
CyhernetTcs and S!tstems AnalysT.s, Vol. 34. No. I, 1998

A GENERAL T H E O R Y OF ACTION LANGUAGES

Alexander Letichevsky* and David Gilbert**

We present a general theory of action-based languages as a paradigm, for the description, of those com-

putational systems which include elements of concurrency and networking, and extend this approach

to describe dist.ributed systems and also t,o describe the interaction of a system, with an environment.

As part of this approach we introduce the Action Language as a common model for the class of non-

deterministic concurrent programming languages and define its intensional and interaction semantics

in terrors of continuous transformation of environment behavior. This semantics i.s specialized for

programs with stores, and extended to describe distributed computations.

Keywords: interaction, semantics, behavior, environments, distribution.

1. INTRODUCTION

We present a general theory of action-based languages as a paradigm for the descript ion of those com-

putat ional svstems which include elements of concurrency and networking, and extend this approach to describe

dis tr ibuted systems and also to describe the interaction of a sys tem with an environment . Our claim is tha t we

are able to characterize most existing computa t ional and interactive systems with our approach, and to relate the

concepts of computa t ion and interaction. We hope tha t our approach will facilitate the design and construct ion of

new computa t ional and interactive systems in the future.

Our basic not ion is tha t of an action, which t ransforms the s ta te of a world; actions are performed by agents 1

whose behavior is changed as a result. We distinguish between an agent and its s tate and thus speak of an agent

in a given state; special types of agents are programs (which have a syntact ical representat ion) and environments

(which usually are not syntact ical ly represented, and into which programs can be inserted). Behaviors are agents

in a given s ta te considered up to bisimilarity, or possibly to a weaker equivalence. Each agent may be represented

as a t ransi t ion sys tem labeled by actions from a corresponding action domain and whose action algebra describes

combination, nondeterminis t ic , and sequential composition. Thus we distinguish between primitive actions and

corn.pound actions, the la t ter being formed from combinat ion of o ther actions.

Interact ion between agents is of two types. The first is expressed by the parallel composi t ion of agents over

the same action domains and is characterized by the combinat ion of actions or interleaving. The second is expressed

by the insertion of an agent into some environment and results in the t ransformat ion of the envi ronment into a new

environment. Some informal examples of environments are:

�9 a computer , or in terpre ter for some programming language (which does not perform global analysis and only

considers actions performable at some moment of time),

�9 a server on a compute r network, or a software system which manipula tes queries considered as actions of

programs, where some actions can be performed immediate ly and others are suspended,

�9 an interactive interface connecting a program with a user, where the user may in ter rupt the execut ion of the

program and perform his own action.

Interactive comput ing is a well-established technique applied to many problem domains, for example, in

the construction of controllers, operat ing systems, p rogramming environments , expert systems, etc. However, this

1The t.erm "agent" is used as a notion which formalizes real objects such as programs, environments, users, clients, servers, and agents
as in the meaning of "software agents" [6].

*Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kiev, Ukraine. **Department of

Computer Science, City University, UK. Published in Kibernetika i Sistemnyi Analiz, No. 1, pp. 16-36, January-February,
1998. Original article submitted November 28, 1997.

12 1060-0396/98/3401-0012520.00 �9 Plenum Publishing Corporation

a x b = b x n

(a xb) x c = a x (b x c)

a x ~5 =~5 x a. = a

, x 0 = 0 x a = 0

(1 - J r - a - - (1

a + b = b + a

(a. + b) + c = a. + (b + c)

a + O = a

(, .b)c = a,(bc)

a5 = 5a = a

aO = Oa = 0

(a + b) x c = a x c + b x c

(a + b)c = a.c + bc

c(a + b) = ca + cb

Fig. 1. Relations of an algebra of actions.

pat-adigm has not been regarded as fundamental until the relatively recent advent of widely available communications

facilities which abst ract from physical locations and networks, coupled with a very high rate of accessibility to

computers. Peter ~Vegner has documented and explored the paradigm shift from algori thms to interaction in his

recent CACM articles [30, 311. Our view is of computat ion a n d interaction as two somewhat orthogonal concepts as

opposed to the view of computa t ion as interaction characterized by Milner in [24].

We believe tha t descriptions of interactive systems should be made using fo,malisms based on very gene,alized

(abstract) languages, and that a sound semantics needs to be given for them. This paper presents our first a t t empt

in this direction. We base out" approach on that of a general abstract Action Language (AL) as a common model

for the class of nondeterminist ic concurrent programming languages [19] (ncpl) and consider them as interactive

progTamming languages by giving a compositional semantics for them. The set of continuous transformations of the

behavior algebra is used as a semantic domain for this purpose. This approach is in some sense a generalization of

the idea of discrete t ransformer introduced by V. Glushkov in [10] and considered as a model of computat ion (see

also [11]). As a further extension, we give a distribution semantics for those ncpl languages which have the notion

of store components.

Nondeterminist ic concurrent programming languages (ncpl) are languages which employ as primitive con-

structs nondete, 'ministic choice, parallel and sequential composition. The best known are the languages based on

CCS [21] and the rr-calculus [22] of R. Milner, CSP [16] of C. A. R. Hoare, and process algebra [8] which were de-

signed to study communicat ion and interaction in concurrent processes. Another class are the concurrent constraint

programming languages [7, 9, 26, 27], which appeared during the last decade and are very popular nowadays, and

combine the properties of computat ion (over relations) and interaction in a very high level and abstract manner. All

of these languages use all three characteristic constructs of ncpl. Nondete, 'ministic choice is an important feature

of declarative programming and also of specification languages, although it may be present implicitly. For example.

the choice of rewriting rules and redexes in algebraic specifications as well as the choice of clauses in logic programs

considered as specifications of subject domains, ave nondeterministic. Parallel composit ion may also be present

implicitly as the possibility of simultaneously computing the values of subexpressions of algebraic expressions or

s imultaneoush-solving constraints.

A~l important advantage of our approach is that it can easily be specialized to describe specific features of

languages belonging to the ncpl class. For example, the following are some special features of the cc family: a store.

variables, and synchronization mechanisms. Another advantage lies in the use of our model to design tools suc!l as

interpr,,tevs, silnttlators, and workbenches for ncpl languages.

13

2. THE ACTION LANGUAGE

The general abs t rac t Action Language (AL) is a common model for the class of ncpl languages. The abst ract

syntax of the Action Language is as follows, where the syntax of Act and P r o c e d u r e C a l l are the paramete rs of each

part icular language of the class.

Prog ::= Act I ProcCall I (Prog + Prog) I (ProgllProg) I (Prog;Prog)

2.1. Actions

The meaning of actions is defined by some algebra of actions A (action algebra) and if it does not result in

anv contradictions then action expressions (considered up to their equivalence) will be identified with the actions

themselves. The language is called a language over A if all action expressions are in terpre ted in the algebra A.

The main opera t ion of the algebra of actions is a binary ac-operat ion (associative and commuta t ive) denoted

as x and called the combinat ion of actions. There is also the empty action 5 which is the neutra l element for

combination and the zero element 0 (the impossible action). Therefore the algebra of actions is a commuta t ive

monoid. It may include also some other operations, as for instance in [23]. Among the different operat ions we

are interested in are nondeterminis t ic choice and sequential composi t ion of actions. The main propert ies of these

operations are i l lustrated in Fig. I (nondeterminist ic choice of a and b is a + b, sequential composi t ion is ab).

An action is called deterministic if it cannot be represented as a nondeterminis t ic choice of two different

nonzero actions. A determinis t ic action is called primitive if it is 5 or 0, or it cannot be split into a combinat ion

of actions different to 5 and 0. Nondeterminis t ic or nonprimit ive actions are called corn, pound ones. The algebra of

actions is called primitive if

1. It is generated by primitive actions;

2. The representa t ion of a nonzero action as a (f in i t e) sum of nonzero determinist ic actions is unique up to the

commuta t iv i ty and idempotence relations for sum.

T h e o r e m 1. Each action algebra is a hornomorphic image of a primitive action algebra.

A free action algebra defined by the equations of Fig. 1 is a primitive one and any act ion algebra is a

homomorphic image of some free action algebra.

In the sequel we shall consider only primitive action algebras wi thout explicit reference to this fact.

In real languages the combinat ion of actions is usually either parallel (simultaneous) per formance of infor-

mat ion- independent computa t ions , or interaction (for example, send and receive operat ions for the exchange of da ta

between two processes). Combinat ions expressing mul t ipar ty communicat ions which are per formed in parallel with

communicat ion and interact ion are also possible. The complexity of actions and their composi t ions depends on the

point of view and level of abs t rac tness desired.

The sequential composi t ion of two actions is a nontrivial (different from 0) action if these actions are inter-

preted as functions or relations and in this case the new action is equivalent to the sequential per formance of two

actions. Nondeterminis t ic composi t ion of actions is used for technical reasons and, as will be shown later, usually

can be el iminated at the level of program transformations.

The simplest examples of action algebras are Hoaxe action algebra (a x a = a, a x b = 0 if a ~ b) and Milner

action algebra (a x ~ = ~-, a x b = 0 if b ~ ~.). Relations on some set of s tates or t ransformat ions defined by assignments

on a set of memory states are also examples of action algebras. Others include Milne's Circal calculus [20], the algebra

of Hennessy [15], L O T O S [17, 29], and its extensions (e.g., L O T C A L [8]).

2.2. Procedure calls

The syntax of procedure calls is another parameter of action language and each p rogram is associated with

a set of procedure definitions and also an algori thm which unfolds any procedure call to a program. We do not

consider the details of procedure definitions, parameter passing, etc. in order not to restrict generalizations. As an

example the uti l ization of rewrit ing technique for the definition of unfolding algori thm is quite useful.

14

~1, + to -- v q- ,t.

(,,. + ~) + ,o = ,,. + (v + ~)

?t, -t- ?t, - - ~t.

.. + 0 = 0 + u = u

(a + b)u = au + bu

Ou = 0

Fig. 2. Relations of an algebra of behaviors.

11-- u

v.r-- v = ~ v . + w U v + w
m

u Y- v =:> a u r- a v

Fig. 3. Approximat ion for behaviors.

Thus a progTam may be considered as an infinite object which can be obta ined by means of infinite (in

the case of nontrivial recursive definitions) unfolding of procedure calls. F o r m a l l y this infinite progTam may be

considered as the limit of a directed set of finite programs uging an approximat ion relation with a b o t t o m element

added to the set of all programs. If the unfolding algori thm is partially defined, then the result ing program may

contain occurrences of the bo t tom element. The unfolding process will be formally defined later.

3 . S E M A N T I C S

Semantics is a function defined on the expressions of a language and which maps the program expressions

of a language to their meaning in some semantic domain. Different semantic functions reflect different levels of

abstract ions and different propert ies of a program. We are interested in two kinds of semantics: computa t iona l and

interaction ones; we also want our semantical functions to be compositional, which means t ha t the meaning of a

composit ion of programs is a corresponding composit ion of their meanings.

A semantic domain is usually equipped with some topology which provides the possibili ty of construct ing

infinite objects using passage to the limits. Classical examples of such domains are Scott functional domains [14]; see

also [3]. In this paper we shall use domains which are continuous algebras [12, 13] or algebras with approximat ion [18].

The la t ter is a poset with part ial order called an approximation relation, a minimal element L, and operat ions which

are continuous w.r.t, the approximat ion relation. We shall also assume tha t in each algebra with approximat ion

which we consider there is given a subalgebra of finite elements which contains the b o t t o m element _L and tha t all

other elements are the limits of ordered sets of finite elements. In [18] it has been shown how an arb i t ra ry algebra

with approximat ion can be completed by such limits.

We speak abou t c o m p u t a t i o n a l s e m a n t i c s of a program if it has been designed to compute some function or

relation. In this case the meaning of a program is tha t function or relation itself. This corresponds to the t radi t ional

denota t ional semantics of programs. However, the execution of any program takes place in some environment which

interacts with the program, performing the sequences of actions defined by this p rogram or allowing these sequences

to be performed. If the environment only supports the computa t ional propert ies of a p rogram it is passive and

does not change the operat ional meaning of a program. This interaction is described by the t radi t ional operat ional

semantics of programs [25]. However, the environment may be more active, and change the predefined behavior of a

p rog lam within wide limits. For example, it may contain some other programs designed independent lv and intended

to interact and communica te with the given program at its run time. Therefore the interact ion semantics must

include an envi ronment as the main parameter . The classical theories of communica t ion (CCS, CSP, w-calculus) are

based on the notions of t ransi t ion systems and bisimulation, and consider interact ion within the scope of the parallel

composit ion of agents. The influence of the environment is sometimes expressed as an explicit language operat ion

such as restriction in C C S or hiding in CSP.

Our approach in describing the interaction semantics of the Action Language is also based on the notion of

bisimilarity, but the environment is considered as a semantic notion and is not explicitly included in the program.

15

(~,. + .o)llw = ,,.llw + o11~o

~,.ll(v + w) -- ~,.ilv + ~,.llw

(o.~,.)ll(bv) = (a • b)(~,.llv) + a(~,llbv) + b(a~,liv)

A I1~' = ~'.11A = ~,.

011~'. = ~,.110 = 0

l !1~,. = ~,11 J - = •

(u + v) w = u w + v w

(a~,)v = a(~,v)

A u = u A = u

Ou = 0

2_ u = /

Fig. 4. The definition of parallel and sequential composition of behaviors.

The meaning of an interactive program is defined as a t ransformat ion of an environment which corresponds to

inserting the program into its environment. When this action is performed the environment changes and this change

is considered as the main proper ty of a program which is to be described by its meaning.

In order to realize this approach first we formalize the notion of behavior in terms of algebras with approxi-

mation. Each behavior is an element of some behavior algebra over an algebra of actions. This behavior defines some

transit ion System (with a given initial state); two behaviors are equal iff the initial s tates of con,,.~ponding transit ion

systems are bisimilarly equivalent. Therefore behaviors are the invariants of transit ion systems considered up to the

bisimilarity relation. Then each program is assigned its behavior which is defined independent ly of its environment.

The behavior of a program is called its in tens iona l meaning . The construction of the intensional meaning of a

program is built in two steps. The first step is to convert the syntactic algebra of the AL to a continuous syntactic

algebra by el iminating procedures calls. This conversion is realized by homomorphism which identifies equivalent

procedure calls (having the same infinite unfoldings). Then the continuous syntactic algebra is homomorphically

mapped to the behavior algebra by means of continuous homomorphism which provides programs of the AL by

behavioral meaning.
After introducing the intensional semantics of programs the notion of an e n v i r o n m e n t is presented. The

environment is defined as a four-tuple which includes as a component a subset of some behavior algebra (the algebra

of environment behaviors) over the action algebra different from the action algebras of the languages which are

accepted by this environment. This subset is closed over transit ions. Then the algebra of continuous t ransformations

of environment behaviors is introduced and the continuous homomorphism of intensional semantics algebra of the AL

to the algebra of t ransformat ions is defined providing each program with its interaction meaning. The homomorphism

is determined by a residual function which sets the relationships between the actions of a program and those of an

environment.

3.1. Behaviors

A behavior over an action algebra A is considered as an element of an algebra o f behaviors over A (sometimes

called a behavior algebra). This algebra is an algebra with approximation (poset with a minimal element and

continuous opera t ions2) It has two operations, the first being denoted by + and is the internal binary aci-operation

(idempotent ac-operation). This operation corresponds to nondeterminist ic choice. The second operat ion is prefixing

au, a being an action, 71. being a behavior. The minimal element of a behavior algebra is denoted _k. The empty

behavior A performs no actions and usually denotes the terminat ion of a process. The impossible behavior 0 is

denoted by the same symbol as the impossible action and is the neutral element for nondeterminist ic choice.

Generat ing relations of any algebra of behaviors are shown in Fig. 2. The symbols a, b are actions, and u, v, w

are behaviors. All other relations are consequences of them.

The approximat ion relation of the algebra of behaviors over A is the minimal part ial order which satisfies

the relations presented in Fig. 3.

2A function f : D ---. D on a poset D is called continuous if it is monotone and for each directed set {x~l/E I} if this set is convergent,

i.e.. has the least upper bound I_[,:e, z, then the set {f(x,)l/ e l} is also convergent and/(LI,el.T.,) = [.I,e,rf(.r.,). An operation is

continuous if it is continuous as a function of each of its arguments.

16

.l_r- p
I

P E_ Q =r P II R E_ Q IiR

P E Q ~ P + R E _ Q + R

P E Q =~ P R E QR

Fig. 5. Approximation for programs.

p(O) =_1_

p(n+ 1) = (unf o ld(p))G..

o=(p) = ~('.)

Fig. 6. Unfolding procedure calls.

The elements of the minimal sub-algebra Ffi=(A) of the algebra of behaviors over A that is a sub-algebra

generated by the empty behavior, the impossible behavior and the bottom element are called finite behaviors. All

other behaviors are assumed to be the limits (least upper bounds) of the countable directed sets of finite elements.

The algebra of behaviors which includes all such limits is denoted F(A). It is defined uniquely up to the continuous

isonlorphism and all behavior algebras considered in the paper are assumed to be subalgebras of this algebra.

From the primitivity of an action algebra it follows that each behavior u can be represented in the form

, , = ~ ~,,,,~ + ~ (1)

i E l

where a,.. are nonzero deterministic actions, ui are behaviors, I is a finite (for finite elements) or infinite (but countable)

set of indices, e = A, 2_, A + 2_, 0 (terminat ion constants).

T h e o r e m 2. I f all surnrnands in representation (1) are different, then this representation is unique up to the

associativity and corn.rn.ut.ativity of nondeterrn.inistic choice.

For a finite behavior u the s ta tement of this theorem is true because the set of behaviors of a type av with

a deterministic such as u = av + v' does not depend on the representation of v. as an expression of the behavior

algebra considered up to the commutat iv i ty and assosiativity of nondeterministic choice. The same is true for the

termination constants. For infinite behaviors the theorem follows from the uniqueness of the representat ion of u as

an infinite sum

a E A o A P (a v)

where A0 is the set of deterministic actions, ~ is the termination constant, and the predicate P is defined as follows:

P(z) ~> 3.r. E F~i=(A)..r.+ _I_E_ 7, A z = I_[V

zU=_yE Ff in (A) 31 + 2. [-= u

Parallel and sequential compositions are introduced as derived operations using the. recursive definitions

presented in Fig. 4 where u, v, w are behaviors, and a and b are deterministic actions. Parallel composition is

denoted by II and sequencing by ; (however, we will sometimes omit this latter operator as in Fig. 4).

These definitions uniquely determine sequential and parallel composition on finite elenlents and may be

uniquely extended to all others by continuity if the corresponding limits are in the algebra of behaviors 3 under

co~sid(:rntion.

aThe behavior algebra plays the same role in the theory of interactive programs as the Kleene algebra does in the tho.ory of automata. In

fact the only difference fiom the Kleene algebra is the absence of right distr ibutivity (if nondeterminist ic choice a,l~t seqtu:ntial composition

a,-o considered ,as the only operations of the algebra of behaviors) and the Kleene algebra may bo. obtailmd a.s t.lm holnotnorphic-image of

the cor r~ponding algebra of behaviors.

17

IP + QI = IIP]] + t[Q]]

[[PIlQ] = [P]III[Q]]

[P;QI=([PI;[Q])

M = azx

Fig. 7. Intensional semantics of Action Language.

p ~ unfold(p)

p is a procedure call

((P + Q); R) ~ (P; R) + (Q; R)

((P + Q)IIR) -* PIIR + QIIR

(a; P)ll(b; Q) ~ ((a x b); (PIIQ)) + (a; (PIl(b; Q))) + (b; ((a; P)IIQ))

p -L (a;Q) + R ~ P ~ Q

a, b are actions

Fig. 8. Reductions and labeled transitions of programs.

T h e o r e m 3. Sequential composition is associative; parallel composition is associative and commutative.

The theorem is proved first for finite behaviors and then extended to the infinite ones. The proofs for

finite behaviors use induction on the length of a behavior which is defined so that l eng th(e) = 0 for the termination

constant e, l eng th (au) = l e n g t h (u) + 1, and length(u-t-v) = max(length(u) , length(v)) . The following (expansion)

theorem gives the explicit form of parallel composition. In this theorem E(u) is a termination constant for a behavior

u, and u and v are finite behaviors.

T h e o r e m 4. Let ~,. : ~ a.,:u{ + E(u) , v = ~ a ir j + E(v) . Then

~,.llv = ~(a~ • bj)O~llvj) § ~ a~(u~llb3v3) + ~ bj(a~u~llvj) + E(u) l lv + 7~llE(v)

Proof is by induction on the sum of the lengths of u and v. From this theorem the associativity of parallel

composition is proved by direct computation (other properties of compositions are trivial). To simplify the compu-

tations it is useful to distinguish between final and nonfinal behaviors. A behavior u is called final if it is equal to

0 or E(,,.) # 0 and rT.onfinal otherwise. The associativity law is first proved for nonfinal behaviors, then for parallel

composition of three behaviors at least one of which is a termination constant, and then for a general case.

3.2. Behaviors and transition systems

We present the well-known notions of a transition system and (partial) bisimulation, adapted to our collection

of termination constants.

Def in i t i on 1. A transition system, over the set of actions A is a set S of states with a transition relation s _2,

.s'. .~. s' E S. a E A and two subsets SA and S_L called correspondingly sets of terminal and divergent states.

18

p --, unf o id(p)

p - L Q , Q ~ R

P ~ R

a - - , A

P ~ Q , s r177 o

P + R ~ Q, PR ~ QR, PIIS ~ QliS

p _.% Q , p , '2~ Q ' ,a x a' # O

PIIP' ~• qllQ'

Fig. 9. Trans i t ion sys t em represent ing s t rong in tensional semant ics of Act ion Language .

(~ + V')(") = ~(u) + r

(~) (, , + ~) = (~) (, , .) + (~) (~)

c'~0(u) if res(c, a) g: 0

(a~)(c,,) = ee~,,(~.o)

c(aq0)(u) otherwise

a # o

(~) (~) =

(~) (o) = o

(~) (• = •

Fig. 10. The defini t ion of nonde te rmin i s t i c choice and prefixing in the a lgebra of behav ior t r ans fo rma t ions .

D e f i n i t i o n 2. A binary relation R C S x S is called a partial bisirnulation i f for all s and t such that s R t and for

a l l a E A

�9 sESA~tESA

a S! �9 s --* ::~ 3tl.t ~-, t' A s 'RE

�9 s ~ S• ~ (t ~ S• A t ~ t' ~ 3s'.s --~ s' A s'Rs)

A s ta te s of a t r ans i t ion sys tem S is called a bisimilar appro.r.irnation of s' d eno t ed as sC_ss' if there exists

a par t ia l b i s imula t ion R such t h a t sRs ' . Symmet r i c closure of par t ia l b i s imula t ion is a bisirnulation equivalence

deno ted s ~ s s ' .

To each s t a t e s of a t r ans i t ion sys tem there is a cor responding behavior Us which is a c o m p o n e n t of a min imal

solut ion of a sys t em of equa t ions

?l,s -- ~ a~l ,s , n t- E s

S a_~5/

T h e o r e m 5. SCB s' r162 u,s C Us, and s~,,S s~ r162 Us = Us,

These are s t a n d a r d doma in theoret ic cons t ruc t ions . Deta i led proofs of s imi lar s t a t e m e n t s based on P lo tk in

power domains can be found in [1].

Ti le transit.ion closure Tr(, .) of behavior 7, is the min imal set of behaviors which includes u and for any

v E Tr (u) if u = aw for some ac t ion a then w E Tr(u) . If T r (u) = {,l, ili E I} then ,,, may be represen ted as a

c o m p o n e n t of the min ima l so lu t ion of a sys tem of equa t ions in an a lgebra of behaviors (equa t iona l representa t ion)"

19

o.

p a_~Q,u c v,c---+d, c o m p l e t e (d) . d # 0

(P, 7,.) d (Q, v)

C

P --~ Q, 7L ~ v, complete(c)

(P, ,,.) ~ (aQ, ~)

Fig. 11. Transition representation of a computat ion semantics.

P ~ Q , u C-+v,c---+d, d # O

(P, ~,) ~ (Q, ~)

P ~ Q, v. _+c v, res (c , a) = 0

(P, u) ~ (~Q, ~)

Fig. 12. Interaction semantics of AL, transition representation.

ui = ~ aqkuj + ei, i E I , Mi C 19- • IC (2)

(i,j,k)EM~

The notion of a transit ion closure can be naturally extended to sets of behaviors. The set U is called transition

closed if it coincides with its transition closure. A transition closed set U can be considered as a set of states of a

transition svstem with transitions defined by the following r u l e :

v a.~vl r = a v IH-v u

The state u is terminal if E(u) = A + e and divergent if E =2_ +s. In all such representations we assume that a is

a deterministic action.

3.3. Examples

Let us consider some special cases of behaviors which cover the majority of classical examples and are useful

for applications.

3.3.1. Finite (rational] behaviors. We obtain finite state transition systems by taking the sets I and Mi in

the equational representation (2) as finite. This corresponds to the "linear case," the behaviors ui constituting the

minimal solution of a system of linear equations. Bisimilarity is algorithmically recognizable, and many theoreti-

cal and practical problems such as proving and recognizing properties, model checking, and so on may be solved

completely [4].

3.3.2. Algebraic behaviors. Equational representation:

~L = F i (u l , . . . , ~ , ,) , i = 1 , . . . , n

Here F i (? l , 1 , . . . , un) are expressions of some behavior algebra, which use not only prefixing and nondeterminis-

tic choice but also parallel and sequential compositions. This is the simplest way to introduce constructive transition

systems with infinite sets of states and this corresponds to the "nonlinear case." The continuity of parallel and

sequential compositions provides the minimal solution. An interesting special case occurs when parallel composition

is not used, and corresponds to "context-free behaviors" [28].

3.3.3. Pararneterized algebraic behaviors. Equational representation:

,,,~(.~:~,..., .~.m) = F ~ (v ~ , . . . , ~k), ~ = i , . . . , , .

20

Q,

(P, ~, ,,.) ~ (Q, t, ~)

(P, s, u) ~ (aQ, t, v)

Fig. 13. Transitions for programs over store.

Here .~:1 , : r~ are variables (formal parameters) , and f j (z l , . . . ,.r.,,.) are expressions of some algebra where

the variables are assigned values (data algebra). F i (v l , . . . , vk) are again behavior algebra expressions. Each equation

is in fact a set of equations indexed by value tuples from data algebra (compare with value passing in CCS). This is

another more powerful way to introduce the infinite s tate behaviors.

3.3.~. Behaviors over state spaces. Action a E A is interpreted as a partial t ransformat ion f~ C_ S --+ S of a

state space. It may be, for instance, conventional memory states or stores in concurrent constraint p rogramming [27]

(conjunctions of primitive constraints). The equality of t ransformations performed by actions must be a congruence

w.r.t, combination" f= = fb ~ f=x~ = fbxc. Now a behavior over a state space S may be defined in the equational

form in the following way-

! a i jk~t j (sai jk)+ei , i = 1 , . . . , r z

(i,j ,k)E Mi,sEDom(aijk)

Here Dora(a) is the domain of fa, sa = f=(s). Usually if the behavior of a program and information environment

is considered, it is split into the behavior of a prog~am

ui = y~. aijkv.j + ci, i = 1 , . . . , n

(i,j,k)~M,

and the behavior of a whole system which is defined by the following rule:

7ti a_% uj, s E Dora(a)

ui(s) ~-% uj(sa)

3.4. Syntactic algebras

The main syntactic compositions of programs define the algebra of syntactic expressions which is calted the

syntactic algebra of a language. In the case of the Action Language there are three main composi t ions (nondeter-

ministic choice, parallel and sequential composition). Actions and procedme calls are the generators of the syntactic

algebra. We may construct the syntactic algebra with approximation and delete procedure calls in the following way.

Extend the syntax of programs by adding the undefined program _L to the definition of Prog. Define the

approximation relation E_ on the set Prog as the minimal partial order satis .lying the rules in Fig. 5.

Let Fprog be the set of all programs without procedure calls. For each p E P r o c C a l l and each integer

rz = 0, 1 , . . . define the n step unfolding p(") of p and the subst i tut ion an " P r o c C a l l ---, Fprog by the definition in

Fig. 6.

For each program P define its complete unfolding Unfo ld (P) as the least upper bound of the set {Per,.},.=0,1....

Completing the algebra Fprog by these limits we obtain the continuous algebra Prog*. This a lgebra is a homomorphic

image of Prog with homomorphism Unfold which obviously identifies the procedure calls with the same complete

unfoldings. In the rest of this paper we shall identify the prog~'am with its complete unfolding and consider it as a

member of a continuous svntactic algebra.

3.5. Intensional semantics

The intensional meaning of a program in AL is its behavior defined independently of any external environment.

If the language is a language over A, the meaning of its program is an element of a behavior a lgebra F (A) . This

21

r e s ((p r o g : a),a) = {a} for all a e A

r e s ((p r o g : a), b) = 0, if b # a

r e s ((e n v : a), b) = @ for all b e A

r e ~ ((i n t e r : a, b • ~), b) = { (~ t e r : a • b, ~)}

r e s ((i n t e r : a, d), b) = q) if there is no .T such tha t d = b • .T

(s, 7,.) (P~:~) (t, v) ~ s -% t

(~, ,,1 (~n~:~,b) (t, v) ~ s ~ b t

Fig. 14. Residual and transit ion functions of the environment with common store.

Lot(X, P) + Q ~ Lot(Y, Pa + Q)

L o t (X , P)IIQ ~ Loc(Y', PalIQ)

(Lot(X, P); Q) ~ Lot(Y, (Pa; Q))

Loc(X, Loc(Y,e)) --~ Loc(X U Z, Pa)

P ~ Q =~ Loc(X, P) ---+ Loc(X, Q)

Fig. 15. Reductions of local program components.

algebra will also be called an intensional algebra of the language. The formal definitions are presented in Fig. 7.

P and Q in this figure are programs, and a is an action. The same operat ion symbols on the left- and

right-hand sides of the equations denote the operations in different algebras. The left-hand side operat ions are

the operations of the syntact ic algebra, and the r ight-hand side operat ions are the operat ions of the intensional

algebra of the language. The mapping ~.] is obviously a continuous homomorphism, so the intensional semantics is

compositional.

The intensional meaning of a program can also be presented as a labeled transit ion sys tem defined up to the

bisimilaritv relation where labels are actions. First we define the equivalence relation on a set of programs as an

equivalence generated by the identities of the algebra of behaviors (Fig. 2), associativity of sequential composition,

associativity and commuta t iv i ty of parallel composition, and relations among terminat ion constants and other com-

positions (Fig, 4). Now the reduct ion relation ---, is defined on a set of programs and the t ransi t ion system is defined

by only one inference rule in Fig. 8. The relation --L is the transi t ive closure of the reduction relation defined on

programs and -% denotes a labeled transition on programs.

Note tha t our definition of parallel composition is weaker than tha t usually defined in the process algebra

using the so-called left merge opera tor [5]. The system corresponding to this stronger definition is presented in Fig. 9.

Nondeterminist ic choice and parallel composition are considered here as commutat ive operations.

3.6. Interaction semantics

The interaction or extensional semantics of AL over an action algebra A is defined for a given environment

(E, A, C, res>. Here E is a t ransi t ion closed subset of behavior algebra F(C) over an algebra of action C called the

behavior algeb~a of an environment , and

r e s - C • A ---, 2 C

is called a residual function. The set E is also called a set of behavior states of an environment, and its symbol is

sometimes used as a symbol of the environment instead of a four-tuple.

The interact ion meaning [P]t~ of a program P is the continuous t ransformation of F(C) restr icted to the set

E. This t ransformat ion is defined by means of a residual function r e s .

D e f i n i t i o n 3. If res(c, a) ~ 0 then action a is said to be conformant with the environment action c, and any action
d E res (c , a) is called a residual of c generated by a.

22

Loc(X, Loc(Y, P) , s) = Loc(X CI Z , P , (s a))

(P, s) = Loc(0, P. s)

Fig. 16. Equivalence of local store components .

r

P ~ Q , s ~ t

Loc(X, P, s) h(x"2-; ~'t)

r

S r ---* /:

toe(X, Q, t.)

Cor P, s) & Lor P~, t)

Fig. 17. Transi t ion sys tem for programs with local store.

D e f i n i t i o n 4. An action of t,he environment is said to be complete if it has no conform.ant act.ions, otherwise it, is

incom, plet,e.

Ins tead of considering a function, one may consider a te rnary relation r e s C C • A x C. This relat ion defines

a label t ransi t ions sys tem on the set C with t ransi t ions

a

d E re s (c , a) r c --, d

The function res induces the equivalence relation on A:

a ~ b ~ V c E A r e s (c , a) = r e s (c , b)

The i m p o r t a n t restr ict ions on r e s are the following:

1. The relat ion a ,-~ b is a congruence w.r.t, combinat ion, tha t is, for all c E A a ,-~ b ::~ a • c --~ b x c;

2. r e s (c , 0) -- r e s (0 , a) --- 0;

3. ~. r 0 ~ 3~ E C (~ (r ~) # 0 A ~ (r ~) # {r

An env i ronment and an act ion algebra A are said to be compatible if they satisfy t h e restr ic t ions above.

The domain for the in teract ion semantics is the algebra Tres (A, C, E) of cont inuous behavior t ransformat ions

of the type ~o : E ~ F(C) . This algebra has the same type as an intensional algebra, tha t is, nondeterminis t ic

choice and prefixing by actions from A are defined for behavior t ransformat ions , but this a lgebra may possess more

relations among behaviors. It is also an algebra with approximat ion built up in the following way. Firs t generate a

finite e lement a lgebra using the following as generators (basic t ransformat ions) :

(i) the identity transformation I, such that I(u) -- u,

(ii) the zero transformation ~0, such that ~0(u) = 0,

(iii) the bottom transformation ~• such that ~• = 2_ for all u E E.

Then complete this algebra by all necessary limits. Nondeterministic choice and prefixing in this algebra are defined

in Fig. I0. Action a in this definition is supposed deterministic, and the definition of prefixing is recursive and must

be understood as the minimal fixed point.

The (informal) meaning of this definition is the following. The interaction between a program and an

environment at the current moment of time consists of choosing a conformant pair of actions a E A and c E C from

all possible ways defined bv the nondeterminism of their current states. From the point of view of game semantics [2]

a program and an environment are partners in a game and this choice is a choice of moves. We do not fix the order

of moves "splitting the atom of interaction" and leave it for applications. Both cases are possible.

If an environment moves first then the choice of an action c defines the set of actions of a program which are

conformant with the action of an environment and which a program may choose as an answer. The residual action

c ~ of an environment is selected as a result of an interaction of a program and an environment. If this residual is

23

complete it means tha t no other programs may interact with the new environment and the given program at this

moment of time. Moreover, if some of these programs are ready to interact, this interaction will be postponed and

may onlv be performed in the future. Otherwise a program may interact at the current moment with other programs

according to the rules of the game defined by the conformance relation.

This is of course onlv one interpretat ion of the interaction semantics introduced here. Other interpretat ions

may include man.v programs and many environments to describe more complex mul t ipar ty hierarchical interaction.

Now the meaning ~PIE of a program P in the environment E is defined by the equat ion

[PIE = t r a n s l P]

The function t r a n s is the continuous homomorphism of the intensional semantic algebra F(A) to the algebra

of behavior t ransformations defined by the equations t r a n s (h) = I, t r a n s (0) = ~00, t r a n s (i) = ~o• This provides

the composit ionali ty of the extensional semantics w.r.t prefixing and nondeterminist ic choice.

3.7. Compositionality of parallel and sequential compositions

To prove compositionality, parallel and sequential composit ion must be defined in the algebra of behavior

transformations so tha t trans(~ll~/~) = t r ans (~o) l l t r an s (r), t r a n s (~ o r (trans(~o))(trans(~/~)).

Both compositions are defined by the same equations as for behaviors (i.e., Fig. 4 witl, ZX changed to I, 0

changed to qo0, _1_ to qo• and behavior t ransformations considered instead of behaviors). ;

Now the problem is to prove the uniqueness of this definition. For this purpose we introduce the normal form

for finite behavior t ransformations. Each finite behavior t ransformat ion can be presented in the form ~ie,r ai99i + e,

where a.i ~: 0 and e = I, ~oo, ~o• or I + ~o• Then we can apply the relation a~o + b~o = (a + b)~o and all ~oi will

be different. Such a representa t ion is called the normal form of a t ransformation. The main theorem is on the

uniqueness of this normal form.

T h e o r e m 6. If the set of states of an environment which is compatible with an algebra A is a subalgebra of the

environment algebra F (C) , then the normal form, of behavior transformations is unique up to the equivalence of

prejCtzes and the order of summands.

To prove the theorem first we prove tha t for a r 0, aq0 = be , , a .-~ b, and ~o _4. r Denote ~es (c , a) =

X:c, eres(c,~) c' and let r e s (c , a) 7~ 0 (such c exists because of compatibil i ty). Then (a~o)(cv.) = Res(c,a)~o(u) =

Res(c, b)r (note tha t r e s (c , b) 7~ ~ because the equality must be true for u = ZX). The arbi t rar iness of u E E

implies the required result.

Similar reasoning can be applied to the sum of guarded t ransformations and for the t ransformat ions of the

type ~o + e, which then completes the proof.

The composit ionali ty of parallel and sequential composit ion is proved using this theorem together with the

congruence property of ~ . We must prove the independence of the definition of parallel and sequential composit ion

from the representat ion of t ransformat ion in normal (now canonical) form. It can be done first for finite behaviors

and then extended to their limits.

3.8. Computational semantics

~In the definition of interact ion semantics, arbi t rary combinations of choices of actions for progaam and

environment are possible. This reflects the si tuation in which a given program may interact with a rb i t ra ry other

programs which were inserted to the environment before the choices under consideration had to be made. But in

realitv there mav be some restrictions or commitments which the choices made by a program and an environment

must satisfv. Specifically, if the program has been developed as a computa t ional one, tha t is, for computa t ion of

some function or relation, then only interaction with the environment, not with other programs, must be considered

for the definition of its computa t iona l meaning.

The aim of this section is to define the computat ional meaning of a program in an abs t rac t and possibly

general form. For this purpose the notion of completeness of environment action will be used. Namely, if the action
d

of a program forces the transi t ion 71. --. v and d is complete, then a t ransi t ion u ---, v can be considered as a t ransi t ion

24

which is the result of the interact ion of an action and an environment only, otherwise some other" actions produced

by other programs could par t ic ipate in generating this transition.

So the computa t iona l meaning can be defined as a relation complP]E C_ E x E. By definition (u, v) E

compIPlE iff there exists a sequence of transitions

(e , ,,.) = " - , ' . . . (p,.,,., ,,.,,,.) = (A , ,,.)

such that all d/. i = 1 . . . , r n . - I are complete. Computa t iona l semantics can be expressed also in the form of a

transit ion system. This presentat ion is given in Fig. 11.

An impor tan t p roper ty of a computa t ion semantics is the following.

T h e o r e m 7. Computation semantics is compositional w.r.L sequential composition.

The computa t ion meaning of a sequential composit ion of prog~'ams is the sequential composi t ion of their

meanings considered as relations over environment behaviors,

The opera t ional representa t ion of computa t ion semantics (Fig. 11) also allows us to dist inguish between

different forms of terminat ion, which is important for s tudying the computa t ional propert ies of a program.

If the s ta te of a computa t ion system is (Q, u) then if P = A this is a successful t e rmina t ion of a computa t ion

process. If Q ~= A and there are no moves fl'om (Q, u), the terminat ion is unsuccessful. We can also distinguish

between a case in which there exists such an action c of an environment tha t u ~ v (deadlock) or there is no such

action (fail).

4. E N V I R O N M E N T S

If ~ is the t ransformat ion defined by a given program over an environment E, then all behaviors ~(u) , 71. E E,

may be represented as s ta tes of a t ransi t ion system defined on a set of pairs (P, u), where P is a s ta te of a program.

This is i l lustrated by the rules in Fig. 12 where the first rule describes a move of a prog~am in a s ta te P and the

second rule describes the s i tuat ion where a progTam is suspended (with the already selected act ion a). We also

identify states of a type (A, u) with u, so a system continues i ts performance after a p rogram has finished. The

terminal s tate of a sys tem is therefore A (not (A, u)) and there are three types of divergent states" (2-, u), (P, 1) ,

and 2_.

Let us consider some useful examples of environments. Each example considers an envi ronment <E, A, C, r e s)

and define this envi ronment by the properties of its components. Sometimes we refer to an envi ronment instead of

its behavior having in mind an environment in a given initial or in termediate s ta te which defines this behavior.

E x a m p l e 1. Let A U {e} C C and the residual function satis .f-y the equat ions r e s (e , a) = {a}, r e s (a , b) =

0, a, b E A . Let

7L - - - C?L

be a behavior of the envi ronment (u E E), P be a program, and ~ p the interact ion meaning of this program. Then

~p (u) = (P; u)

and if ~O is the interact ion meaning of another program Q, then

~oQ(~op(u)) = (P; Q; u)

E x a m p l e 2. General izat ion to mult i - threaded computing. For an arb i t ra ry action algebra let us define

an = a . . . a and [a]" = a. x . . . x a., n times; note tha t a ~ = [a] ~ = 5. Assume the following propert ies of the residual

function (for this example)"

a) = • . . > 0

• a , b) = • a • b } , . , > 0

Now if the s tate of an envi ronment is
o o

n . - - O

25

then several programs are permi t ted to be inserted to it and interact using combinations of actions. The environment

? t - -

OQ

E[el ' , , + I ; a,,.
n = O aEA

not only permits several programs to be inserted, but can itself in terrupt the execution of a program and perform

its own action, changing the intensional meaning of a program.

5. ACTION LANGUAGES OVER STORES

Usually (especially for computat ional programs) some actions of a program are in terpre ted as functions or

relations over some s ta te space, and the algebra of actions of a program generated by these act ions is the algebra of

relations. The states can be memory states if there are names and values, o r some abstract s t ruc tures describing all

the possible values which names (or variables) may take in a given s tate as in the constraint p rogramming paradigm.

We shall use the general term store to denote the state space and sometimes say "store" instead of "state of a store."

If the actions of a language are interpreted on some store the language is called a language over stores.

If a progTam P comprises the parallel composition of some other programs, then the store is a common store

for these progl"ams and therefore it must be considered as a part of an environment into which P will be inserted

before execution.

After inserting a progTam into this environment, a new environment will be obtained whose behavior can be

described by a t ransi t ion system with states (P, s, u). In this triple, P represents a state of a proglam, s is a state

of a store, and u is a s ta te of the control part of an environment. Of course the environment must be compatible

with the algebra of actions of a program. As before we suppose that (A, s, u) = (s, u). The t rans i t ion system which

produces this behavior can be defined by the rules in Fig. 13.

5.1. Synchronous and asynchronous communication

The above presentat ion of interaction semantics of programs over stores is very general and hence cannot

serve to provide a good unders tanding of what happens in reality when the program interacts with its environment.

Especially it does not describe synchronous and asynchronous communicat ion as well as the computa t iona l connec-

tions between the actions of a program and an environment. So let us consider a more specific case in which a store

is used as a common memory for exchanging the information between a program and an environment . Let the action

space of the environment include the following three types of actions:

1. (prog : a), a E A, computa t ional program actions;

2. (env : a), a E A, computa t ional environment actions;

3. (i n t e r : a, b), a, b E A, interactions.

Let actions of A be interpreted as relations on a store and computat ional actions as relations on the environment

states. The desired properties of a residual function and relations between the actions of an environment and a

program are presented in Fig. 14.

The special cases when computat ional actions "add something to a store" or "remove something" can be

considered as asynchronous communication. Interactions are obviously synchronous ones.

5.2. Local store

In real programs only a part of a store may be used as a shared item; other parts are localized in a program

and the external par t of an environment cannot access them. To express this part i t ioning on the s eman t i c level

the notion of variables or names must be introduced on the language level and then used in the definition of the

extensional (interactive) semantics of programs. Action expressions of a language and procedure calls are called

26

Loc(X. Loc(Y, A, s)IIC, t) = Loc(X U Z, C, (sa) x t)

Lor Lor C, ~), t) = Lor U Z, C~, (~o) • t)

Lot (X, O, s) = 0

Fig. 18. Equivalence of components.

Lot (X, P)Q ---, Lot(Y, (Pa)Q, _L)

Fig. 19. Reduct ions for components .

primitive prograrn.s. Actions of an environment are represented by means of syntactic expressions of an extended AL

and also are considered as primitive programs.

Let V be a set of variables, and assume tha t for each primitive program q, a set of variables Vat(q) C_ V

on which it depends is given. If primitive programs contain operators with bound variables such as, for instance,

lambda abstract ion, only free occurrences must be considered, and they also contain all free variables which can

appear under the unfolding of this procedure call. We also need the renaming subst i tut ions cr = [X/Y] where X and

Y are ordered sets of the same numbers of variables (if the order is not given it must be chosen in an a rb i t ra ry way).

These subst i tut ions are defined on primitive programs and extended to arbi t rary ones by renaming of all occurrences

of primitive programs.

The notion of program is extended by adding the notion of local program, components with the syntactical

form Loc(X, P) , where X is a finite set of variables and P is a program. Local program components are considered

up to renaming. This means tha t if a = [Y/X] is a subst i tu t ion which changes symbols from X to symbols flom Y

different fi'om all symbols which occur flee in P (Y r3 V(P) = 0), then Loc(X, P) is equivalent to Loc(Y, P a) . This

assumption extends the equivalence of programs. We also define the reduction relation for local p rogram components

by Fig. 15 which extends the reductions in Fig. 8.

We define an interact ion semantics for programs with a local store, and the control par t of an environment

given by the equat ion

u -- eu + ~ au

aEA

For this case the s ta te of the control part of an environment must not be considered in the definition of the interactive

semantics of AL and the s ta te of a t ransi t ion system for interactive semantics is a local store component L_p.c(X, P, s).

We assume tha t the set of flee var iables and renaming are also defined for store states. Local s tore components are

considered up to the equivalence relation defined in Fig. 16. The renaming cr renames all variables y E Y to those

which are different from X.

The t ransi t ion system for the interactive semantics is presented in Fig. 17. Renaming cr protects the local

variables of a p rogram when the transi t ion is defined by an environment. Hiding opera to r h also hides the local

information of a program action flom other programs which can be inserted into the t ransformed environment as

well as flom an environment itself.

5.3. Channels

Communica t ion between a program and an environment in AL with a local store (as well as between programs

inserted into an environment) can be realized via common (global) memory or as a synchronous interact ion (rendez-

vous, handshaking, etc.). Channels may be represented by variables in the common m e m o r y which have values

assigned to them or changed by actions. The use of these actions can be restricted by an env i ronment according to

the information which the program gives to its environment or introduced by special composi t ions equivalent to the

declarat ion of propert ies of variables.

27

C --% C', C ~ C"

C ~ C"

C ~ C '

CllC" ~ C'llC"

C ~ C ' , D ~ D ' , a x b r

ClID ~b C'IID'

C~C', s ~ t

Loc(X, C, s) h.(X,a__;s,t) Loc(X, C', t)

r

SO" - ' + t,

Loc(X, C, s) a_. Loc(Y, Ca, t)

Fig. 20. Transitions of distributed action components.

r a - - ~

G - ~ H ~ G + F ~ H

G --% H =. GF --% HF

Fig. 21. Transitions of programs.

6. DISTRIBUTED ACTION LANGUAGES

Distributed computat ion is a very important area of modern computer science and its applications. The

main characteristic of this area is the use of local sites for distributing memory and programs. These local sites may

be separate processors in the network or the components of a multiprocessor system as well as persistent software

components (software agents) which perform concurrent computat ion sharing the time of a central processor (multi-

threading) or other resources.

The AL with local store could be used for distributed programming, but its interactive semantics defined

in the previous section has some disadvantages which limit this use. The main disadvantage of the semantics for

programs with a local store is tha t it loses the structure of a program state defined by nesting program components

and partitioning a global store on local spaces for parallel composition. In reality this information could be used for

the organization of a distr ibuted implementation of a given program. Moreover, if the programmer is aware of the

strateg7 for the distr ibuted implementation, he could use this information for the development of efficient distributed

programs using the localization operator as a tool for expressing his algorithmic ideas for the distribution of data

and actions.

Another use of a local component structure could be a more adequate description of components of real

svstems as programs which simulate their activity or create communities of software components.

To eliminate the disadvantage mentioned above, a new distr ibuted interaction semantics is introduced for the

AL with local store. We call this new language the distributed action language (DAL). The main semantic notion

of the DAL is the notion of a distr ibuted action component (dac) which is used to describe the s tate of computat ion

with distributed programs and stores (local stores). The definition is the following:

1. A program is a (simple) dac;

2. Parallel composition of dacs C]ID is a (parallel) dac;

3. If C is a dac and s is a store, then Loc(X, C, s) is a (local) dac.

The equivalence of dacs includes the equivalence of programs, renaming, and extra equivalences introduced

by Fig. 18.

28

Instea(l of reductions of local components in Fig. 15 we introduce onlv one reduction rule on action components

(Fig. :[9) whet(, cs is a protective renaming.

Transitions of dacs which define the distributed interaction semantics are introduced in Fig. 20.

The transition rules for dacs cover some of the transition rules of programs as a special case of a dacs.

Therefore these rules can be reduced to those presented in Fig. 21.

7. CONCLUSIONS

We have presented a general theory of action-based languages as a paradigm for the description of those

computational systems which include elements of concurrency and networking, and extended this approach to describe

distributed systems and also to describe the interaction of a system with an environment. As part of this approach we

have introduced the Action Language as a common model for the class of nondeterministic concurrent programming

languages and defined its intensional and interaction semantics in terms of continuous transformation of environment

behavior. This semantics has been specialized for programs with stores, and extended to describe distributed

computations.

In the future we intend to specialize our theory in order to obtain a working semantics for reasoning about

and designing programs in different paradigms, including concurrent constraint languages. We have started on this

work, and the ideas presented in this paper are being used as the basis for the design of a workbench for action

languages.

We plan: to study the semantics of distributed languages. Our present approach to semantics does not

describe the structure of distributed programs, and we will investigate the possibility of preserving this structure

using equivalent transformations of distributed components.

ACKNOWLEDGMENTS

This research was carried out as part of a .joint project between City University and the Glushkov Institute

of Cybernetics, funded by the Royal Society, UK.

REFERENCES

.

5.

.

.

10.

11.

S. Abramsky, "A domain equation for bisimulation," Inform.. Comput., 92(2), 161-218 (1991).

S. Abramsky, "Semantics of interaction," in: Trees in Algebra and Programming--CAAP'96, Proc. 21st

Int. Coll., LinkSping, Lecture Notes in Computer Science, Vol. 1059, Springer-Verlag (1996), p. 1.

S. Abramsky and A. Jung, "Domain theory," in: Handbook o/Logic in Computer Science, Vol. 3, Clarendon

Press (1994), pp. 2-168.

A. Arnold, Finite Transition Systems, Masson, Prentice Hall (1994).

J. A. Bergstra and J. W. Klop, "Process algebra for synchronous communication," Inform. Control, 60(1/3),

109-137 (1984).

J. Bradshaw, Soft.ware Agents, AAAI/MIT Press (1997).

L. Brim, J-M. Jacquet, D. R. Gilbert, and M. Kfetinsk.#, "A process algebra for synchronous concurrent

constraint programming," in: Michael Hanus and Mario Rodriguez-Artaleio (eds.), Proceedings of ALP96:

Fifth International Conference on Algebraic and Logic Programming, September, 1996, pp. 165-178.

E. Brinksma, "On the design of extended LOTOS; a specification language for open distributed systems,"

PhD Thesis, Department of Informatics, University of Twente, Enschede, Netherlands, 1988.

F. de Boer and C. Palamidessi, "A fully abstract model for concurrent constraint programming," in: S.

Abramskv and T. S. E. Maibaum (eds.), Proc. of TAPSOFT/CAAP91, Lecture Notes in Computer Science,

Springer-Verlag (1991), pp. 296-319.

V. hi. Glushkov. ' :Automata theory and the design of computers," Kibernetika, No. 1 (1965).

V. ~i. Glushkov and A. A. Letichevsky, "Theory of algorithms and discrete processors," in: Advances in

b~fo'rmation Sciences, Vol. 1, Plenum Press (1969), pp. 1-58.

29

[2.

~3.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

.l.A. (;og, l , 'n . . I .W. Tllatcher. E. G. Wagner, and J. B. Wright, "Initial algebra semantics and continuous

al~,.lnas "" J. A CM, 24(1). 68-95. January. 1977.

I. Guessarian. Algebraic Semantics, Lecture Notes in Computer Science, Vol. 99, Springer-Verlag (1981).

C. A. Gunter and D. S. Scott, "Semantic domains," in: Handbook of Theoretical Computer Science, Vol. B,

MIT Press (1994), pp. 633-674.

M. Henness.v, Algebraic Th.eonj of Processes, MIT Press (1988).

C. A. R. Hoare, Corn.rn.unicating Sequential Processes, Prentice Hall, UK (1985).

ISO. ISO IS 8807 In.formation Processing Systems, Open Systems Interconnection, LOTOS (1989).

A. A. Letichevsky, ':Algebras with approximation and recursive data structures," Kiber-n.etik.a, No. 5, 32-37,

September-October, 1987.

A. A. Letichevsky and D. R. Gilbert, ':Toward an implementation theory of nondeterministic concurrent

languages," Technical Report 1996/09, Department of Computer Science, City University, I996. Also pre-

sented at the Second Workshop of the INTAS-93-1702 Project Efficient Symbolic Computing, St. Petersburg,

Russia, October, 1996.

G. J. Milne, "CIRCAL and the representation of communication, concurrency and time," A CM TOPLAS,

7(2), 270-298, April, 1985.

R. Milner, Communication and Concurrency, Prentice Hall (1989).

R. Milner, "The polyadic rr-calculus" a tutorial," Technical Report ECS-LFCS-91-180, Laboratory for Foun-

dations of Computer Science, Department of Computer Science, University of Edinburgh, UK, October

1991. Appeared in Proceedings of the International Summer School on Logic and Algebra of Specification,

Marktoberdorf, August 1991. Reprinted in Logic and Algebra of Specification, F. L. Bauer, W. Brauer, and

H. Schwichtenberg (eds.), Springer-Verlag (1993).

R. Milner, "Action calculi, or syntactic action structures," in: Andrzej M. Borzyszkowski and Stefan Sokolow-

ski (eds.), Mathematical Foundations of Computer Science 1993, 18th International Symposium, MFCS'93,

Lecture Notes in Computer Science, Vol. 711, Springer (1993), pp. 105-121.

R. Milner, "Elements of interaction," Communications of the ACM, 36(1), 78-89 (1993). Turing Award

Lecture.

G. Plotkin, "A structured approach to operational semantics," Technical Report, Tech. Rep. DAIMI FN-19,

Computer Science Dept., Aarhus University, 1981.

F. Rossi and U. Montanari, "Concurrent semantics for concurrent constraint programming," in: B. Mayoh,

E. Tyugu, and J. Pen.iaam (eds.), Constraint Programming: Proceedings 1993 NATO ASI Parnu, Estonia,

NATO Advanced Science Institute Series, Springer-Verlag (1994), pp. I81-220.

V. Saraswat, Concurrent Con~straint Programming, MIT Press (1993).

C. Stifling, "Decidability of bisimulation equivalence for normed pushdown processes," in: CONCUR96,

LNCS 1119 (1996), pp. 217-232.

Peter van Eijk, C. A. Vissers, and M. Diaz (eds.), The Formal Description Technique LOTOS, North-Holland

(1989).
P. Wegner, "Interaction as a basis for empirical computer science," A CM Comput. Surv., 27(1), 45-48,

March, 1995.

P. Wegner, "Why interaction is more powerful than algorithms," CACM, 40(5), 80-91 (1997).

30

