®(X-A) = L

if and only if there exists A > 0 such that

(2-17) (X-si)-x:3)(P)^2i(P).

Under these conditions

(2-18) F(t):Y-+T

and T(l)Pf=P3~(t)f,fie F defines a semigroup of linear operators on P(F).

Assuming that L has the induced topology, ¿%(X — A) is always closed and hence

(2-16) may be replaced by

(2-16') 0i(X-A)   is dense in L.
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A further consequence of L having the induced topology is that {Xn(X — A)~n}

form an equicontinuous family of operators. If (2-16) or (2-17) hold, F(r) is the

closure of P(2iï(P) n S?0) which is the same as the closure of

9(A) = F((A-^)-^(P)).

It follows from the Hille-Yosida Theorem that T(t) is a C0-semigroup of equi-

continuous linear operators on F(r) and the infinitesimal operator A0 is the

restriction of A to

®(A0) = {fe2>(A):AfeP(Y)}.

Proof. Let D = {g : g=Xfi-sáfifi ¿¿fe2¡(P)}. Then 9t(\-A)=P(D) and since

(2-17) implies D = 2(P) (2-16) follows.

Conversely, (2-15) implies

D = P-\P(D))

and hence (2-16) implies D=P~1(L)=9(P). Since (X-j^y1: D^2(P), (2-17)

follows.

Assume now that L has the induced topology. We want to show &(X — A) is

closed. By Lemma (2-9)

0t(X-A) = P(P-\âl(X-A))) = P(P-\P(D)))
= P(D) = P(D) = ®(X-A).

The fact that {Xn(X — A)~n} form an equicontinuous family follows from Lemma

(2-9) part (iii) and the fact that {Xn(X-¿f)~n} form an equicontinuous family on =Sf.

The rest is clear.

It is natural to ask what can be said iffe 2(P) but f$ Y. We observe that (2-6),

(2-7) and (2-8) imply for every fie 3!

(2-19) ¿T(s) f ¿T(t)fdt =  f £T(t + s)fdt,
Ja Ja

(2-20) ST(s) P e-Kt$-(t)fdt =  r e-M3T(t + s)fidt
Jo Jo

and

(2-21) h =  f 9~(i)fdt e 3¡(s¿)
Ja

with ¿4h=$'(b)f-9~(d)f. Under the conditions of Theorem (2-13)

(X-^y1 = r e~Mr(t) dt: 9(P) -» 9(P) n 9(jj).

Therefore for feS¡(P)

r e-Kt3T(t)fdt e 2¡(P) n 3(st)
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and

f 9~(s) i" e-"J-(t)fdt ds =  P e~xt^(t) f f(s)fds dt e 9(P) n 2)(st).
Ja Jo Jo Ja

Since }ba g-(s)f dt e 30

r-lim A P e-KtF(t) [ y~(s)fdsdt = f ^(s)fids
A-.00      Jo Ja Ja

and since 3¡(P) n JS?0 is r-closed

f ^(s)fds e 2(P) n J2P0.
Ja

Rewriting this result in a more suggestive fashion we have

Proposition (2-22). Under the conditions of Theorem (2-13), for every fe S¡(P),

t ̂  0 and £ > 0

T(t) - f f{s)fds - - f F(t+s)fds e S>(P) n jSP0.
E Jo « Jo

/n terms of sequences, i/limn_00/n exists, then

lim- frn(/ + i)/nt/í
n-*oo  £ Jo

3. Relation to other theorems. In the earlier work on semigroup convergence

theorems, the last condition in Lemma (2-9) is always satisfied ; consequently the

assumption that L has the induced topology holds. As was pointed out earlier,

convergence in these papers is always essentially strong convergence so (2-14) and

(2-15) are trivially satisfied. Seidman and Kato assume that the resolvents converge

which corresponds to (2-17). The assumptions used by Trotter and in the earlier

work of this author imply (2-16')- The additional assumption that either the range

of the limiting resolvent or Qi(A) is dense in L serves only to imply that P(F)=L.

As a further application of Theorem (2-13) consider a sequence of contraction

semigroups defined on Banach spaces Sn(t): Kn -*■ Kn, and let Tn(t) be the dual of

Sn(t) restricted to some Banach subspaceLn<^K%, such that Tn(t):Ln^Ln.

Let an denote the weak* topology on Ln and t„ the norm topology. Assume

(7n-lim(_o Tn(t)f=f for every/e Ln and that Ln is closed under <rn-Riemann integra-

tion of a„-right continuous functions. That is u(t)eLn, aStSb and u(t) <rn-right

continuous implies

Í u(t)dteLn.

Define

Tn(t)f-f
Af = <7n-lim

t-»0 t
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when the limit exists in Ln. It can be shown, Dynkin [1], that Än is a rn-closed

operator and that

(A-Än)- y = J*" e~"Tn(t)fdt,       X > 0.

Let if be the Banach space of bounded sequences, t, as before, the topology

given by \\{fn}\\ =supn ||/n|| and a the topology given by seminorms of the form

«({/»}) =    2   l"»C/"n)l
71 = 1

where vn e Kn and 2n°°=i ||vn|| <co. Define ¿r(t){fn} = {Tn(t)fn}. Then 3, r, a and

3~(t) satisfy conditions (2-1) through (2-8) and si is given by <s/{/„} = {A~nfn} with

$(*?)= {{fn}e&:{Änfn}e&}.

We therefore have limit theorems in which the limiting infinitesimal operator A

is the limit of the sequence of weak infinitesimal operators.

4. The discrete parameter case. Let Tn:Ln->Ln be a sequence of continuous

linear operators and let Si, t and a be defined as in §1. Let TJk) denote the kth

power of the operator Tn and suppose the collection of operators {Sf({kn})} defined

by

^{KWn} = {Tn(K)fn},

{kn} a sequence of nonnegative integers, is an equicontinuous family of operators

on if.

Let hn>0 satisfy limn^m hn = 0 and define A = (Tn-I)lhn. Then

¿r(t){fn} = {exp{tAn}fn}

defines a semigroup on if satisfying conditions (2-4) through (2-8) and sí{fn)

{Ánfn) with

S>(^)={{fi}e^:{Anfn}e^}.

Let F be a continuous linear operator P: 3>(P) <=■ 3? ->- F, and suppose {fn} e Si

implies {hnfn} e N(P). Then

(2r(t)-<?({[tlK]})):2?^^(P).

The proof of this is essentially the same as the proof of Lemma (2-19) in [4] and it

reduces the proof of the convergence of a sequence of discrete parameter semi-

groups to the proof of the convergence of a sequence of continuous parameter

semigroups.

5. Hasegawa's conditions. One other type of condition for the convergence of

sequences of semigroups has been investigated by M. Hasegawa [2] and S. Oharu

[5].
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In the Banach space case, with all the semigroups defined on the same space L

and strong convergence, this condition is

(5-1) lim   \\Tn(t)Tm(t')f-Tm(t')Tn(t)f\\ = O   for all (,1'èO and all feL.
n,m-*oo

In order to restate this condition in the context of §2 we observe that a sequence

{/,}cL is a Cauchy sequence if and only if

lim /„-/„, = 0
n-* oo

for every permutation {tt,,} of the positive integers, and that H{fn} = {fij defines a

continuous linear operator on S£ which has a continuous inverse.

With this in mind and with J5?, t, o, P etc. as in §2, we assume that Jf? is a col-

lection of ff-continuous linear operators on =S? such that H erf? implies H ~1 e ¿F

and fieS)(P) if and only if

Hf-fejV(P)   for every    HeJP.

Since jV(P) is a linear subspace it follows that H: ¿V(P) -> Jf(P).

In this context condition (5-1) can be stated as

F(t)H - x^(t ')H-H~ lf(t ')HF(t) :3>(P)-+ Jf(P)

for all t, t' ^ 0 and every HeJif.

Defining
/•oo

R„ = (X-si)-1 =        e-M3T(t)dt,

a variety of assumptions about the nature of the limiting process would allow us

to conclude from (5-2) that

(5-2')   RAH-1RÄH-H-1RAHRh:9(P)-^jV(P),   every He Jf and some A > 0,

but rather than make additional assumptions about P we shall take (5-2') as the

basic condition.

Let

3sc = {fe 3>(si) n 2(P) : sife 3>(P)}.

We will show, assuming condition (5-2') and

(5-3) Rk: JV(P) -> jV(P)   for every A > 0,

that

(5-4) RK:®C^®(P)

and hence, since R^ßc) n 3>(P)<^3¡Q

(5-5) RK:P-\P(®C)) = F-+F.
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Since 9sc is a closed subspace of SC0 n 9(P), Proposition (1-8) implies the

following:

Theorem (5-6). Let Jf, 3>c and Y be defined as above. Then (5-2'), (5-3) and

(5-7) J-(t): JV(P)-> JV(P)

imply

T(t)Pf = P3T(t)fi      fieY,

defines a semigroup on P(Y). If L has the induced topology and A is defined as in

Theorem (2-13), then T(t) is strongly continuous on P(Y) which is the closure of

9(A).

To verify (5-4) we need to show that for every fie 9C and every H eJC

HRJ-RJeJT(P).

Using (5-3), (5-2') and the fact that H-I: 9(P) -> Jr\P) we have

HRJ- RJ = HR,(I- H - !)/+ R,(H- I)f+ HRXH " fi- RÁHf

= HRX(I- H -1)/+ R,(H- I)fi+ HR,H " ̂ (A - A)fi

- R,HRAH - \X - A)fi- R,HRh(I- H ~ ̂ )(X -A)feyV(P),

since fie 3>c implies (X-A)fe 9(P).

Remark. Many applications of the earlier semigroup approximation theorems

have been found for sequences of Markov processes. This area, in fact, motivated

the present work. The Banach spaces involved in Markov process applications are

usually spaces of functions with the sup norm. The type of convergence that arises

naturally is bounded, pointwise convergence which, as was pointed out in the

introduction, fits into the context of this paper.
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