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A GENERAL THEORY OF CANONICAL FORMS 

RICHARD S. PALAIS AND CHUU-LIAN TERNG 

ABSTRACT. If G is a compact Lie group and M a Riemannian G-manifold 
with principal orbits of codimension k then a section or canonical form for M 
is a closed, smooth k-dimensional submanifold of M which meets all orbits of 
M orthogonally. We discuss some of the remarkable properties of G-manifolds 
that admit sections, develop methods for constructing sections, and consider 
several applications. 

O. Introduction. Let G be a compact Lie group acting isometrically on a 
Riemannian manifold M. Then the image S of a small ball in the normal plane 
v{Gx)x under the exponential map is a smooth, local Gx-slice, which in general 
cannot be extended to a global slice for M. A section E for M is defined to be a 
closed, smooth submanifold of M which meets every orbit of M orthogonally. A 
good example to keep in mind is perhaps the most important of all canonical form 
theorems; namely for M we take the Euclidean space of symmetric k x k matrices 
with inner product (A, B) = tr(AB), and for G the orthogonal group O{k) acting 
on M by conjugation. Then the space E of diagonal matrices is a section. Moreover 
the symmetric group Sk acts on E by permuting the diagonal entries and the orbit 
spaces M/G and E/Sk are isomorphic as stratified sets. Quite generally it is good 
intuition to think of a section E as representing a "canonical form" for elements of 
M; hence our title. Riemannian G-manifolds which admit sections are definitely 
the exception rather than the rule and they have many remarkable properties. The 
existence of sections for M has important consequences for the invariant function 
theory, submanifold geometry, and G-invariant variational problems associated to 
M. While we do not know of earlier papers treating sections in generality, we have 
found several which treat important special cases. In particular when we showed 
G. Schwarz an early version of our results he pointed out to us a preprint of an 
important paper [Da2] by J. Dadok in which a detailed study is made (including 
a complete classification theorem) of orthogonal representations of compact con-
nected Lie groups which admits sections (Dadok calls these polar representations). 
Later still we discovered two very interesting and much earlier papers by L. Conlon 
[Col, Co2] in which he considers Riemannian G-manifolds which admit fiat, to-
tally geodesic sections. This includes the case of polar representations, and Conlon 
came close to conjecturing Dadok's classification result. We will discuss in more 
detail later the results in these papers and how they relate to our own. We would 
like to thank Dadok for a number of helpful comments. It is clear not only that he 

Received by the editors March 4, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 57S15. 
The first author was supported in part by NSF Grant No. MCS-8102696 and MSRI. 
The second author was supported in part by NSF Grant No. DMS-8301928. 

771 

@1987 American Mathematical Society 
0002-9947/87 $1.00 + $.25 per page 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



772 R. S. PALAIS AND CHUU-LIAN TERNG 

had also discovered many of the facts reported here, but in some cases he probably 
knew them before we did. 

One important application of sections is to invariant theory. We describe a well-
known class of examples: if a compact Lie group G acts on its Lie algebra g (Killing 
form as the inner product) by the adjoint action, then a maximal abelian sub algebra 
T is a section, the Weyl group W of G acts on T, and giG ~ T IW. Moreover 
the restriction map from the ring of G-invariant polynomials on g to the ring of 
W-invariant polynomials on T is an isomorphism; this is the Chevalley restriction 
theorem. These properties of the adjoint action can be generalized to arbitrary 
G-manifolds which admit sections. Namely if E is a section of a Riemannian G-
manifold M, then there exists a finite group W acting on E such that for each 0" 

in E, En GO" = WO" (so in particular WO" ~ GO" is a bijection EIW ~ MIG); and 
the Coo version of the Chevalley restriction theorem holds. This reduces the theory 
of G-invariant functions on M to the simpler invariant theory of T under a finite 
group. 

A second application is to the Riemannian geometry of submanifolds. The prin-
cipal horizontal distribution ){ is a distribution defined on the set MO of G-regular 
points by ){(x) = v(Gx)x. Then it is easily seen that M admits sections if and only 
if){ is integrable and expx(v(Gx)x) is a closed, properly embedded submanifold of 
M (which is automatically totally geodesic). If v E v(Gx)x then v(gx) = dgx(v) 
defines a G-equivariant normal field on the principal orbit Gx, and we say v is 
7r-parallel. Since Gx is a submanifold of M, there is an induced normal connection 
from the Riemannian connection of M, which defines another parallelism for v(Gx). 
In general these two parallelisms are different, and in fact they are the same if and 
only if ){ is integrable. In this case a principal orbit N = Gx as a submanifold of 
M has the following properties: 

(1) v( N) is flat with trivial holonomy, 
(2) expy(v(N)y) is a totally geodesic submanifold of M for all y in N, 
(3) the principal curvatures of N along any parallel normal field are constant. 

We note that the orbit foliation of M is determined by a single principal orbit, 
and is the same as the parallel foliation of N in M, i.e. {Nv Iv E v( N)x}, where 
Nv = {y + v(y)ly EM}. A submanifold N of a space form Rn satisfying (i)-(iii) is 
called isoparametric [T]. So it follows that if G acting on Rn admits sections then the 
principal orbits are isoparametric. Conversely we show that if N is isoparametric in 
Rn and is an orbit of a subgroup G of O(n) then N must be a principal G-orbit and 
the G-action on Rn admits sections. Then by Dadok's classification theorem of polar 
representation we conclude that every homogeneous isoparametric submanifold of 
Rn or sn is a principal orbit of the isotropy representation of some symmetric space 
Gd K. There are infinitely many isoparametric submanifolds of Euclidean spaces of 
co dimension two, which do not arise as an orbit of some polar representation [FKM, 
OT]. However there always exists a Weyl group for such submanifolds, and the 
parallel foliation gives an orbitlike foliation. Therefore the theory of isoparametric 
submanifolds can be generalized to arbitrary Riemannian manifolds (using (1)-(3) 
as definition), which can be thought of as a purely geometric analogue of the theory 
of Riemannian G-manifolds with sections. 

The third application we have in mind is to the calculus of variations. We first 
recall the simple example of finding a harmonic function u on Rn. We must in 
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A GENERAL THEORY OF CANONICAL FORMS 773 

principle solve a partial differential equation ~u = 0 in n-independent variables. 
However if we know that u is invariant under the group O(n) of rotations, then 
we can write u(x) = f(llxll) and reduce the problem to the easily solved ordinary 
differential equation 8j8r(rn - 18f j8r) = 0 on the half line A+. This is a classic 
example of a general and powerful method, called variously "reduction of variables" 
or the "cohomogeneity method" , for attacking a broad class of problems in geome-
try and analysis (cf. [HHS, Hsl, Hs2, HL, PT]). In the general setting, we have 
as above a G-manifold Mn and would like to study some class (5 of G-invariant 
objects associated to M. Frequently one can set up a natural bijection between (5 
and some set 6 of related objects attached to the orbit space M, so that if M has 
cohomogeneity k (i.e. dim(M) = k) we have effectively reduced a problem with n 
independent variables to a generally easier problem with only k independent vari-
ables. A serious difficulty in applying this method comes from the existence of the 
set Ms of singular (i.e. lower dimensional) orbits. In general M is not a smooth 
manifold but only a stratified set. The principal stratum M - Ms (the set of prin-
cipal orbits) is an open, dense, smooth k-dimensional manifold. Ms is the (finite) 
union of the other orbit types of M, each of which is by itself a smooth manifold 
of dimension less than k, but in general M has bad singularities along Ms , making 
it hard to study global analytical problems on M. The study of 6 usually leads 
to solving some partial differential equation on M - Ms together with complicated 
"boundary behavior" as we approach Ms. To circumvent the difficulties associated 
to the latter one can try to "resolve" the singularities along Ms , and an excellent 
way to do this is to choose (if one exists) a section E for M as above. Then the anal-
ysis of 6 leads to solving a partial differential equation on the smooth k-manifold E 
(rather than on the singular k-manifold M) and the complicated boundary behav-
ior along Ms is replaced by the generally more tractable problem of W -invariance. 
(For example in our example of harmonic functions on M = An with G = O(n), 
where M = Ill+ = [0,00) and Ms = {O}, we can take for E any line {relr E Fil} 
with e in sn-l and W = 12 (generated by re ----; -re), so that instead of solving 
8j8r(rn - 1(8f j8r)) = 0 on R+ with certain boundary behavior at 0, we solve it on 
III but accept only even solutions). 

It is not hard to see that our definitions and theorems concerning Riemannian 
G-manifolds with sections generalize easily if we drop the assumption that the Lie 
group G is compact and replace it with the weaker assumption that G acts prop-
erly on M (which is equivalent to the condition that there exists a G-invariant 
Riemannian metric on M with G being a closed subgroup of Iso(M)). Because 
many variational problems in geometry and physics are invariant under an infinite 
dimensional Lie group of "gauge transformations", another very interesting direc-
tion of generalization, about which little is yet known, is to develop an analogous 
canonical form theory for infinite dimension manifolds with infinite dimensional Lie 
group actions. In the case of the group of diffeomorphisms acting on the space of 
Riemannian metrics and the group 9 of gauge transformations acting on the space 
.A of connections of a principal bundle it is known that the actions are proper and 
that they admit local slices, so the possibility of sections existing, at least in special 
cases, seems quite reasonable. Moreover in the latter case doing a path integral 
over a section would clearly be easier than doing one over the moduli space .A j g. 

This paper is organized as follows: we set the terminology and review basic 
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properties of G-manifolds and Riemannian G-manifolds in §1 and §2, and in §3 we 
develop some elementary properties of sections; we discuss the generalized Weyl 
group and the Coo Chevalley restriction theorem for a Riemannian G-manifold 
which admits sections in §4; and in §5 we prove that if M is a G-manifold and 
the principal isotropy subgroup H is open in its normalizer N (H) then the fixed 
point set E of H is a section with respect to any G-invariant metric on M, i.e. the 
section depends only on the pair (G, H). Finally in §6 we discuss the submanifold 
geometry of the orbits of Riemannian G-manifolds M which admit sections. 

1. G-manifolds. In this section we establish our notation and review the basic 
theory of smooth transformation groups. Most details and proofs are omitted and 
may be found in [B, D, and 82]. 

G will denote a compact Lie group and M a connected, smooth (i.e. COO) G-
manifold. For x in M we denote its orbit by Gx and its isotropy group by G x . 
We denote the orbit space M/G with the identification space topology by M and 
II: M ----> M is the orbit map. The conjugacy class of a closed subgroup H of G 
will be denoted by (H) and is called a G-orbit type; the orbit Gx is said to be 
of type (H) if (Gx) = (H), M(H) ~ M denotes the union of all orbits of type 
(H), and M(H) ~ M its image in M (the set of all orbits of type (H)). The fixed 
point set of H, i.e. the set of those x in M with H ~ Gx , will be denoted as 
usual by M H, and M H will denote the set of x in M where G x is equal to H (so 
MH = (M(H))H = M(H) nMH). From the fact that Ggx = gGxg- 1 it follows that 
gMH = MgHg-l. On the other hand if N(H) denotes the normalizer of H in G 
then gHg- 1 depends only on the coset gN(H) of gin G/N(H). It follows that we 
have a well-defined map p: M(H) ----> G/N(H) with p-l(gN(H)) = MgHg-l. In fact 
it is not hard to see that each M(H) is a smooth regularly embedded (but usually 
not closed) submanifold of M, and that p is a smooth fiber bundle with fiber MH 
associated to the principal fibration G ----> G/N(H), with structure group N(H)/ H. 

In case M has a single orbit type there is a canonical differentiable structure 
for M making II: M ----> M a submersion (and in fact a fiber bundle). But as just 
remarked, in general each M(H) is a smooth submanifold of M and hence a smooth 
G-manifold in its own right, so each M(H) has a canonical differentiable structure. 
In fact these decompositions of M and Minto submanifolds are "nice" (technically 
M and M are both stratified sets and II: M -+ M is a stratified submersion). This 
fact has played an important role in the recent history of the subject. We refer to 
[D] for details. 

Among all orbit types (H) with M(H) f:. 0 there is a unique one (U) such 
that G/U has maximum dimension and (for that dimension) a maximum number 
of components. The orbit type (U) is called the principal orbit type of M, any 
representative U is called a principal isotropy group, and M(u) is called the principal 
stratum of M. To avoid having to name (U) we will also write MO and MO for M(u) 
and M(u) respectively. The nonprincipal orbits of M are called singular orbits and 
their union Ms (the complement of MO) is called the singular set of M. Thus Ms 
and Ms are closed and nowhere dense in M and M respectively. Points of MO are 
called regular points and points of Ms singular points. 

By choosing any Riemannian structure for M and averaging it with respect to 
the Haar measure of G we can always find an invariant Riemannian metric for M, 
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i.e. one for which G acts by isometries. Such a metric is also called compatible with 
the action of G, and M with such a metric is called a Riemannian G-manifold. The 
differential of the action of Gx defines a linear representation of Gx on T Mx called 
the isotropy representation at x. Since the tangent space T( Gx)x to the orbit of 
x is clearly an invariant linear subspace, we can find a complementary invariant 
subspace v(Gx)x (e.g. the orthogonal complement to T(Gx)x with respect to a 
compatible metric), and the restriction of the isotropy representation of Gx to 
v(Gx)x is called the slice representation at x. The image of a small ball in v(Gx)x 
under the exponential map (with respect to a compatible metric) is a smooth Gx 
invariant disk 6 in M called a slice at x. It meets all nearby orbits transversally 
and has the important property that for y in 6 the isotropy group Gy is included in 
Gx . It follows easily that x is a regular point if and only if the slice representation 
is trivial, or equivalently if and only if 6 is pointwise fixed under Gx . 

2. Riemannian submersions and Riemannian G-manifolds. If II: E -t 

B is a submersion of smooth manifolds then V = ker( dII) is a smooth subbundle of 
T E called the tangent bundle along the fiber (or the vertical sub bundle). In case 
E and B are Riemannian we define the horizontal subbundle }I of T E to be the 
orthogonal complement V..L of the vertical bundle, and II is called a Riemannian 
submersion if dII maps }Ix isometrically onto T Bn(x) for all x in E. The theory 
of Riemannian submersions, first systematically studied by O'Neill [0], plays an 
important role in the study of transformation groups. In this section we will discuss 
some basic geometric properties of Riemannian submersions and Riemannian G-
manifolds. 

A vector field ~ on E is called vertical (resp. horizonta0 if ~(x) is in V(x) (resp. 
}I (x)) for all x in E, and ~ is called projectable if there exists a vector field 17 on B 
such that dII(~) = 17. We call ~ basic if it is both horizontal and projectable. 

Note that if F = II-l(y) is a fiber of II then }l1F is just the normal bundle 
v(F) to F in E. There is a canonical global parallelism in each such normal bundle 
v(F): a section v of v(F) is called II-parallel if dII(v(x)) is a fixed vector v E TBy 
independent of x in F. Clearly v -t v is a bijective correspondence between II-
parallel fields and T By. There is another standard parallelism on v( F) obtained 
from the Riemannian structure of E. Let V denote the Levi-Civita connection of 
E, then the induced normal connection V on v(F) is defined as follows: 

V x~ = the orthogonal projection on V x~ onto v(F), 
where X E COO(TF) and ~ E COO(v(F)). A normal vector field ~ on F is called 
parallel if V ~ = O. It is important to note that in general the II-parallelism in v(F) 
has no relation to the parallel translation defined by the Riemannian connection in 
v(F). (The latter is in general not flat, while the former is always both flat and 
without holonomy.) Nevertheless we shall see that if }I is integrable then these two 
parallelisms do coincide. To prove this we need some basic results in the theory of 
Riemannian submersions. 

2.1. THEOREM (0' NEILL [0]). Let II: E -t B be a Riemannian submersion, 
and }I its horizontal distribution. 

(i) If X is a vertical field and Y is a basic field on E then [X, Y] is vertical. 
(ii) If (J is a geodesic inE and (J'(O) is horizontal then (J'(t) is horizontal for all 

t and II 0 (J is a geodesic in B. 
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(iii) If}.( is integrable then the leaves are totally geodesic. 
(iv) If}.( is integrable and S is a leaf of ).( then IllS is a local isometry. 

2.2. DEFINITION. A Riemannian submersion II: E -+ B is called integrable if 
the horizontal distribution ).( is integrable. 

2.3. THEOREM. Let II: E -+ B be a Riemannian submersion. Then II is 
integrable if and only if every II-parallel vector field on II-l(b) is a parallel normal 
field in the Riemannian sense (i. e. it is parallel with respect to the induced normal 
connection of II- 1 (b)). 

PROOF. Let eA be a local orthonormal frame field on E such that el, ... , en are 
basic vector fields and en + 1, ... ,en+m are vertical vector fields. We will use the 
index conventions 1 :S i, j :S n, n + 1 :S 0:, f3 :S n + m, 1 :S A, B :S n + m, and we 
will write 'Vi for 'V ei , ••• , etc. Let WAB be the Levi-Civita connection on M, i.e. 
'VeA = L:wAB ® eB, and suppose II is integrable. Then by 2.1(iii) each leaf S of 
the horizontal distribution ).( is totally geodesic and eilS is a local frame field on 
S. Thus the second fundamental form of S is zero, i.e. Wia (ej) = 0 for all i and j, 
or equivalently 'V jea is vertical. But ealF forms a tangent frame field for the fiber 
F of II, and ei!F is a normal vector field of F. Since [ej, ea] = 'Vjea - 'Vaej is 
vertical, we have 'Vaej is vertical, i.e. ejlF is parallel in the normal connection of 
v(F). 

Conversely suppose ei IF is parallel for every fiber F of II, i.e. 'Vaej is vertical. 
Since [ei,ea] is vertical, 'Vjea is vertical, i.e. wai(ej) = 0 for all i and j. Now we 
note that 

lei, ej] = 'Viej - 'Vjei = ~)WjA(ei) - wiA(ej))eA. 

Hence lei, ej] is horizontal, so ).( is integrable. • 
Henceforth M will denote a connected, complete smooth Riemannian G-manifold. 

As noted in the preceding section for each orbit type (K) the restricted orbit map 
II(K): M(K) -+ M(K) is a submersion. We note that there is a canonical choice of 
Riemannian structure for M(K) making II(K) a Riemannian submersion (so that 
II: M -+ M is a stratified Riemannian submersion). To see this we can without 
loss of generality assume M = M(K). If x E M then we must of course define the 
inner product in TMrr(x) by requiring that dII: v(Gx)x -+ TMrr(x) is an isometry. 
Since dg maps v(Gx)x isometrically onto v(Gx)gX this is well defined and is easily 
seen to give a smooth metric on M. Thus in particular we have a Riemannian 
submersion on the principal stratum II: MO -+ MO. 

2.4. DEFINITION. The principal horizontal distribution of a Riemannian G-
manifold M is the horizontal distribution of the Riemannian submersion on the 
principal stratum II: MO -+ MO. 

If x is a regular point of M then the orbit Gx is a fiber of II and hence we 
have as above a well-defined global parallelism in v(Gx), the II-parallelism. In 
this case the II-parallelism has a simple group theoretic interpretation. Since x 
is regular, the slice representation of Gx on v(Gx)x is trivial, which implies that 
dg: v( Gx)x -+ v(Gx)gX is well defined (i.e. does not depend on the choice of element 
in the coset gGx). Thus any element Vx E v(Gx)x gives rise to a well-defined G-
invariant section v of v( Gx). Moreover since II 0 9 = II, dII 0 dg = dII and hence 
v is II-parallel, i.e. the II-parallelism is J'ust given by group translation. (A word of 
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caution: for a non principal stratum M(H) we again have a Riemannian submersion 
IT(H): M(H) ---- M(H) and hence a IT(H)-parallelism on the normal bundle lI(H) (Gx) 
of an orbit Gx of type (H). But note that V(H)(GX) denotes the normal bundle of 
Gx in M(H), a subbundle of v(Gx), its normal bundle in M.) 

It will be convenient to introduce for each regular point x the set T (x), defined as 
the image of v(Gx)x under the exponential map of M and also TO(x) = T(x) nMo 
for the set of regular points of T (x). 

2.5. PROPOSITION. For each regular point x of M: (i) gT(x) = T(gx) and 
gTO(x) = TO(gx) for all 9 E G, 

(ii) for Vo E v(Gx)x the geodesic O'(t) = exp(tvo) is orthogonal to each orbit it 
meets, 

(iii) T(x) meets every orbit of M. 

PROOF. Statement (i) is obvious, and (ii) follows from 2.1(ii) and the fact that 
IT: MO ____ £10 is a Riemannian submersion. Finally given any y in M choose 9 E G 
so that gy minimizes the distance from x to Gy and define O'(t) = exp(tvo), a 
minimizing geodesic from x = 0'(0) to gy = 0'(1). Since G acts isometrically, 0' is 
even a minimizing geodesic from Gx to Gy, and hence Vo = 0"(0) and 0"(1) are 
orthogonal to Gx and Gy respectively. In particular Vo is in 1I( Gx)x so the arbitrary 
orbit Gy meets T(x) = exp(lI(Gx)x) at exp(vo) = gy. • 

Our choice of the notation T (x) is based on the fact that when M is G itself 
with the adjoint action, then T (x) is just the maximal torus through the regular 
point x. Thus (iii) is a generalization of the fact that every element of It compact 
connected Lie group is conjugate to an element on a fixed maximal torus. 

3. Sections and their elementary properties. Henceforth M will denote 
a connected, complete, Riemannian G-manifold and we assume all the previous 
notational conventions. In particular we identify the Lie algebra 9 of G with the 
Killing fields on M generating the action of G. 

3.1. DEFINITION. A connected, closed, regularly embedded smooth submanifold 
~ of M is called a section for M if it meets all orbits orthogonally. 

The conditions on ~ are, more precisely, that G~ = M and that for each x in 
~, T~x is included in v(Gx)x = T(Gx);. But since T(Gx)x is just the set of ~(x) 
where ~ E g, this second condition has the more explicit form 

(*) For each x in ~ and ~ in g, ~(x) is orthogonal to T~x. 
It is trivial that if ~ is a section for M then so is g~ for each 9 in G. Since 

G~ = M, it follows that if one section ~ exists then in fact there is a section 
through each point of M, and we shall say that M admits sections. 

If ~ is a section for M then the set ~o = ~ n MO of regular points of ~ is an 
integral manifold of the principal horizontal distribution ).I of the G-action. It is 
known (see [D, Theorem 1.7]) that £10 is always connected, so from 2.3 it follows 
that: 

3.2. THEOREM. If M admits sections, then 
(i) the principal horizontal distribution ).I is integrable; 
(ii) if ~ is a section for M then each connected component of ~o = ~ n MO is a 

leaf of }{; 
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(iii) if F is the leaf of ).( through a regular point x then IIIF is a covering isometry 
onto MO. , 

(iv) L; is totally geodesic; 
(v) there is a unique section through each regular point x of M, namely T (x) = 

exp(v(Gx)x). 

3.3. REMARK. It is natural to suspect that, conversely to 3.2(i), if)'( is integrable 
then M admits sections. To get a counterexample take M = SI X SI and let 
G = SiX {e} acting by translation. Let ~ denote the vector field on M generating 
the action of G and let 'fJ denote an element of the Lie algebra of SI X S1 generating a 
nonclosed one parameter group /. If we choose the invariant Riemannian structure 
for M making ~ and 'fJ orthonormal then a section for M would have to be a coset of 
/, which is impossible since / is not closed in M. This also gives a counterexample to 
the natural conjecture that if a compact G-manifold M has codimension 1 principal 
orbits then any normal geodesic to the principal orbit is a section. It is also natural 
to believe that if ).( is integrable, then the leaf of ).( can be extended to be a complete 
immersed totally geodesic submanifold of M, which meets every orbit orthogonally. 
However we can only prove this in the real analytic case. But the following is true: 

3.4. PROPOSITION. Let xo be a regular point of M, and T = exp(v(Gxo)xo)' 
Suppose ).( is integrable and T is a closed, properly embedded submanifold of M. 
Then T is a section. 

PROOF. By 2.5(iii) it suffices to show that T is orthogonal to Gx for all x in T. 
Let F denote the leaf of ).( through xo. Then F is open in T, so T is orthogonal to 
Gy for all y in F. Now suppose x E T - F, since expx : TTx -t T is regular almost 
everywhere, there is an open neighborhood 0 of the unit sphere of TTx such that 
for all v in 0 there is an r > 0 such that O'v(r) = exp(rv) is in F. Then by 2.5(ii) 
O'~ (0) is normal to Gx. • 

It is known that any connected, properly embedded, totally geodesic submanifold 
of a simply connected, complete symmetric space can be extended uniquely to one 
that is complete (cf. [KN, Chapter 9, Theorem 4.3]). So we have 

3.5. COROLLARY. Let M = G / K be a simply connected complete symmetric 
space, and H a subgroup of G. Then the action of H on M admits sections if and 
only if the principal horizontal distribution of this action is integrable. In particular 
if the principal H -orbit is of codimension one then the H -action on M has a section. 

It follows from 2.3 that 

3.6. THEOREM. The following statements are equivalent for a Riemannian 
G-manifold M: 

(i) the principal horizontal distribution ).( is integrable, 
(ii) for all regular points x, every G-invariant (i.e. II-parallel) normal vector field 

on the principal orbit Gx is parallel in the induced normal connection for the normal 
bundle v( Gx) in M (i. e. in the Riemannian geometry sense), 

(iii) for each regular point x of M, if S is the normal slice at x then for all ~ in 
9 and s in S, ~(s) is normal to S. 
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Following J. Dadok we shall say that an orthogonal representation space V of G 
is polar if it admits sections. As a consequence of 3.5 and 3.6 we have 

3.7. PROPOSITION. Let V be an orthogonal representation of G, x a regular 
point of V, and ~ the linear subspace of V orthogonal to the orbit Gx at x. Then 
the following are equivalent: 

(i) V is polar, 
(ii) ~ is a section for V, 
(iii) for each v in ~ and ~ in g, ~(v) is normal to ~. 
4. The generalized Weyl group of a section. In this section M is a con-

nected, complete Riemannian G-manifold which admits sections, x is a regular 
point of M, U = Gx a principal isotropy group and ~ the section for M through 
x. We recall that a small enough neighborhood 0 of x in ~ is a slice at x and so 
intersects each orbit near Gx in a unique point. Also recall that Gx acts trivially 
on the section ~. 

In general given a closed subset S of M we let N(S) denote the closed subgroup 
{g E GigS = S} of G, the largest subgroup of G which induces an action on S, and 
we let Z(S) denote the kernel of this induced action, i.e. Z(S) = {g E Gigs = s for 
all s in S} is the intersection of the isotropy groups Gs , s E S. Thus N(S)/Z(S) is 
a compact group acting effectively on S. In particular when S is a section ~ then 
we denote N(~)/Z(~) by W = W(~) and call it the generalized Weyl group of~, 
and we put E = ~/W. 

4.1. REMARK. If M is G itself with the adjoint action then, for H a subgroup 
of G, N(H) and Z(H) are respectively the normalizer and centralizer of H. If for 
H we take a maximal torus T of G (which we shall see later is in fact a section) 
then Z(T) = T and W(T) = N(T)/T is the usual Weyl group. 

4.2. REMARK. As remarked above U = Gx ~ Z(~), and conversely from the 
definition of Z(~) it follows that Z(E) ~ U, so Z(E) = U and W(E) = N(~)/U. 
Moreover if gE C ~ then Ggx = gGxg- 1 = Gx. Hence N(E) C N(U) and W(E) C 
N(U)/U. 

4.3. PROPOSITION. The generalized Weyl group W(E) of a section ~ is a 
finite group. Moreover if E' is a second section for M then W(E') is isomorphic to 
W (E) by an isomorphism which is well determined up to inner automorphism. 

PROOF. If 9 E N(~) is near the identity then gx E O. Since 0 meets each 
orbit near x in a unique point, gx = x, i.e. g E Gx = U = Z(~), so Z(E) is open 
in N(E) and hence N(E)/Z(E) is discrete and so finite. If E' is a second section 
then E' = 1E and so 9 ---- 191-1 clearly induces an isomorphism of W(E) onto 
W(E') .• 

In [Col] Conlon defines a G-transversal domain for a G-manifold M to be a flat, 
closed, connected, totally geodesic submanifold of M meeting every G-orbit and 
orthogonal to G-orbits at every point of intersection. As we have seen, meeting all 
G-orbits orthogonally (i.e. being a section) automatically implies totally geodesic, 
and so we can paraphrase Conlon's definition as saying a G-transversal domain is 
a flat section. Now in general being flat is a strong extra restriction on a section, 
but there is one case when it is clearly no restriction at all; namely when M itself 
is flat. In particular for an orthogonal representation a G-transversal domain and a 
section are the same thing and so the representations with a G-transversal domain, 
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studied by Conlon in [Co2] are exactly the polar representations studied by Dadok 
[Da2]. 

As Conlon remarks, the earliest representations singled out as having G-transver-
sal domains were noted by Bott and Samelson in [BS] and by R. Hermann in [HI, 
H2]. In particular it follows from [BS] (and is easily seen directly) that isotropy 
representations of symmetric spaces (called s-representations by Conlon) are polar. 
More precisely, if U IG is a compact symmetric space and the Lie algebra u of U 
has the Cartan splitting u = g EEl m, then a maximal abelian subalgebra a of m is 
a section for the adjoint representation of G on m (which of course is the isotropy 
representation of U IG) and the generalized Weyl group is the usual Weyl group 
associated to a symmetric space. Conlon also showed that polar representations 
shared many of the remarkable special properties of s-representations, while at 
the same time providing two explicit examples of polar representations which were 
not s-representations. The situation was finally greatly clarified in Dadok's recent 
paper [Da2] in which polar representations of compact connected Lie groups are 
completely classified, and then using the classification the following theorem is 
proved, which makes explicit the intimate connection between s-representations 
and polar representations: 

4.4. THEOREM (J. DADOK [Da2]). Let p: H --+ O(n) be a polar repre-
sentation of a compact connected Lie group. Then there exist an n-dimensional 
symmetric space M = G I K and a linear isometry A: Filn --+ T MeK mapping H-
orbits onto K -orbits. 

4.5. EXAMPLES. G-manifolds which admit sections arise naturally in geometry. 
For example both the K -action on the symmetric space M = G I K and the isotropy 
representation of K on T MeK admit sections, and the generalized Weyl groups for 
these two actions are the same and equal to the standard Weyl group associated 
to M. However in general a generalized Weyl group is not a Coxeter group. In 
fact one can construct examples with arbitrary finite group as the generalized Weyl 
group. Given any compact group G, a closed subgroup H of G, a finite subgroup 
W of N(H)I H, and a smooth manifold ~ such that W acts faithfully on ~, we 
let IT: N(H) --+ N(H)IH be the natural projection map, and K = IT-1(W), so K 
acts naturally on~. Let M = G XK ~ = {(g,O')lg E G, a E ~}I ~ where the 
equivalence relation ~ is defined by (g, a) ~ (gk- 1 , kO'), and define the G-action 
on M by l(g,O') = hg,O'). Now suppose ds2 is a metric on M such that ds21~ 
and ds2Iv(~) are K-invariant. Then G acts on M isometrically with ~ = e x ~ as 
a section, (H) as the principal orbit type, and W as the generalized Weyl group. 
Note that any finite group W can be embedded as a subgroup of SO( n) for some n. 
Then the above construction gives a G-manifold admitting sections and having W 
as the generalized Weyl group for G = SO(n), H = {id}, and ~ = sn-l. Therefore 
it seems unlikely that there will be a good structure theory for general isometric 
actions admitting sections. However for special classes of Riemannian manifolds 
it is an interesting problem to classify all isometric actions which admit sections. 
Dadok's Theorem 4.4 gives a classification for the isometric actions of Filn and sn 
which admit sections. For arbitrary symmetric spaces, the classification is not yet 
known and finding one would be very interesting. 

[Added in revision]. We learned recently that Szenthe also studied sections, which 
he called orthogonally transversal submanifolds, in [Sz2]. Some of his results are 
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equivalent to ours. In addition he obtained a structure theory for the generalized 
Weyl group (Theorem 4 of [Sz2]), but this seems to be incorrect, since the above 
construction implies that any finite group can be a generalized Weyl group. 

4.6. THEOREM. If M admits sections and p E M then the slice representation 
at p is polar. In fact if ~ is a section for M through p then T~p is a section 
and W(~)p = {<p E W(~)I<p(p) = p} the generalized Weyl group for the slice 
representation at p. 

PROOF. Let V = v(Gp)p be the space of the slice representation, so that by 
definition of a section T~p is a linear subspace of V. Recall that for v in V its 
isotropy group (Gp)v in Gp is the same as its full isotropy group Gv in G, so that 
Gpv is diffeomorphic to Gp/Gv and in particular they have the same dimension. 
From this follows the well-known fact that a Gp orbit in V has the same codimension 
in V as the corresponding G orbit has in M, so in particular V has the same 
cohomogeneity as a Gp-space as M has as a G-space, namely dim(~). Thus T~p 
has dimension complementary to that of the principal Gp orbits of V and by the 
preceding proposition it will be enough to show that at each v in T'E p, T~p is 
orthogonal to Gpv (with respect of course to the flat metric in V). Let v(t) = 
exp(tv). Since ~ is a section for M, T~vCt) is orthogonal to T(Gv(t))vCt) and 
a fortiori T~vCt) is orthogonal to T(Gpv(t))vCt). But under the exponential map 
exp : T Mp -+ M we can identify T~vCt) with T~p for all t (because ~ is totally 
geodesic) and also T(Gpv(t))vCt) = T(Gpv)v (since tangent spaces to orbits of 
linear representations are clearly constant along rays). In other words T~p and 
T(Gpv)v are orthogonal subspaces of TMp at the point tv for all t with respect 
to the (nonflat) metric on TMp pulled back from M under exp : TMp -+ M. But 
as t -+ 0 this pulled back metric converges uniformly to the flat metric on T M p , 

so T~p and T(Gpv)v are also orthogonal in the flat metric. It remains to prove 
that W(T~p) = W(~)p. To see this we note that N(T~p) = N(~) n Gp and 
Z(T~p) = Z(~) n Gp = Z(~), so W(T~p) c W(~)p. Conversely if gZ(~) E Wp, 
then gp = p, which implies that W(~)p C W(T~p). • 

4.7. COROLLARY. If G is a compact connected Lie group and M is a G-
manifold which admits sections and has a fixed point p, then the generalized Weyl 
group for M is a Weyl group. 

4.8. COROLLARY. If M admits sections then for any p in M the isotropy 
group Gp acts transitively on the set of sections of M which contain p. 

PROOF. Let ~1 and ~2 be sections through p and let x be a regular point of ~1 
near p. We may regard ~2 as a section for the slice representation at p, so that it 
meets Gpx, i.e. there exists g in Gp such that gx E ~2' Since g~1 and ~2 are both 
sections of M containing the regular point x they are equal by 3.2(5). • 

4.9. COROLLARY. Ifu E ~ then its orbit W(~)u under the generalized Weyl 
group is equal to the intersection of its G-orbit Gu with ~. 

PROOF. Since W(~)u = N(~)u ~ Gu, it is clear that W(~)u ~ Gu n ~. 
Conversely suppose u' E Gu n~; say u' = guo Then g~ is a section at u' so by 4.4 
there is a, in GO'I such that ,g~ =~. Thus ('")'g) E N(~) so u' = ,u' = ,gu is in 
N(~)u = W(~)u. • 
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4.10. COROLLARY. The map j: M ---; f; defined by Gx ---; Gx n E is a well-
defined homeomorphism. In fact with respect to the stratifications of M and f; by 
orbit types J. is an isomorphism of stratified sets. Its inverse j-l: f; ---; M is the 
map W u ---; Gu. 

PROOF. It is immediate from the definition of a section that Gx n E is non-
empty, and then by Corollary 4.5 it is an orbit of W, so j is well defined and, again 
by the lemma, so is its inverse W u ---; Gu. It is clear that j-1 is continuous in 
the identification space topology and, since M and f; are compact, it follows from 
Theorem 4.3 that J. is a homeomorphism. Finally it follows from 4.3 that two orbits 
of M have the same G type if and only if their j images have the same W type. • 

G acts linearly on the Banach space CO(M) of continuous real values functions on 
M ((g. f)(x) = f(g- 1x)) and we let CO(M)G denote the closed linear subspace of G-
invariant functions, i.e. those constant on G-orbits. Clearly the map II* : CO(M-) ---; 
CO(M), f ---; foIl, maps CO(M) isomorphic ally onto CO(M)G. Similarly we have 
an isomorphism 7[*: CO(f;) ---; CO(E)w. Then it follows immediately from 4.4 that 

4.11. PROPOSITION. The restriction map f -. fiE is an isomorphism p: 
CO(M)G ---; CO(E)W of Banach algebras. 

4.12. THEOREM (POLAR REPRESENTATION RESTRICTION THEOREM). 
Let V be a polar representation of G, E a section of V, W = W(E) the Weyl 
group of E, and let R[V1G and R[E1W denote respectively the rings of G-invariant 
polynomials on V and W -invariant polynomials on E. Then the restriction map 
f ---; fiE is an isomorphism p: R[V1G ---; R[E1w. 

PROOF. The case that V is the adjoint representation of G on its Lie algebra 
(so E is the Lie algebra of a maximal torus) is the classical Chevalley restriction 
theorem. The Chevalley theorem was generalized in [T1 to the case of an arbitrary 
isoparametric foliation of Rn, and as we shall see in §6 the orbit foliation of a 
polar representation is a special case (the homogeneous case) of an isoparametric 
foliations. • 

4.13. COROLLARY. If FE Co(V)G and f = FIE is in COO(E)W then F is in 
coo(V)G. 

PROOF. According to a theorem of G. Schwarz [S11 there is a Coo function cp 
on Rk such that f = cp(U1' ... ' Uk), where Ut, ... , Uk are generators for R[E1w. By 
4.7 Ui = UiIE, where Ui E R[V1G, and hence F = cp(U1, ... ,Uk) is Coo .• 

4.14. LEMMA. Let M be a Riemannian G-manifold and let E be a section of 
M containing a point x. If S is the slice exp(v~(Gx)x) at x and cp is a Gx-invariant 
continuous function on S such that cpl(S n E) is Coo then cplS is Coo. 

PROOF. The exponential map is a Gx equivariant diffeomorphism of the c-ball 
in V = v( Gx)x (the space of the slice representation at x) onto S, and since E is 
totally geodesic it maps the c-ball in TEx diffeomorphic ally onto S n E. The result 
is then immediate from 4.12 and 4.13. • 
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4.15. THEOREM (COO RESTRICTION THEOREM FOR G-MANIFOLDS WITH 
SECTIONS). Let ~ be a section for the Riemannian G-manifold M and let W = 
W(~) be its generalized Weyl group. Then the restriction isomorphism CO(M)G ~ 
CO(~)W induces an isomorphism COO(M)G ~ COO(~)W. 

PROOF. Let FE CO(M)G and suppose f = FI~ is Coo. We must show that F 
is Coo at an arbitrary x in M. Let S be a slice at x as in 4.14. Since S x Gx is 
diffeomorphic to a neighborhood of x of M (see Lemma 2.2 of [Pj), it will suffice to 
show that 'P = FIS is smooth, and so by 4.14 it will be enough to see that 'P1(Sn~) 
is smooth. But since 'PI(S n~) = fl~, this is clear. • 

This theorem was also proved by Dadok [Dai] for isotropy representations of 
symmetric spaces. 

5. G-manifolds with canonical sections. Let H be a closed subgroup of a 
compact Lie group G. If M is any G-manifold then the stationary set MH of H is a 
closed properly imbedded submanifold of M which is totally geodesic with respect 
to any H-invariant metric. In case M has (H) as its principal orbit type then, as we 
shall see below, dim(MH) ~ cohomogeneity(M), and if equality holds then MH is a 
section for M with respect to any G-invariant metric for M. Moreover the necessary 
and sufficient condition for this to hold is a condition solely on H as a subgroup of 
G, namely that it be open in its normalizer N(H), so that WH = N(H)/H (which 
turns out to be the generalized Weyl group of the section MH) is finite. We now 
prove these facts. 

Let ~ be the subalgebra of 9 corresponding to H and consider g/~ as a linear 
H-space under the adjoint representation. As is well known and trivial g/~ is the 
isotropy representation of H at the identity coset of G / H so that more generally 
if M is a G-space and x E M with Gx = H then we can identify g/~ with the 
subrepresentation T(Gx)x of the isotropy representation of H on T(M)x. Let 
IH denote the trivial one-dimensional representation of H so that for an arbitrary 
linear H-space V, #(IH' V), the multiplicity of IH in V, is equal to dim(VH). Now 
T(Mx)H = (TMH)x, and hence since TMx is the direct sum ofT(Gx)x ~ g/~ and 
the slice representation 1I( Gx )x: 

dim(TMH)x = #(IH' g/~) + #(1H, II(Gx)x). 
Now suppose that x is a regular point of M (i.e. H is a principal isotropy group of 
M), so that the slice representation of H on 1I( Gx)x is trivial. Then #(1H, 1I( Gx)x) 
= dim(II(Gx)x) = cohomogeneity(M). Thus 

5.1. LEMMA. If H is a principal isotropy group of a smooth G-manifold M 
and x is a regular point of M H then 

dim(TMH)x = #(1H, g/~) + cohomogeneity(M). 
5.2. LEMMA. Let Z and N (with Lie algebras Z and J../) denote respectively 

the centralizer and normalizer of H in G, so that C = Z n H (with Lie algebra 
C = Z n ~) is the center of H. If a is the orthogonal complement of ~ in }./ with 
respect to an ad invariant metric, then 

(1) a is an ideal of J../. 
(2) J../ = ~ Ell o. 
(3) Z = CElla. 
(4) J../ /~ is the fixed point set of the adjoint representation of H on g/~. 
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Thus the following are equivalent: 
(a) a = o. 
(b) }j = ~. 

(c) Z S;;; ~. 
(d) The adjoint representation of H on g/~ does not contain the trivial repre-

sentation. 

PROOF. With respect to the adjoint representation p of N on }j the invariant 
linear subspaces are just the ideals of }j. Now p is orthogonal with respect to 
an ad invariant metric and both C and ~ are ideals of }j, so we have orthogonal 
decompositions 

~ = b EEl C, 
where a and b are ideals of }j. Since a and ~ are both ideals of }j they must 
commute, i.e. a S;;; Z. We have the further orthogonal decomposition: 

Z = a EEl b' EEl C C }j, 

and it follows that b' S;;; b S;;; ~, so b' S;;; Z n ~ = C, and hence b' = 0, giving 
Z = a EEl C. 

The canonical projection g --+ g/~ induces by restriction an equivalence of the 
adjoint representation of H on m (the orthocomplement of ~ in g) with the adjoint 
representation of H on g/~. Since the fixed point set of ad(H) on g is clearly 
Z = a EEl C, a is exactly the fixed point of ad(H) on m, so a EEl ~/~ = }j /~ is the 
fixed point set of ad(H) on g/~. • 

5.3. THEOREM. Let H be a closed subgroup of a compact Lie group G and 
let Nand Z (with Lie algebras }j and Z) denote respectively the normalizer and 
centralizer of H in G. Then the following are equivalent: 

(i) eH is an isolated stationary point of the action of H on G / H. 
(ii) The adjoint representation of H on g/~ does not contain the trivial repre-

sentation. 
(iii) }j =~. That is, H is open in its normalizer. 
(iv) WH = N/H is finite. 
(v) Z S;;;~. That is, the identity component of Z is included in H. 
(vi) Let M = G/H, then dim(MH) = 0 and MH = WHo 
(vii) Any smooth G-manifold with principal isotropy type (H) admits sections, 

and for any regular point x of M, MG x is the section for M through x. 
Moreover if these conditions are true then for any M as in (vii) the generalized 

Weyl group of MH is WHo 

PROOF. Considering G/H as an H-space the isotropy group at the coset gH 
is gHg- 1 n H, so that gH is a stationary point precisely when gHg- 1 = H, that 
is when g E N(H), so that the set of stationary points is exactly WHo Then the 
equivalence of (i), (ii), and (iv) follows from Lemma 5.1. The equivalence of (ii), 
(iii), (iv), and (v) follows from Lemma 5.2. 

Since the dimension of a section is equal to the cohomogeneity of M it is clear that 
(vii) implies (ii) and to complete the proof we will show that (ii) implies (vii), and at 
the same time verify the final conclusion of the theorem. So let M be a Riemannian 
G-manifold with principal isotropy type (H), and with #(1H, g/~) = 0, and let x be 
a point of M with Gx = H. Since dim(v(Gx)x) is the cohomogeneity of M, itfollows 
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from 5.1 that in fact v(Gx)x = T(MH)x. Since this is true at every regular point 
of M H, the set of regular points of M H is an integral manifold for the principal 
horizontal distribution j{ of M. By homogeneity it follows that j{ is integrable. 
Since M H is a closed, properly imbedded, totally geodesic submanifold of M it 
now follows from 3.4 that MH is a section for M. Finally since gMH = MgHg- 1 , 

it follows that N(MH) = N(H) so W(MH) = N(H)/H = WHo • 
5.4. DEFINITION. A smooth G-manifold M will be said to have canonical 

sections if a principal isotropy group H satisfies the equivalent conditions of 5.3. 
The important point to notice is that having canonical sections is a condition 

only on the type of the principal orbits. In particular M is not even assumed to be 
Riemannian; if it has canonical sections then no matter what G-invariant metric 
we choose for M, not only will it have sections, but in fact the section containing a 
regular point x of M will necessarily be MG x • Therefore it is an interesting problem 
to classify all the pairs (G, H) such that H is open in its normalizer. 

5.5. COROLLARY. If a principal isotropy group H of a smooth G-manifold M 
includes a maximal abelian subgroup A of G (in particular if H has maximal rank) 
then M has canonical sections. 

PROOF. By assumption A is equal to its centralizer in G. But then since A ~ H, 
the centralizer Z of H is included in A, so Z ~ Hand (v) of the theorem is 
satisfied. • 

In [Szlj J. Szenthe shows directly that if H has maximal rank then (vii) of the 
theorem is satisfied. It should be noted however that for a G-manifold with principal 
orbits of type H to have canonical sections it is not necessary that H have maximal 
rank in G; G = SO(2n) and H = SO(2n - 1) is a simple counterexample. Also G 
can have maximal abelian subgroups which are not tori (for example SO(2n) has 
a maximal abelian subgroup (Z2)n). 

5.6. EXAMPLE. If for M we take G with the adjoint action (gh) = ad(gh = 
g,g-l) then the principal orbit type is the conjugacy class (T) of the maximal tori of 
G. The stationary set MT of T is just T itself. Of course T is open in its normalizer 
N(T) and WT = N(T)/T is the Weyl group of G. Thus the adjoint action of any 
compact Lie group on itself has canonical sections which are the maximal tori of G 
and the generalized Weyl group is just the usual Weyl group associated to G. The 
identity e is a stationary point of M and the isotropy representation of G on T Me = 
9 is the adjoint representation Ad. Now ad(g) exp(X) = exp(Ad(g)X), i.e. exp is 
an equivariant diffeomorphism of a neighborhood of 0 in 9 with a neighborhood 
of e in M, so X and exp(X) have the same isotropy group, and in particular 9 
also has principal isotropy type (T), and hence is polar with canonical sections the 
maximal abelian subalgebras a of g, and generalized Weyl group the Weyl group of 
G. It also follows easily from Corollary 5.5 that the above examples admit sections 
because T has maximal rank in G. 

6. The submanifold geometry of orbits when sections exist. If M is a 
complete Riemannian G-manifold which admits sections, then the orbit foliation 
of M has remarkable Riemannian geometric properties. In this section we will 
study some geometric aspects of these urbits as submanifolds of M, and we also 
will discuss to what extent the Riemannian geometry of one principal orbit can 
determine the whole orbit foliation. 
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To set notations we review briefly some elementary submanifold theory. Let 
M be a Riemannian manifold, and V its Levi-Civita connection. Suppose N is a 
submanifold of M. Then N has an induced metric and the Levi-Civita connection 
V' on N is related to V as follows: 

V' x Y = the orthogonal projection of V x Y onto TN. 

The shape operator Av of N in the normal direction v is defined to be the selfadjoint 
operator 

Av(X) = -(the orthogonal projection of Vxv onto TN), 

and the eigenvalues of Av are called the principal curvatures of N in the direction 
of v. The normal connection of v(N) is defined as in §2 to be 

V x~ = the orthogonal projection of V' x~ onto v(N). 

A normal field ~ is parallel if V ~ = 0, and v( N) is fiat if the curvature of the normal 
connection V is zero, which is equivalent to the condition that locally there exists 
a parallel orthonormal frame field for v(N). 

6.1. THEOREM. Suppose M is a complete Riemannian G-manifold that admits 
sections, and N is a principal orbit of M. Then 

(0) exp(v(N)x) is a properly embedded totally geodesic submanifold of M for all 
xEN. 

(1) v( N) is fiat and has trivial holonomYi in fact if Vi, ... , Vk is a basis for v( N)x 
then the G -invariant normal fields i\ (gx) = dgx ( Vi) form a global parallel frame for 
v(N). 

(2) The principal curvatures of N with respect to any parallel normal field are 
constant. 

PROOF. (0) follows from 3.2(4) and (5), and (1) follows from 3.2(1) and 3.6(ii). 
Since G acts on M by isometries, Adgx(v) and Av(x) have the same eigenvalues. 
Then (2) follows from 3.6(ii). • 

6.2. DEFINITION. Let N be a submanifold of M and v a parallel normal field 
on N. Then the parallel set N v is defined to be {exp(v(x))lx EN}. 

If N is compact then N v is, for small v, diffeomorphic to N. Although in general 
N'J may have singularities, if N is a principal orbit of a Riemannian G-manifold with 
sections then each parallel set is also a G-orbit and hence a smooth submanifold 
( whose dimensions may vary with v). So the or bi t foliation in this case is determined 
by the Riemannian geometry of a single principal orbit. When M is a space form 
(i.e., has constant sectional curvature) submanifolds which have properties 6.1(1) 
and (2) have been studied. We recall 

6.3. DEFINITION [T]. A connected compact submanifold Mn of a space form 
Nn+k (c) is isoparametric if 

(i) v(M) is flat, 
(ii) the principal curvatures of M with respect to any parallel normal field are 

constant. 
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It follows from 6.1 that we have 

6.4. PROPOSITION. Suppose G acts on Nn(c) isometrically and admits sec-
tions. Then the principal orbits are isoparametric. 

A submanifold M of a space form N is called full if M is not contained in any 
totally geodesic hypersurface of N. 

6.5. THEOREM. Suppose Mn is a full and isoparametric submanifold of Rn+k, 
and G = {g E O(n+k)ig(M) C M} acts on M transitively. Then the representation 
p: Go -t O(n+k) is polar and M is a principal Go-orbit, where Go is the connected 
component of G. 

PROOF. We need the following result concerning isoparametric submanifolds 
proved in [Tj: there exist p (p 2: k) parallel normal fields (the curvature normals) 
VI, ... , vp such that the shape operator Av has eigenvalues (v, VI)' ... ' (v, vp), and 
VI, ... , Vk is a global normal frame field on M. Note that Av and Agv have the 
same eigenvalues, so there is a permutation a of 1, ... , p such that (gv(x), Vi(gX)) = 
(V(X), V". (i) (x)). Since (gV(X),Vi(gX)) = (v(X),g-IVi(gX)) and Vl, ... ,Vk is a base 
of lI(M), we have g-IVi(gX) = V".(i)(X). Therefore to each curve gt in Go such 
that go = id we have associated a continuous map t -t a(gd from (-c:, c:) to Sp 
and a(O) = id. Hence a(gd == id, which implies that every parallel normal field 
is Go-invariant, so the slice representation of the orbit M is trivial. Thus M is 
a principal orbit and by 3.6 the principal horizontal distribution )I is integrable. 
Finally it follows from 3.4 that p is polar. • 

A submanifold M of a Riemannian manifold N is called ambient homogeneous 
if M is an orbit of an isometric action on N. Therefore being isoparametric and 
ambient homogeneous characterize the principal orbits of polar representations. So 
it follows from Dadok's Theorem 4.4 that we have 

6.6. PROPOSITION. Every ambient homogeneous isoparametric submanifold of 
Rn arises as a principal orbit of the isotropy representation of a symmetric space. 

However there are also many nonhomogeneous isoparametric submanifolds in Rn 
[OT, FKMj. It seems that the conditions in 6.1 are stronger than those in 6.3 
for isoparametric, but we note that 6.1(0) is always true for submanifolds of space 
forms, and it is also known that if M is isoparametric in Rn then the holonomy 
of lI(M) is trivial. Hence isoparametric submanifolds of Rn can be thought as a 
purely geometric analogue of principal orbits of polar representations. Moreover 
the parallel foliation of an isoparametric submanifold of Rn is an orbitlike foliation. 
To be more specific we have 

6.7. THEOREM [T, HPT, PTj. Suppose Mn is an isoparametric submanifold 
of Rn+k. Then there is a Weyl group W associated to M, and 

(1) W acts on exp(lI(M)x) (= x + lI(M)x) isometrically (=orthogonally) for all 
x in M, and W acts diffeomorphically on M, 

(2) every parallel set of M is a smooth submanifold (of dimension:::: n) of Rn+k, 
(3) let ~ denote the Weyl chamber of the W -space exp(lI(M)"o) which contains 

xo, and let y be in ~; then there is a unique parallel manifold Mv containing 
y (which we denote also by My) and U{Myiy E~} = Rn+k, 
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(4) let II: Rn+k ---> ~ be the canonical projection, II( My) y; then II zs a 
quasi-homogeneous stratified Riemannian submersion (cf. [PT]). 

Now it is natural to make the following definition. 
6.8. DEFINITION. A submanifold M of a Riemannian manifold N IS called 

isoparametric if 
(0) exp(v(M)x) is a properly embedded totally geodesic submanifold of N for 

all x in M, 
(1) v(M) is flat and has trivial holonomy, 
(2) the principal curvatures of M with respect to any parallel normal field are 

constant. 
It follows from 6.1 that the principal orbits of a complete Riemannian G-manifold 

with sections are isoparametric. However it is not known whether there are ana-
logues of 6.5 and 6.7 for Riemannian symmetric spaces. 
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