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A GENERAL T H E O R Y  OF ACTION LANGUAGES 

Alexander Letichevsky* and David Gilbert** 

We present a general theory of action-based languages as a paradigm, for the description, of those com- 

putational systems which include elements of concurrency and networking, and extend this approach 

to describe dist.ributed systems and also t,o describe the interaction of a system, with an environment. 

As part of this approach we introduce the Action Language as a common model for the class of non- 

deterministic concurrent programming languages and define its intensional and interaction semantics 

in terrors of continuous transformation of environment behavior. This semantics i.s specialized for 

programs with stores, and extended to describe distributed computations. 
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1. INTRODUCTION 

We present a general  theory of action-based languages as a paradigm for the descript ion of those com- 

putat ional  svstems which include elements of concurrency and networking, and extend this approach to describe 

dis tr ibuted systems and also to describe the interaction of a sys tem with an environment .  Our  claim is tha t  we 

are able to characterize most  existing computa t ional  and interactive systems with our approach,  and to relate the 

concepts of computa t ion  and interaction. We hope tha t  our approach will facilitate the design and construct ion of 

new computa t ional  and interactive systems in the future. 

Our basic not ion is tha t  of an action, which t ransforms the s ta te  of a world; actions are performed by agents 1 

whose behavior is changed as a result. We distinguish between an agent and its s tate  and thus speak of an agent 

in a given state; special types of agents are programs (which have a syntact ical  representat ion)  and environments  

(which usually are not syntact ical ly  represented, and into which programs can be inserted).  Behaviors are agents 

in a given s ta te  considered up to bisimilarity, or possibly to a weaker equivalence. Each agent  may  be represented 

as a t ransi t ion sys tem labeled by actions from a corresponding action domain  and whose action algebra describes 

combination, nondeterminis t ic ,  and sequential composition. Thus  we distinguish between primitive actions and 

corn.pound actions, the la t ter  being formed from combinat ion of o ther  actions. 

Interact ion between agents is of two types. The first is expressed by the parallel composi t ion of agents over 

the same action domains  and is characterized by the combinat ion of actions or interleaving. The  second is expressed 

by the insertion of an agent into some environment  and results in the t ransformat ion  of the envi ronment  into a new 

environment.  Some informal examples of environments are: 

�9 a computer ,  or in terpre ter  for some programming language (which does not perform global analysis and only 

considers actions performable  at some moment  of time), 

�9 a server on a compute r  network, or a software system which manipula tes  queries considered as actions of 

programs, where some actions can be performed immediate ly  and others  are suspended,  

�9 an interactive interface connecting a program with a user, where the user may in ter rupt  the execut ion of the 

program and perform his own action. 

Interactive comput ing  is a well-established technique applied to many problem domains,  for example,  in 

the construction of controllers, operat ing systems, p rogramming  environments ,  expert  systems,  etc. However, this 

1The t.erm "agent" is used as a notion which formalizes real objects such as programs, environments, users, clients, servers, and agents 
as in the meaning of "software agents" [6]. 
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a x b = b x n  

(a xb)  x c = a  x ( b x c )  

a x  ~5 =~5 x a. = a  

, x 0 = 0 x a = 0 

(1 - J r - a  - -  (1 

a + b = b + a  

(a. + b) + c = a. + (b + c) 

a + O = a  

( , .b)c  = a,(bc) 

a5 = 5a = a 

aO = Oa = 0 

( a + b )  x c = a x c + b  x c  

(a + b)c  = a.c + bc 

c( a + b) = ca  + cb 

Fig. 1. Relations of an algebra of actions. 

pat-adigm has not been regarded as fundamental  until the relatively recent advent of widely available communications 

facilities which abst ract  from physical locations and networks, coupled with a very high rate of accessibility to 

computers.  Peter ~Vegner has documented and explored the paradigm shift from algori thms to interaction in his 

recent CACM articles [30, 311. Our view is of computat ion a n d  interaction as two somewhat  orthogonal  concepts as 

opposed to the view of computa t ion  as interaction characterized by Milner in [24]. 

We believe tha t  descriptions of interactive systems should be made using fo,malisms based on very gene,alized 

(abstract)  languages, and that  a sound semantics needs to be given for them. This paper presents our first a t t empt  

in this direction. We base out" approach on that  of a general abstract  Action Language (AL) as a common model 

for the class of nondeterminist ic  concurrent programming languages [19] (ncpl) and consider them as interactive 

progTamming languages by giving a compositional semantics for them. The set of continuous transformations of the 

behavior algebra is used as a semantic domain for this purpose. This approach is in some sense a generalization of 

the idea of discrete t ransformer introduced by V. Glushkov in [10] and considered as a model of computat ion (see 

also [11]). As a further extension, we give a distribution semantics for those ncpl languages which have the notion 

of store components.  

Nondeterminist ic  concurrent  programming languages (ncpl) are languages which employ as primitive con- 

structs nondete, 'ministic choice, parallel and sequential composition. The best known are the languages based on 

CCS [21] and the rr-calculus [22] of R. Milner, CSP [16] of C. A. R. Hoare, and process algebra [8] which were de- 

signed to study communicat ion and interaction in concurrent processes. Another  class are the concurrent constraint  

programming languages [7, 9, 26, 27], which appeared during the last decade and are very popular  nowadays, and 

combine the properties of computat ion (over relations) and interaction in a very high level and abstract  manner.  All 

of these languages use all three characteristic constructs of ncpl. Nondete, 'ministic choice is an important  feature 

of declarative programming and also of specification languages, although it may be present implicitly. For example. 

the choice of rewriting rules and redexes in algebraic specifications as well as the choice of clauses in logic programs 

considered as specifications of subject  domains, ave nondeterministic. Parallel composit ion may also be present 

implicitly as the possibility of simultaneously computing the values of subexpressions of algebraic expressions or 

s imultaneoush-solving constraints. 

A~l important  advantage of our approach is that it can easily be specialized to describe specific features of 

languages belonging to the ncpl class. For example, the following are some special features of the cc family: a store. 

variables, and synchronization mechanisms. Another advantage lies in the use of our model to design tools suc!l as 

interpr,,tevs, silnttlators, and workbenches for ncpl languages. 
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2. THE ACTION LANGUAGE 

The general abs t rac t  Action Language (AL) is a common model  for the class of ncpl languages. The  abst ract  

syntax of the Action Language is as follows, where the syntax of Act and P r o c e d u r e C a l l  are the paramete rs  of each 

part icular language of the class. 

Prog ::= Act I ProcCall I (Prog + Prog) I (ProgllProg) I (Prog;Prog) 

2.1. Actions 

The meaning of actions is defined by some algebra of actions A (action algebra) and if it does not result  in 

anv contradictions then action expressions (considered up to their  equivalence) will be identified with the actions 

themselves. The language is called a language over A if all action expressions are in terpre ted  in the algebra A. 

The main opera t ion  of the algebra of actions is a binary ac-operat ion (associative and commuta t ive )  denoted 

as x and called the combinat ion  of actions. There  is also the empty  action 5 which is the neutra l  element for 

combination and the zero element  0 (the impossible action). Therefore the algebra of actions is a commuta t ive  

monoid. It may include also some other  operations,  as for instance in [23]. Among the different operat ions  we 

are interested in are nondeterminis t ic  choice and sequential composi t ion of actions. The  main  propert ies  of these 

operations are i l lustrated in Fig. I (nondeterminist ic  choice of a and b is a + b, sequential  composi t ion  is ab). 

An action is called deterministic if it cannot  be represented as a nondeterminis t ic  choice of two different 

nonzero actions. A determinis t ic  action is called primitive if it is 5 or 0, or it cannot  be split into a combinat ion 

of actions different to  5 and 0. Nondeterminis t ic  or nonprimit ive actions are called corn, pound ones. The  algebra of 

actions is called primitive if 

1. It is generated by primitive actions; 

2. The representa t ion of a nonzero action as a ( f in i t e ) sum of nonzero determinist ic  actions is unique up to the 

commuta t iv i ty  and idempotence  relations for sum. 

T h e o r e m  1. Each action algebra is a hornomorphic image of a primitive action algebra. 

A free action algebra defined by the equations of Fig. 1 is a primitive one and any act ion algebra is a 

homomorphic image of some free action algebra. 

In the sequel we shall consider only primitive action algebras wi thout  explicit reference to this fact. 

In real languages the combinat ion of actions is usually either parallel (simultaneous) per formance  of infor- 

mat ion- independent  computa t ions ,  or interaction (for example, send and receive operat ions  for the  exchange of da ta  

between two processes). Combinat ions  expressing mul t ipar ty  communicat ions  which are per formed in parallel with 

communicat ion and interact ion are also possible. The complexity of actions and their composi t ions  depends  on the 

point of view and level of abs t rac tness  desired. 

The sequential  composi t ion of two actions is a nontrivial  (different from 0) action if these actions are inter- 

preted as functions or relations and in this case the new action is equivalent to the sequential  per formance  of two 

actions. Nondeterminis t ic  composi t ion of actions is used for technical reasons and, as will be shown later, usually 

can be el iminated at the level of program transformations.  

The simplest  examples  of action algebras are Hoaxe action algebra (a x a = a, a x b = 0 if a ~ b) and Milner 

action algebra (a x ~ = ~-, a x b = 0 if b ~ ~.). Relations on some set of s tates  or t ransformat ions  defined by assignments 

on a set of memory  states  are also examples of action algebras. Others  include Milne's Circal calculus [20], the algebra 

of Hennessy [15], L O T O S  [17, 29], and its extensions (e.g., L O T C A L  [8]). 

2.2. Procedure calls 

The syntax of procedure  calls is another  parameter  of action language and each p rogram is associated with 

a set of procedure definitions and also an algori thm which unfolds any procedure call to a program.  We do not 

consider the details of procedure  definitions, parameter  passing, etc. in order not to restrict  generalizations.  As an 

example the uti l ization of rewrit ing technique for the definition of unfolding algori thm is quite useful. 
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~1, + to -- v q- ,t. 

(,,. + ~) + ,o = ,,. + (v + ~ )  

?t, -t- ?t, - -  ~t. 

.. + 0 = 0 + u = u 

(a + b)u = au + bu 

Ou = 0 

Fig. 2. Relations of an algebra of behaviors. 

11-- u 

v.r-- v = ~  v . + w U  v + w  
m 

u Y- v =:> a u  r- a v  

Fig. 3. Approximat ion for behaviors. 

Thus a progTam may be considered as an infinite object which can be obta ined by means of infinite (in 

the case of nontrivial  recursive definitions) unfolding of procedure calls. F o r m a l l y  this infinite progTam may be 

considered as the limit of a directed set of finite programs uging an approximat ion relation with a b o t t o m  element 

added to the set of all programs.  If the unfolding algori thm is partially defined, then the result ing program may 

contain occurrences of the bo t tom element. The unfolding process will be formally defined later. 

3 .  S E M A N T I C S  

Semantics is a function defined on the expressions of a language and which maps the program expressions 

of a language to their  meaning in some semantic domain. Different semantic functions reflect different levels of 

abstract ions and different propert ies  of a program. We are interested in two kinds of semantics:  computa t iona l  and 

interaction ones; we also want our semantical  functions to be compositional,  which means  t ha t  the meaning of a 

composit ion of programs is a corresponding composit ion of their meanings. 

A semantic domain  is usually equipped with some topology which provides the possibili ty of construct ing 

infinite objects using passage to the limits. Classical examples of such domains are Scott  functional  domains  [14]; see 

also [3]. In this paper  we shall use domains which are continuous algebras [12, 13] or algebras with approximat ion  [18]. 

The la t ter  is a poset with part ial  order called an approximation relation, a minimal  element  L,  and operat ions  which 

are continuous w.r.t, the approximat ion  relation. We shall also assume tha t  in each algebra with approximat ion  

which we consider there  is given a subalgebra of finite elements which contains the b o t t o m  element  _L and tha t  all 

other  elements are the limits of ordered sets of finite elements. In [18] it has been shown how an arb i t ra ry  algebra 

with approximat ion  can be completed by such limits. 

We speak abou t  c o m p u t a t i o n a l  s e m a n t i c s  of a program if it has been designed to compute  some function or 

relation. In this case the meaning of a program is tha t  function or relation itself. This corresponds to the t radi t ional  

denota t ional  semantics  of programs.  However, the execution of any program takes place in some environment  which 

interacts with the program,  performing the sequences of actions defined by this p rogram or allowing these sequences 

to be performed. If the environment  only supports  the computa t ional  propert ies  of a p rogram it is passive and 

does not change the operat ional  meaning of a program. This interaction is described by the t radi t ional  operat ional  

semantics of programs [25]. However, the environment  may be more active, and change the predefined behavior of a 

p rog lam within wide limits. For example, it may contain some other  programs designed independent lv  and intended 

to interact  and communica te  with the given program at its run time. Therefore the interact ion semantics must 

include an envi ronment  as the main parameter .  The classical theories of communica t ion  (CCS, CSP, w-calculus) are 

based on the notions of t ransi t ion systems and bisimulation, and consider interact ion within the scope of the parallel 

composit ion of agents. The influence of the environment  is sometimes expressed as an explicit  language operat ion 

such as restriction in C C S  or  hiding in CSP. 

Our approach in describing the interaction semantics of the Action Language is also based on the notion of 

bisimilarity, but the environment  is considered as a semantic notion and is not explicitly included in the program. 
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(~,. + .o)llw = ,,.llw + o11~o 

~,.ll(v + w )  --  ~,.ilv + ~,.llw 

(o.~,.)ll(bv) = (a  • b)(~,.llv) + a(~,llbv) + b(a~,liv) 

A I1~' = ~'.11A = ~,. 

011~'. = ~,.110 = 0 

l !1~,. = ~,11 J - = •  

(u + v ) w  = u w  + v w  

(a~,)v = a(~,v) 

A u  = u A  = u 

Ou = 0 

2_ u = /  

Fig. 4. The definition of parallel and sequential composition of behaviors. 

The meaning of an interactive program is defined as a t ransformat ion of an environment which corresponds to 

inserting the program into its environment.  When this action is performed the environment changes and this change 

is considered as the main proper ty  of a program which is to be described by its meaning. 

In order to realize this approach first we formalize the notion of behavior in terms of algebras with approxi- 

mation. Each behavior is an element  of some behavior algebra over an algebra of actions. This behavior defines some 

transit ion System (with a given initial state); two behaviors are equal iff the initial s tates  of con,,.~ponding transit ion 

systems are bisimilarly equivalent. Therefore behaviors are the invariants of transit ion systems considered up to the 

bisimilarity relation. Then each program is assigned its behavior which is defined independent ly  of its environment.  

The behavior of a program is called its in tens iona l  meaning .  The construction of the intensional meaning of a 

program is built in two steps. The  first step is to convert the syntactic algebra of the AL to a continuous syntactic 

algebra by el iminating procedures calls. This conversion is realized by homomorphism which identifies equivalent 

procedure calls (having the same infinite unfoldings). Then the continuous syntactic algebra is homomorphically 

mapped to the behavior algebra by means of continuous homomorphism which provides programs of the AL by 

behavioral meaning. 
After introducing the intensional semantics of programs the notion of an e n v i r o n m e n t  is presented. The 

environment is defined as a four-tuple which includes as a component  a subset of some behavior algebra (the algebra 

of environment behaviors) over the action algebra different from the action algebras of the languages which are 

accepted by this environment.  This subset is closed over transit ions.  Then the algebra of continuous t ransformations 

of environment behaviors is introduced and the continuous homomorphism of intensional semantics algebra of the AL 

to the algebra of t ransformat ions  is defined providing each program with its interaction meaning. The homomorphism 

is determined by a residual function which sets the relationships between the actions of a program and those of an 

environment.  

3.1. Behaviors 

A behavior over an action algebra A is considered as an element of an algebra o f  behaviors  over A (sometimes 

called a behavior algebra). This algebra is an algebra with approximation (poset with a minimal  element and 

continuous opera t ions2)  It has two operations, the first being denoted by + and is the internal binary aci-operation 

( idempotent  ac-operation).  This operation corresponds to nondeterminist ic  choice. The second operat ion is prefixing 

au, a being an action, 71. being a behavior. The minimal element of a behavior algebra is denoted _k. The  empty 

behavior A performs no actions and usually denotes the terminat ion of a process. The impossible behavior 0 is 

denoted by the same symbol as the impossible action and is the neutral  element for nondeterminist ic  choice. 

Generat ing relations of any algebra of behaviors are shown in Fig. 2. The symbols a, b are actions, and u, v, w 

are behaviors. All other  relations are consequences of them. 

The approximat ion relation of the algebra of behaviors over A is the minimal part ial  order which satisfies 

the relations presented in Fig. 3. 

2A function f : D ---. D on a poset D is called continuous if it is monotone and for each directed set {x~l/E I} if this set is convergent, 

i.e.. has the least upper bound I_[,:e, z, then the set {f(x,)l/ e l} is also convergent and/(LI,el.T.,) = [.I,e,rf(.r.,). An operation is 

continuous if it is continuous as a function of each of its arguments. 
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.l_r- p 
I 

P E_ Q =r P II R E_ Q IiR 

P E Q ~ P + R E _ Q + R  

P E Q =~ P R  E QR 

Fig. 5. Approximation for programs. 

p(O) =_1_ 

p(n+ 1) = (unf o ld(p))G..  

o=(p) = ~('.) 

Fig. 6. Unfolding procedure calls. 

The elements of the minimal sub-algebra Ffi=(A) of the algebra of behaviors over A that  is a sub-algebra 

generated by the empty behavior, the impossible behavior and the bottom element are called finite behaviors. All 

other behaviors are assumed to be the limits (least upper bounds) of the countable directed sets of finite elements. 

The algebra of behaviors which includes all such limits is denoted F(A).  It is defined uniquely up to the continuous 

isonlorphism and all behavior algebras considered in the paper are assumed to be subalgebras of this algebra. 

From the primitivity of an action algebra it follows that  each behavior u can be represented in the form 

, ,  = ~ ~,,,,~ + ~ (1) 

i E l  

where a,.. are nonzero deterministic actions, ui are behaviors, I is a finite (for finite elements) or infinite (but countable) 

set of indices, e = A, 2_, A +  2_, 0 ( terminat ion constants). 

T h e o r e m  2. I f  all surnrnands in representation (1) are different, then this representation is unique up to the 

associativity and corn.rn.ut.ativity of nondeterrn.inistic choice. 

For a finite behavior u the s ta tement  of this theorem is true because the set of behaviors of a type av with 

a deterministic such as u = av + v' does not depend on the representation of v. as an expression of the behavior 

algebra considered up to the commutat iv i ty  and assosiativity of nondeterministic choice. The  same is true for the 

termination constants.  For infinite behaviors the theorem follows from the uniqueness of the representat ion of u as 

an infinite sum 

a E A o A P ( a v )  

where A0 is the set of deterministic actions, ~ is the termination constant, and the predicate P is defined as follows: 

P(z)  ~> 3.r. E F~i=(A)..r.+ _I_E_ 7, A z = I_[ V 

zU=_yE Ff in ( A ) 31 + 2. [-= u 

Parallel  and sequential compositions are introduced as derived operations using the. recursive definitions 

presented in Fig. 4 where u, v, w are behaviors, and a and b are deterministic actions. Parallel composition is 

denoted by II and sequencing by ; (however, we will sometimes omit this latter operator  as in Fig. 4). 

These definitions uniquely determine sequential and parallel composition on finite elenlents and may be 

uniquely extended to all others by continuity if the corresponding limits are in the algebra of behaviors 3 under 

co~sid(:rntion. 

aThe behavior algebra plays the same role in the theory of interactive programs as the Kleene algebra does in the tho.ory of automata.  In 

fact the only difference fiom the Kleene algebra is the absence of right distr ibutivity (if nondeterminist ic choice a,l~t seqtu:ntial composition 

a,-o considered ,as the only operations of the algebra of behaviors) and the Kleene algebra may bo. obtailmd a.s t.lm holnotnorphic-image of 

the cor r~ponding  algebra of behaviors. 
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IP + QI = IIP]] + t[Q]] 

[[PIlQ] = [P]III[Q]] 

[P;QI=([PI;[Q]) 

M = azx 

Fig. 7. Intensional semantics of Action Language. 

p ~ unfold(p) 

p is a procedure call 

((P + Q); R) ~ (P; R) + (Q; R) 

((P + Q)IIR) -* PIIR + QIIR 

(a; P)ll(b; Q) ~ ((a x b); (PIIQ)) + (a; (PIl(b; Q))) + (b; ((a; P)IIQ)) 

p -L (a;Q) + R ~ P ~ Q 

a, b are actions 

Fig. 8. Reductions and labeled transitions of programs. 

T h e o r e m  3. Sequential composition is associative; parallel composition is associative and commutative.  

The theorem is proved first for finite behaviors and then extended to the infinite ones. The proofs for 

finite behaviors use induction on the length of a behavior which is defined so that  l eng th(e )  = 0 for the termination 

constant e, l eng th ( au )  = l e n g t h ( u ) +  1, and length(u-t-v) = max(length(u) ,  length(v)) .  The following (expansion) 

theorem gives the explicit form of parallel composition. In this theorem E(u)  is a termination constant for a behavior 

u, and u and v are finite behaviors. 

T h e o r e m  4. Let ~,. : ~ a.,:u{ + E(u) ,  v = ~ a ir  j + E(v) .  Then 

~,.llv = ~(a~ • bj)O~llvj) § ~ a~(u~llb3v3) + ~ bj(a~u~llvj) + E(u) l lv  + 7~llE(v) 

Proof is by induction on the sum of the lengths of u and v. From this theorem the associativity of parallel 

composition is proved by direct computation (other properties of compositions are trivial). To simplify the compu- 

tations it is useful to distinguish between final and nonfinal behaviors. A behavior u is called final if it is equal to 

0 or E(,,.) # 0 and rT.onfinal otherwise. The associativity law is first proved for nonfinal behaviors, then for parallel 

composition of three behaviors at least one of which is a termination constant, and then for a general case. 

3.2. Behaviors and transition systems 

We present the well-known notions of a transition system and (partial) bisimulation, adapted to our collection 

of termination constants. 

Def in i t i on  1. A transition system, over the set of actions A is a set S of states with a transition relation s _2, 

.s'. .~. s' E S. a E A and two subsets SA and S_L called correspondingly sets of terminal and divergent states. 
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p --, unf o id(p) 

p - L Q ,  Q ~ R  

P ~ R  

a - - , A  

P ~ Q ,  s r177 o 

P + R ~ Q, PR ~ QR, PIIS ~ QliS 

p _.% Q , p ,  '2~ Q ' ,a  x a' # O 

PIIP' ~• qllQ' 

Fig. 9. Trans i t ion  sys t em represent ing  s t rong  in tensional  semant ics  of Act ion  Language .  

(~ + V')(") = ~(u) + r 

( ~ ) ( , ,  + ~) = ( ~ ) ( , , . ) +  ( ~ ) ( ~ )  

c'~0(u) if res(c,  a) g: 0 

(a~)(c,,) = ee~,,(~.o) 

c(aq0)(u) otherwise 

a # o  

( ~ ) ( ~ )  = 

( ~ ) ( o )  = o 

( ~ ) ( •  = •  

Fig. 10. The  defini t ion of nonde te rmin i s t i c  choice and prefixing in the  a lgebra  of behav ior  t r ans fo rma t ions .  

D e f i n i t i o n  2. A binary relation R C S x S is called a partial bisirnulation i f  for  all s and t such that s R t  and for  

a l l a E  A 

�9 sESA~tESA 

a S!  �9 s --* ::~ 3tl.t  ~-, t' A s 'RE 

�9 s ~ S• ~ (t ~ S• A t ~ t' ~ 3s'.s --~ s' A s'Rs) 

A s ta te  s of a t r ans i t ion  sys tem S is called a bisimilar appro.r.irnation of s' d eno t ed  as sC_ss' if there  exists 

a par t ia l  b i s imula t ion  R such t h a t  sRs ' .  Symmet r i c  closure of par t ia l  b i s imula t ion  is a bisirnulation equivalence 

deno ted  s ~  s s ' .  

To each s t a t e  s of a t r ans i t ion  sys tem there  is a cor responding  behavior  Us which is a c o m p o n e n t  of a min imal  

solut ion of a sys t em of equa t ions  

?l,s -- ~ a~l ,s ,  n t- E s 

S a_~5/ 

T h e o r e m  5. SCB s' r162 u,s C Us, and s~,,S s~ r162 Us = Us, 

These  are s t a n d a r d  doma in  theoret ic  cons t ruc t ions .  Deta i led  proofs of s imi lar  s t a t e m e n t s  based on P lo tk in  

power domains  can be found in [1]. 

Ti le  transit.ion closure Tr( , . )  of behavior  7, is the min imal  set of behaviors  which includes  u and  for any 

v E Tr (u )  if u = aw for some ac t ion  a then  w E Tr(u) .  If T r (u )  = {,l, ili E I}  then  ,,, may  be represen ted  as a 

c o m p o n e n t  of the min ima l  so lu t ion  of a sys tem of equa t ions  in an a lgebra  of behaviors  ( equa t iona l  representa t ion)"  
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o. 

p a_~Q,u c v,c---+d, c o m p l e t e ( d ) . d # 0  

(P, 7,.) d (Q, v) 

C 

P --~ Q, 7L ~ v, complete(c) 

(P, ,,.) ~ (aQ, ~) 

Fig. 11. Transition representation of a computat ion semantics. 

P ~ Q , u  C-+v,c---+d, d # O  

(P, ~,) ~ (Q, ~) 

P ~ Q, v. _+c v, res (c ,  a) = 0 

(P, u) ~ (~Q, ~) 

Fig. 12. Interaction semantics of AL, transition representation. 

ui = ~ aqkuj + ei, i E I ,  Mi C 19- • IC (2) 

(i,j,k)EM~ 

The notion of a transit ion closure can be naturally extended to sets of behaviors. The set U is called transition 

closed if it coincides with its transition closure. A transition closed set U can be considered as a set of states of a 

transition svstem with transitions defined by the following r u l e :  

v a.~vl r = a v  IH-v u 

The state u is terminal if E(u)  = A + e and divergent if E =2_ +s.  In all such representations we assume that  a is 

a deterministic action. 

3.3. Examples 

Let us consider some special cases of behaviors which cover the majority of classical examples and are useful 

for applications. 

3.3.1. Finite (rational] behaviors. We obtain finite state transition systems by taking the sets I and Mi in 

the equational representation (2) as finite. This corresponds to the "linear case," the behaviors ui constituting the 

minimal solution of a system of linear equations. Bisimilarity is algorithmically recognizable, and many theoreti- 

cal and practical problems such as proving and recognizing properties, model checking, and so on may be solved 

completely [4]. 

3.3.2. Algebraic behaviors. Equational representation: 

~L = F i ( u l , . . . , ~ , , ) ,  i = 1 , . . . , n  

Here F i ( ? l , 1 , . . .  , un) are expressions of some behavior algebra, which use not only prefixing and nondeterminis- 

tic choice but also parallel and sequential compositions. This is the simplest way to introduce constructive transition 

systems with infinite sets of states and this corresponds to the "nonlinear case." The continuity of parallel and 

sequential compositions provides the minimal solution. An interesting special case occurs when parallel composition 

is not used, and corresponds to "context-free behaviors" [28]. 

3.3.3. Pararneterized algebraic behaviors. Equational representation: 

,,,~(.~:~,..., .~.m) = F ~ ( v ~ , . . . ,  ~k),  ~ = i , . . . , , .  
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Q, 

(P, ~, ,,.) ~ (Q, t, ~) 

(P, s, u) ~ (aQ, t, v) 

Fig. 13. Transitions for programs over store. 

Here .~:1 .... , : r~ are variables (formal parameters) ,  and f j ( z l , . . .  ,.r.,,.) are expressions of some algebra where 

the variables are assigned values (data  algebra). F i ( v l , . . . ,  vk) are again behavior algebra expressions. Each equation 

is in fact a set of equations indexed by value tuples from data  algebra (compare with value passing in CCS). This is 

another more powerful way to introduce the infinite s tate  behaviors. 

3.3.~. Behaviors over state spaces. Action a E A is interpreted as a partial t ransformat ion  f~ C_ S --+ S of a 

state space. It may be, for instance, conventional memory states or stores in concurrent constraint  p rogramming [27] 

(conjunctions of primitive constraints).  The equality of t ransformations performed by actions must  be a congruence 

w.r.t, combination" f= = fb ~ f=x~ = fbxc. Now a behavior over a state space S may be defined in the equational 

form in the following way- 

! a i jk~t j (sai jk)+ei ,  i =  1 , . . . , r z  

( i,j ,k )E Mi,sEDom(aijk ) 

Here Dora(a) is the domain of fa, sa = f=(s). Usually if the behavior of a program and information environment 

is considered, it is split into the behavior of a prog~am 

ui = y~. aijkv.j + ci, i =  1 , . . . , n  

(i,j,k)~M, 

and the behavior of a whole system which is defined by the following rule: 

7ti a_% uj, s E Dora(a) 

ui(s) ~-% uj(sa)  

3.4. Syntactic algebras 

The main syntactic compositions of programs define the algebra of syntactic expressions which is calted the 

syntactic algebra of a language. In the case of the Action Language there are three main composi t ions (nondeter- 

ministic choice, parallel and sequential composition). Actions and procedme calls are the generators  of the syntactic 

algebra. We may construct  the syntactic algebra with approximation and delete procedure calls in the following way. 

Extend the syntax of programs by adding the undefined program _L to the definition of Prog. Define the 

approximation relation E_ on the set Prog as the minimal partial order satis .lying the rules in Fig. 5. 

Let Fprog be the set of all programs without  procedure calls. For each p E P r o c C a l l  and each integer 

rz = 0, 1 , . . .  define the n step unfolding p(") of p and the subst i tut ion an " P r o c C a l l  ---, Fprog  by the definition in 

Fig. 6. 

For each program P define its complete unfolding Unfo ld (P)  as the least upper bound of the set {Per,.},.=0,1.... 

Completing the algebra Fprog by these limits we obtain the continuous algebra Prog*. This a lgebra is a homomorphic 

image of Prog with homomorphism Unfold which obviously identifies the procedure calls with the same complete 

unfoldings.  In the rest of this paper we shall identify the prog~'am with its complete unfolding and consider it as a 

member  of a continuous svntactic algebra. 

3.5. Intensional semantics 

The intensional meaning of a program in AL is its behavior defined independently of any external  environment.  

If the language is a language over A, the meaning of its program is an element of a behavior a lgebra F ( A ) .  This 
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r e s ( ( p r o g  : a),a) = {a} for all a e A 

r e s ( ( p r o g  : a), b) = 0, if b # a 

r e s ( ( e n v  : a), b) = @ for all b e A 

r e ~ ( ( i n t e r  : a, b • ~), b) = { ( ~ t e r  : a • b, ~)} 

r e s ( ( i n t e r  : a, d), b) = q) if there is no .T such tha t  d = b • .T 

(s, 7,.) (P~:~)  (t, v) ~ s -% t 

(~, ,,1 (~n~:~,b) (t, v) ~ s ~ b  t 

Fig. 14. Residual and transit ion functions of the environment  with common store. 

Lot(X,  P)  + Q ~ Lot(Y, Pa + Q) 

L o t ( X ,  P)IIQ ~ Loc(Y', PalIQ) 

(Lot(X, P);  Q) ~ Lot(Y, (Pa; Q)) 

Loc(X, Loc(Y,e))  --~ Loc(X U Z, Pa) 

P ~ Q =~ Loc(X, P)  ---+ Loc(X, Q) 

Fig. 15. Reductions of local program components.  

algebra will also be called an intensional algebra of the language. The formal definitions are presented in Fig. 7. 

P and Q in this figure are programs, and a is an action. The same operat ion symbols on the left- and 

right-hand sides of the equations denote the operations in different algebras. The left-hand side operat ions are 

the operations of the syntact ic  algebra, and the r ight-hand side operat ions are the operat ions of the intensional 

algebra of the language. The mapping  ~.] is obviously a continuous homomorphism,  so the intensional semantics is 

compositional. 

The intensional meaning of a program can also be presented as a labeled transit ion sys tem defined up to the 

bisimilaritv relation where labels are actions. First we define the equivalence relation on a set of programs as an 

equivalence generated by the identities of the algebra of behaviors (Fig. 2), associativity of sequential  composition, 

associativity and commuta t iv i ty  of parallel composition, and relations among terminat ion constants  and other com- 

positions (Fig, 4). Now the reduct ion relation ---, is defined on a set of programs and the t ransi t ion system is defined 

by only one inference rule in Fig. 8. The relation --L is the transi t ive closure of the reduction relation defined on 

programs and -% denotes a labeled transition on programs. 

Note tha t  our definition of parallel composition is weaker than  tha t  usually defined in the process algebra 

using the so-called left merge opera tor  [5]. The system corresponding to this stronger definition is presented in Fig. 9. 

Nondeterminist ic choice and parallel composition are considered here as commutat ive  operations.  

3.6. Interaction semantics 

The interaction or extensional semantics of AL over an action algebra A is defined for a given environment 

(E, A, C, res>. Here E is a t ransi t ion closed subset of behavior algebra F(C) over an algebra of action C called the 

behavior algeb~a of an environment ,  and 

r e s - C  • A ---, 2 C 

is called a residual function. The set E is also called a set of behavior states of an environment,  and its symbol is 

sometimes used as a symbol of the environment instead of a four-tuple. 

The interact ion meaning [P]t~ of a program P is the continuous t ransformation of F(C) restr icted to the set 

E. This t ransformat ion is defined by means of a residual function r e s .  

D e f i n i t i o n  3. If res(c, a) ~ 0 then action a is said to be conformant with the environment action c, and any action 
d E res (c ,  a) is called a residual of c generated by a. 
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Loc(X, Loc(Y, P) , s )  = Loc(X CI Z , P , ( s a ) )  

(P, s) = Loc(0, P. s) 

Fig. 16. Equivalence of local store components .  

r 

P ~ Q ,  s ~ t  

Loc(X, P, s) h(x"2-; ~'t) 

r 

S r  ---* /: 

toe(X, Q, t.) 

Cor P, s) & Lor P~, t) 

Fig. 17. Transi t ion sys tem for programs with local store. 

D e f i n i t i o n  4. An action of t,he environment is said to be complete if it has no conform.ant act.ions, otherwise it, is 

incom, plet,e. 

Ins tead of considering a function, one may consider a te rnary  relation r e s  C C • A x C. This  relat ion defines 

a label t ransi t ions  sys tem on the set C with t ransi t ions 

a 

d E re s (c ,  a) r c --, d 

The  function res induces the equivalence relation on A: 

a ~ b ~ V c E A  r e s ( c , a ) = r e s ( c , b )  

The  i m p o r t a n t  restr ict ions on r e s  are the following: 

1. The  relat ion a ,-~ b is a congruence w.r.t, combinat ion,  tha t  is, for all c E A a ,-~ b ::~ a • c --~ b x c; 

2. r e s ( c ,  0) -- r e s (0 ,  a) --- 0; 

3. ~. r 0 ~ 3~ E C ( ~ ( r  ~) # 0 A ~ ( r  ~) # {r 

An env i ronment  and  an act ion algebra A are said to be compatible if they satisfy t h e  restr ic t ions above. 

The  domain  for the in teract ion semantics is the algebra Tres (A, C, E)  of cont inuous  behavior  t ransformat ions  

of the type ~o : E ~ F(C) .  This  algebra has the same type as an intensional  algebra,  tha t  is, nondeterminis t ic  

choice and prefixing by actions from A are defined for behavior t ransformat ions ,  but  this a lgebra  may  possess more 

relations among  behaviors.  It is also an algebra with  approximat ion  built  up in the  following way. Firs t  generate  a 

finite e lement  a lgebra using the following as generators  (basic t ransformat ions) :  

(i) the identity transformation I, such that I(u) -- u, 

(ii) the zero transformation ~0, such that ~0(u) = 0, 

(iii) the bottom transformation ~• such that ~• = 2_ for all u E E. 

Then complete this algebra by all necessary limits. Nondeterministic choice and prefixing in this algebra are defined 

in Fig. I0. Action a in this definition is supposed deterministic, and the definition of prefixing is recursive and must 

be understood as the minimal fixed point. 

The (informal) meaning of this definition is the following. The interaction between a program and an 

environment at the current moment of time consists of choosing a conformant pair of actions a E A and c E C from 

all possible ways defined bv the nondeterminism of their current states. From the point of view of game semantics [2] 

a program and an environment are partners in a game and this choice is a choice of moves. We do not fix the order 

of moves "splitting the atom of interaction" and leave it for applications. Both cases are possible. 

If an environment moves first then the choice of an action c defines the set of actions of a program which are 

conformant with the action of an environment and which a program may choose as an answer. The residual action 

c ~ of an environment is selected as a result of an interaction of a program and an environment. If this residual is 
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complete it means tha t  no other programs may interact with the new environment and the given program at this 

moment  of time. Moreover, if some of these programs are ready to interact,  this interaction will be postponed and 

may onlv be performed in the future. Otherwise a program may interact  at the current  moment  with other programs 

according to the rules of the game defined by the conformance relation. 

This is of course onlv one interpretat ion of the interaction semantics introduced here. Other  interpretat ions 

may include man.v programs and many environments to describe more complex mul t ipar ty  hierarchical interaction. 

Now the meaning ~PIE of a program P in the environment E is defined by the equat ion 

[PIE = t r a n s l P ]  

The function t r a n s  is the continuous homomorphism of the intensional semantic algebra F(A) to the algebra 

of behavior t ransformations defined by the equations t r a n s ( h )  = I, t r a n s ( 0 )  = ~00, t r a n s ( i )  = ~o• This provides 

the composit ionali ty of the extensional  semantics w.r.t prefixing and nondeterminist ic  choice. 

3.7. Compositionality of parallel and sequential compositions 

To prove compositionality, parallel and sequential composit ion must  be defined in the algebra of behavior 

transformations so tha t  trans(~ll~/~ ) = t r ans (~o ) l l t r an s ( r  ), t r a n s ( ~ o r  (trans(~o))(trans(~/~)).  

Both compositions are defined by the same equations as for behaviors (i.e., Fig. 4 witl, ZX changed to I, 0 

changed to qo0, _1_ to qo• and behavior t ransformations considered instead of behaviors). ; 

Now the problem is to prove the uniqueness of this definition. For this purpose we introduce the normal  form 

for finite behavior t ransformations.  Each finite behavior t ransformat ion can be presented in the form ~ie,r ai99i + e, 

where a.i ~: 0 and e = I, ~oo, ~o• or I + ~o• Then we can apply the relation a~o + b~o = (a + b)~o and all ~oi will 

be different. Such a representa t ion is called the normal form of a t ransformation.  The main theorem is on the 

uniqueness of this normal form. 

T h e o r e m  6. If the set of states of an environment which is compatible with an algebra A is a subalgebra of the 

environment algebra F ( C ) ,  then the normal form, of behavior transformations is unique up to the equivalence of 

prejCtzes and the order of summands. 

To prove the theorem first we prove tha t  for a r 0, aq0 = be , ,  a .-~ b, and ~o _4. r  Denote ~es (c , a )  = 

X:c, eres(c,~) c' and let r e s ( c , a )  7~ 0 (such c exists because of compatibil i ty).  Then (a~o)(cv.) = Res(c,a)~o(u) = 

Res(c, b)r  (note tha t  r e s (c ,  b) 7~ ~ because the equality must  be true for u = ZX). The arbi t rar iness  of u E E 

implies the required result. 

Similar reasoning can be applied to the sum of guarded t ransformations and for the t ransformat ions  of the 

type ~o + e, which then completes the proof. 

The composit ionali ty of parallel and sequential composit ion is proved using this theorem together  with the 

congruence property of ~ .  We must  prove the independence of the definition of parallel and sequential  composit ion 

from the representat ion of t ransformat ion  in normal (now canonical) form. It can be done first for finite behaviors 

and then extended to their limits. 

3.8. Computational semantics 

~In the definition of interact ion semantics, arbi t rary combinations of choices of actions for progaam and 

environment are possible. This reflects the si tuation in which a given program may interact  with a rb i t ra ry  other 

programs which were inserted to the environment before the choices under consideration had to be made. But  in 

realitv there mav be some restrictions or commitments  which the choices made by a program and an environment  

must satisfv. Specifically, if the program has been developed as a computa t ional  one, tha t  is, for computa t ion  of 

some function or relation, then only interaction with the environment,  not with other programs,  must  be considered 

for the definition of its computa t iona l  meaning. 

The aim of this section is to define the computat ional  meaning of a program in an abs t rac t  and possibly 

general form. For this purpose the notion of completeness of environment action will be used. Namely, if the action 
d 

of a program forces the transi t ion 71. --. v and d is complete, then a t ransi t ion u ---, v can be considered as a t ransi t ion 

24 



which is the result  of the interact ion of an action and an environment only, otherwise some other" actions produced 

by other  programs could par t ic ipate  in generating this transition. 

So the computa t iona l  meaning can be defined as a relation complP]E C_ E x E. By definition (u, v) E 

compIPlE iff there exists a sequence of transitions 

(e ,  ,,.) = " - , ' . . .  (p,.,,., ,,.,,,.) = (A ,  ,,.) 

such that  all d/. i = 1 . . . ,  r n . -  I are complete. Computa t iona l  semantics can be expressed also in the form of a 

transit ion system. This presentat ion is given in Fig. 11. 

An impor tan t  p roper ty  of a computa t ion  semantics is the following. 

T h e o r e m  7. Computation semantics is compositional w.r.L sequential composition. 

The computa t ion  meaning of a sequential composit ion of prog~'ams is the sequential  composi t ion of their 

meanings considered as relations over environment  behaviors, 

The opera t ional  representa t ion of computa t ion  semantics (Fig. 11) also allows us to dist inguish between 

different forms of terminat ion,  which is important  for s tudying the computa t ional  propert ies  of a program. 

If the s ta te  of a computa t ion  system is (Q, u) then if P = A this is a successful t e rmina t ion  of a computa t ion  

process. If Q ~= A and there are no moves fl'om (Q, u), the terminat ion is unsuccessful. We can also distinguish 

between a case in which there exists such an action c of an environment  tha t  u ~ v (deadlock) or there is no such 

action (fail). 

4. E N V I R O N M E N T S  

If ~ is the t ransformat ion  defined by a given program over an environment  E,  then all behaviors ~(u) ,  71. E E, 

may be represented as s ta tes  of a t ransi t ion system defined on a set of pairs (P, u), where P is a s ta te  of a program. 

This is i l lustrated by the rules in Fig. 12 where the first rule describes a move of a prog~am in a s ta te  P and the 

second rule describes the s i tuat ion where a progTam is suspended (with the already selected act ion a). We also 

identify states of a type (A, u) with u, so a system continues i ts  performance after a p rogram has finished. The 

terminal s tate of a sys tem is therefore A (not (A, u)) and there are three types of divergent  states" (2-, u), (P, 1) ,  

and 2_. 

Let us consider some useful examples of environments.  Each example considers an envi ronment  <E, A, C, r e s )  

and define this envi ronment  by the properties of its components.  Sometimes we refer to an envi ronment  instead of 

its behavior having in mind an environment  in a given initial or in termediate  s ta te  which defines this behavior. 

E x a m p l e  1. Let A U {e} C C and the residual function satis .f-y the equat ions r e s ( e ,  a) = {a}, r e s ( a ,  b) = 

0, a, b E A .  Let 

7L - - -  C?L  

be a behavior of the envi ronment  (u E E),  P be a program, and ~ p  the interact ion meaning of this program. Then 

~p (u )  = (P; u) 

and if ~O is the interact ion meaning of another  program Q, then 

~oQ(~op(u)) = (P; Q; u) 

E x a m p l e  2. General izat ion to mult i - threaded computing.  For an arb i t ra ry  action algebra let us define 

an = a . . .  a and [a]" = a. x . . .  x a., n times; note tha t  a ~ = [a] ~ = 5. Assume the following propert ies  of the residual 

function (for this example)" 

a)  = • . .  > 0 

• a ,  b) = • a • b } , . ,  > 0 

Now if the s tate  of an envi ronment  is 
o o  

n . - - O  
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then several programs are permi t ted  to be inserted to it and interact using combinations of actions. The  environment  

? t  - -  

OQ 

E[el ' , ,  + I ;  a,,. 
n = O  aEA 

not only permits several programs to be inserted, but can itself in terrupt  the execution of a program and perform 

its own action, changing the intensional meaning of a program. 

5. ACTION LANGUAGES OVER STORES 

Usually (especially for computat ional  programs) some actions of a program are in terpre ted as functions or 

relations over some s ta te  space, and the algebra of actions of a program generated by these act ions is the algebra of 

relations. The states can be memory  states if there are names and values, o r  some abstract  s t ruc tures  describing all 

the possible values which names (or variables) may take in a given s tate  as in the constraint  p rogramming  paradigm. 

We shall use the general term store to denote the state space and sometimes say "store" instead of "state of a store." 

If the actions of a language are interpreted on some store the language is called a language over  stores.  

If a progTam P comprises the parallel composition of some other  programs, then the store is a common store 

for these progl"ams and therefore it must be considered as a part  of an environment  into which P will be inserted 

before execution. 

After inserting a progTam into this environment,  a new environment  will be obtained whose behavior can be 

described by a t ransi t ion system with states (P, s, u). In this triple, P represents a state of a proglam,  s is a state 

of a store, and u is a s ta te  of the control part  of an environment.  Of course the environment  must  be compatible 

with the algebra of actions of a program. As before we suppose that  (A, s, u) = (s, u). The  t rans i t ion  system which 

produces this behavior can be defined by the rules in Fig. 13. 

5.1. Synchronous and asynchronous communication 

The above presentat ion of interaction semantics of programs over stores is very general  and hence cannot 

serve to provide a good unders tanding  of what happens in reality when the program interacts with  its environment.  

Especially it does not describe synchronous and asynchronous communicat ion as well as the computa t iona l  connec- 

tions between the actions of a program and an environment.  So let us consider a more specific case in which a store 

is used as a common memory  for exchanging the information between a program and an environment .  Let the action 

space of the environment  include the following three types of actions: 

1. (prog : a), a E A, computa t ional  program actions; 

2. (env : a), a E A, computa t ional  environment actions; 

3. ( i n t e r :  a, b), a, b E A, interactions. 

Let actions of A be interpreted as relations on a store and computat ional  actions as relations on the environment  

states. The desired properties of a residual function and relations between the actions of an environment  and a 

program are presented in Fig. 14. 

The special cases when computat ional  actions "add something to a store" or "remove something" can be 

considered as asynchronous communication.  Interactions are obviously synchronous ones. 

5.2. Local store 

In real programs only a part  of a store may be used as a shared item; other parts are localized in a program 

and the external par t  of an environment cannot access them. To express this part i t ioning on the s eman t i c  level 

the notion of variables or names must be introduced on the language level and then used in the  definition of the 

extensional (interactive) semantics of programs. Action expressions of a language and procedure  calls are called 
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Loc(X. Loc(Y, A, s)IIC, t) = Loc(X U Z, C, (sa) x t) 

Lor Lor C, ~), t) = Lor U Z, C~, (~o) • t) 

Lot (X,  O, s) = 0 

Fig. 18. Equivalence of components.  

Lot (X,  P)Q ---, Lot(Y, (Pa)Q, _L) 

Fig. 19. Reduct ions for components .  

primitive prograrn.s. Actions of an environment  are represented by means of syntactic expressions of an extended AL 

and also are considered as primitive programs. 

Let V be a set of variables, and assume tha t  for each primitive program q, a set of variables Vat(q) C_ V 

on which it depends is given. If primitive programs contain operators  with bound variables such as, for instance, 

lambda abstract ion,  only free occurrences must  be considered, and they also contain all free variables which can 

appear  under the unfolding of this procedure call. We also need the renaming subst i tut ions cr = [X/Y]  where X and 

Y are ordered sets of the same numbers  of variables (if the order is not given it must be chosen in an a rb i t ra ry  way). 

These subst i tut ions  are defined on primitive programs and extended to arbi t rary  ones by renaming  of all occurrences 

of primitive programs.  

The notion of program is extended by adding the notion of local program, components with the syntactical 

form Loc(X, P) ,  where X is a finite set of variables and P is a program. Local program components  are considered 

up to renaming. This means tha t  if a = [Y/X] is a subst i tu t ion which changes symbols from X to symbols  flom Y 

different fi'om all symbols which occur flee in P (Y  r3 V(P)  = 0), then Loc(X, P)  is equivalent  to Loc(Y, P a ) .  This 

assumption extends the equivalence of programs. We also define the reduction relation for local p rogram components  

by Fig. 15 which extends  the reductions in Fig. 8. 

We define an interact ion semantics for programs with a local store, and the control  par t  of an environment  

given by the equat ion 

u -- eu + ~ au 

aEA 

For this case the s ta te  of the control part  of an environment  must  not be considered in the definition of the interactive 

semantics of AL and the s ta te  of a t ransi t ion system for interactive semantics is a local store component L_p.c(X, P, s). 

We assume tha t  the set of flee var iables  and renaming are also defined for store states. Local s tore components  are 

considered up to the equivalence relation defined in Fig. 16. The renaming cr renames all variables y E Y to those 

which are different from X. 

The t ransi t ion system for the interactive semantics is presented in Fig. 17. Renaming  cr protects  the local 

variables of a p rogram when the transi t ion is defined by an environment.  Hiding opera to r  h also hides the local 

information of a program action flom other programs which can be inserted into the t ransformed environment  as 

well as flom an environment  itself. 

5.3. Channels 

Communica t ion  between a program and an environment  in AL with a local store (as well as between programs 

inserted into an environment)  can be realized via common (global) memory  or as a synchronous interact ion (rendez- 

vous, handshaking,  etc.). Channels  may be represented by variables in the common m e m o r y  which have values 

assigned to them or changed by actions. The use of these actions can be restricted by an env i ronment  according to 

the information which the program gives to its environment  or introduced by special composi t ions  equivalent to the 

declarat ion of propert ies  of variables. 
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C --% C', C ~ C" 

C ~ C" 

C ~ C '  

CllC" ~ C'llC" 

C ~ C ' ,  D ~ D ' ,  a x b r  

ClID ~b C'IID' 

C~C', s ~ t  

Loc(X, C, s) h.(X,a__;s,t) Loc(X, C',  t) 

r 

SO" - ' +  t, 

Loc(X, C, s) a_. Loc(Y, Ca, t) 

Fig. 20. Transitions of distributed action components.  

r a - - ~  

G - ~ H ~ G + F ~ H  

G --% H =. GF --% HF 

Fig. 21. Transitions of programs. 

6. DISTRIBUTED ACTION LANGUAGES 

Distributed computat ion is a very important  area of modern computer  science and its applications. The 

main characteristic of this area is the use of local sites for distributing memory and programs. These local sites may 

be separate processors in the network or the components of a multiprocessor system as well as persistent software 

components (software agents) which perform concurrent computat ion sharing the time of a central processor (multi- 

threading) or other resources. 

The  AL with local store could be used for distributed programming, but its interactive semantics defined 

in the previous section has some disadvantages which limit this use. The main disadvantage of the semantics for 

programs with a local store is tha t  it loses the structure of a program state defined by nesting program components 

and partitioning a global store on local spaces for parallel composition. In reality this information could be used for 

the organization of a distr ibuted implementation of a given program. Moreover, if the programmer is aware of the 

strateg7 for the distr ibuted implementation, he could use this information for the development of efficient distributed 

programs using the localization operator  as a tool for expressing his algorithmic ideas for the distribution of data 

and actions. 

Another use of a local component  structure could be a more adequate description of components  of real 

svstems as programs which simulate their activity or create communities of software components.  

To eliminate the disadvantage mentioned above, a new distr ibuted interaction semantics is introduced for the 

AL with local store. We call this new language the distributed action language (DAL). The main semantic notion 

of the DAL is the notion of a distr ibuted action component (dac) which is used to describe the s tate  of computat ion 

with distributed programs and stores (local stores). The definition is the following: 

1. A program is a (simple) dac; 

2. Parallel composition of dacs C]ID is a (parallel) dac; 

3. If C is a dac and s is a store, then Loc(X, C, s) is a (local) dac. 

The equivalence of dacs includes the equivalence of programs, renaming, and extra equivalences introduced 

by Fig. 18. 
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Instea(l of reductions of local components in Fig. 15 we introduce onlv one reduction rule on action components 

(Fig. :[9) whet(, cs is a protective renaming. 

Transitions of dacs which define the distributed interaction semantics are introduced in Fig. 20. 

The transition rules for dacs cover some of the transition rules of programs as a special case of a dacs. 

Therefore these rules can be reduced to those presented in Fig. 21. 

7. CONCLUSIONS 

We have presented a general theory of action-based languages as a paradigm for the description of those 

computational systems which include elements of concurrency and networking, and extended this approach to describe 

distributed systems and also to describe the interaction of a system with an environment. As part  of this approach we 

have introduced the Action Language as a common model for the class of nondeterministic concurrent programming 

languages and defined its intensional and interaction semantics in terms of continuous transformation of environment 

behavior. This semantics has been specialized for programs with stores, and extended to describe distributed 

computations. 

In the future we intend to specialize our theory in order to obtain a working semantics for reasoning about 

and designing programs in different paradigms, including concurrent constraint languages. We have started on this 

work, and the ideas presented in this paper are being used as the basis for the design of a workbench for action 

languages. 

We plan: to study the semantics of distributed languages. Our present approach to semantics does not 

describe the structure of distributed programs, and we will investigate the possibility of preserving this structure 

using equivalent transformations of distributed components. 
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