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Here, we offer concrete illustrations of  the state determination method developed abstractly 
in Part I o f  this work. Quorums are found for finite-dimensional magnetic multipole 
problems as well as for the harmonic oscillator with an energy cutoff. There is, in addition, 
a discussion of  general procedures for empirically distinguishing pure states from mixed 
states. 

6.1 MATRIX REPRESENTATION OF THE SPECIAL BASIS 

To develop specific applications of  the multipole expansions in operator space, it is 
necessary to have available matrix representations of  the basic set {vk J k = 0,..., 2J}. 
The Wigner-Eckart  theorem immediately yields one such representation, known in 
angular momentum problems as the standard or spherical representation. Such 
matrices will of  course be equally useful as a mathematical basis even if the 
index M = +J , . . . ,  --or, which labels rows and columns, is not interpreted as the 
magnetic quantum number. 

We tabulate below the explicit matrices which represent the rkq's for ~ ,  ~ ,  ~ ,  
and ~ ; t h e  illustrations given below of  our state determination method were 

1 The numbering of sections, equations, etc. in the present part of this work continues from where 
the numbering left off in Part I. m 
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developed using these tables. Calculation of  the matrix elements given below is a 
straightforward arithmetical exercise using (42), (46), and a handbook (n) of  3-j symbols: 

~ , J = 0  

{to: ~'oo = 1) 

~ , J = ½  

To: l~-oo=(~ ~)l 

_ 1 0 1 1 0 - - 1  
TI: { 7"1-1 - ~  (1 ~)' 710 = (0 - -~) '  Tll ~- " ~  (0 0)} 

~ , J = l  

T O : 

T 1 : 

T~ : 

0 

I   ooo) (i o o)  (o_1 i)} ~-~_~-=v ~ 1 0 O ,  ~ '~o=~/~ 0 O , w n = V  0 0 - -  
\ 0  1 0 0 - -  1 \ 0  0 

1 ( oo) o) r~_~= V~ 0 O, ~'.~-1=~/~ 0 O, 
0 0 --i 0 

(i ° 1 (i°!l} = 0 , 1"~1 V3 0 
• 0 1 0 0 0 

T o : 

T 1 : 

Zoo =: 0 1 

0 0 (oo 
TI_ 1 = ~--~ 

2 0 

0 

0 0 , 
o ,/~ o 
o o ~  

0 

0 
0 

1 

( o0 
t 0 0 , 
0 - - 1  
0 O - -  
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i (i ° T 2 : "/'2-- 2 : V 2  0 
0 
1 

(i °° 
--1 0 

"r~° = 0 -- 1 

0 0 

-~ 0 0 
0 0 

i oo ra:  ~ ' a - a = 2  0 0 
0 0 
0 0 

TS_ 1 = ~ - ~  

0 0 , 
0 
0 

0 , 

0 , 

0 0 
0 0 

-V~ o 
0 1 

i -- 1 0 0 ~ 2 o ~/~ o 
~r~l = - ~  0 0 -- 1 

0 0 0 

r33 = 2 0 0 
0 0 

0 0 

r2-, = V2  0 0 
0 0 
0 - - 1  

0 0 0 , 
T~I = V2 0 0 

0 0 

( oo ;) 
0 0 0 , 

~-2 = ~/2 0 0 

--1 0 

0 , 1 - 3  0 
~-~ 0 3 

0 0 -  

, ~'s~= ~/2 0 0 --I , 
0 0 
0 0 

7. ILLUSTRATION: A G-QUORUM FOR A SPIN-1 MAGNETIC DIPOLE 

A spin-1 magnetic dipole is characterized by a three-dimensional Hilbert space 
; among its observables is the magnetic dipole moment ~, an operator proportional 

to the angular momentum operator J. The well-known matrix representations of J for 
o r ----- 1 are easily expressed as multipole expansions in terms of our special basis 
(let h = 1): 

r- 1 ( i  1 i )  ~ - or~ = - ~  o = (~-~ - ~ 0  
1 

1(io' i) J~ = ~-~ i = -~3 (~" + ~) 

(i ° o°i 0 - - 1  

(61) 

8-~5 [I/4-4 
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Since (61) involves only components of ITO r l ,  each one of J~, Jy ,  J~ is a 
purely dipolar observable. The dipole component vectors ~ J~l ,  3 ~ ,  J ~  may be read 
immediately from (61); the triplets represented by these vectors are given below to 
within multip!icative constants which are unimportant in checking for linear inde- 
pendence: 

l J~l : (1,0, --1)I  
Jr1 : (1,0, 1) (62) 
J, l :  (0 ,1 ,0)  

(Throughout this paper, we shall use this system for displaying the relative directions 
of  like multipole components of several observables.) 

Obviously, these dipole component-vectors are mutually perpendicular. Hence, 
J~, J~, d~ may be taken as the dipole portion of a g-quorum. 

Since 2J  = 2 in the present example, we must also find five quadrupolar-LI 
type 2 observables. Such observables may be constructed formally by Considering 
Hermitian combinations of the components of the dyadic form JJ .  In particular, we 
have 

t j 2  = ~_To ° + (1/2 V3) 1-2-2 -- (1/3 V2) T2o + (1/2 ~/3) r22' 
dv~ = §%0 -- (1/2 ~/3) r2_z -- (1/3 V2) 1-2o -- (1/2 C3) 1-2z 

J~J~ + JJ~  = (i/ V3)(1-~-2 -- ~2e) (63) 
I J d z  + SzJ u = (i/1/3)(1-2-x -~- I"21) 
\J,J~ -}- J J ~  = (1/C3)(~-e_1 -- 1-z~) 

Note that J ~  and j 2  are of mnltipolar type 2, while the anticommutators, also 
of  type 2, are purely quadrupolar. To ascertain whether these five operators are the 
quadrupole portion of a g-quorum, we need the directions of the quadrupolar 
components, which may be read off (63): 

x 2  " 

J~2: 
(JxJu -}- JvJx)2 : 

/(Jvaz + JzJ~)2 : 
\(JzJ,~ + JxJz)2 : 

(1, O, --  ~/~, O, 1)~ 
(1, 0, v~, o, 1) 
(1, 0, O, 0, --1) 
(0, 1, 0, 1, O) 
(0, 1, O, --1, O) 

(64) 

It is easily checked that the determinant whose rows are the quintuplets of (63) 
does not vanish. Hence, j 2 ,  y z, and the three anticommutators constitute a set of 
quadrupolar-LI type 2 observables. 

Hence, these eight observables constitute a g-quorum for ~ : 

I 1~,J.,Sz f 
J J, Y& (JJ. + JJ~), (sJz + JJ.), (Jd~ + JJ3 (65) 

To solve (60) for p, an ensemble of measurements of each of these eight obser- 
vables must be performed and the corresponding mean values must be computed 

Cf. Definition 6 and Eq. (39) of Part I. 
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from the resultant data; the observable multipole components to be used in (60) are 
those displayed in (61) and (63). We have already physically identified J , ,  J~, J, as 
angular momentum components. Y,z is just a function of J~ ; so its mean value may be 
computed from J~ data. Similarly, it is clear how to find the mean value of y2. The 
anticommutators are not, however, immediately recognizable as corresponding to any 
familiar observable. 

To interpret the anticommutators, consider the interaction of the magnetic 
dipole moment ~ with a uniform external magnetic field B. If  B is switched on at the 
instant (call it t = 0) to which the unknown quantum state refers, then the unknown 
p becomes the initial condition for the temporal evolution of the quantum state 
generated by the Hamiltonian 

H = --~" B (66a) 

If  B points in the z direction, then since ~ is proportional to J, the operator 
structure of H is simply 

H : gJ~ (66b) 

where g includes the proportionality constant between ~ and J as well as the field 
strength B~. Similar forms of H describe the interaction of the dipole with fields in the 
y and z directions. 

Suppose ensembles of J ~  measurements are performed at t = 0 and at short 
intervals thereafter until sufficient data are gathered to permit computation of 

(d/dt)(J~)lLo (67) 

where the superscript z is a reminder that B is in the z direction. 
But 

d/dt{Jx 2} = (dJ~/dtX(1/i)[J~ ~, H]} = {( g/i)[J~ ~, Jz]} 

= (( g/i){Jce[Jx, Jz] @ [J~, Jz] J~}) 

= { - -g(JJ~  + JJx) )  = - - g ( J J v  + JJ~ )  

(68) 

Hence, measurement of the quantity (67) is tantamount to measurement of the 
mean value of one of the anticommutators in the g-quorum. Mean values for the 
remaining anticommutators are similarly calculable from j 2  and j 2  data yielded by 
experiments with the B field in the z and x directions, respectively. 

8. GENERALIZATION: QUORUM DEVELOPMENT FOR HIGHER SPIN, 
HIGHER MAGNETIC MULTIPOLES 

The illustration of Section 7 indicates that our strategy for quorum development 
depends in practice on the physical identification of observables encompassing the 
entire range of possible multipolar characteristics admissible in the operator space 
associated with the system of interest. Mathematically, it is always possible to solve 
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higher-spin, higher-multipole problems by a simple extension of the steps given in 
Section 7 for the spin-1 magnetic dipole. However, due to difficulties in the physical 
identification of observables we find a different approach more amenable to general- 
ization to any multipole with a 2L-pole moment. 

Imagine that is is in principle possible to measure the interaction energy between 
a multipole and an external magnetic field of known spherical harmonic structure. 
Specifically, let the scalar potential of the magnetic field have the form 

qb(r) = R(r) Y~m(O, ~) (69) 

which is to be known in the neighborhood of the multipole. The multipole may be 
treated as a collection of magnetic poles of strength +p  and --p arranged to have only 
2L-pole moment, generated by the coordinate displacement vectors a l ,  as ..... aL. 
The energy of interaction between such a multipole and the magnetic field is then 

L 

WL = [p(--1)L/LI] l-I (a." v) ~b(r) (70) 
~ = 1  

where the gradient operators act only on the variable r in the function ~b. We may use 
the gradient formula TM to write 

VR(r) Y~(O, ¢) = ~] Gz,~.~. (71) 
v 

where g~ are the unit vectors in coordinate space on the spherical representation, and 

G~.~ = --[(l + 1)/(2l + 1)] 1/2 (dR/dr -- R/r) ~ <1, 1, m -- v, v I 1 + 1, rn} Yt+a . . . .  
p 

+ [l/(21 + 1)] 1/2 (dR/dr + (I + 1) R/r) ~ (I, 1, m -- v, v [ l -- 1, m) Yt_I,~_. 
" (72) 

The displacement vectors {a,} which characterize the multipole system have 
spherical expansions of the form 

a.  -=-- X (--1)" a1.(")~_. (73) 

where the al's transform like spherical harmonics. Thus, to obtain, for example, 
the interaction energy for a spin-3/2 octupole (L = 3), we need the sequence of 
operations indicated by 

.(1)m ~ - -'.~, (1) G a l " V ~  = X ( - - 1 )  ~ u l - U ~ , ~ - - ' ~ ,  = X ( - U  al~ tm_~ 

( ~  ( 1~ a(1)G \ (i) Ctlu a2 a2" V , - - . ,  1,, t~-,,] = ~. (--1)" • VG~_,, 
iz 

(74) 

(75) 
W' ," 1v '+~ a(1)a(2)G" 

= ~ \ - -  ] 1,u, l p  lli%--.u,--p 
Lci' 
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where G' is to be derived from the gradient formula applied to G. The last step to the 
octupole expression yields 

a(1)a(2)G ' ~ = ~ (--1)"+~+~ a(1)a(2)a(3)G " (76) a3" V ( 2  (--1) "+" 1. 1. ,,~.-.-;) 1 .  lu l a  l r a , - •  . . . .  

so that finally we have 

( D "+"+° a(1)a(~)a(3)G " (77) Wa = [P(- -1)a /3112,  - , 1, 1~ 1~ am.- . . . . .  

Assuming that Wa can be measured, and that the magnetic field can be manipulated 
at will so that only specified values of  the indices l and m yield nonzero components of 
¢ ,  we can regard each W3(lm) as a distinct energy observable. 

In the customary manner, we regard the classical derivation which led to Eq. (77) 
as adequate motivation to postulate that the quantum system properly called a spin-3/2 
magnetic octupole is characterized by ~ (since a r = 3/2) and, in an external magnetic 
field of the type (69), has an energy operator of  the form (77) in which the spherical 

( n ) /  vector components ~a~ s are now interpreted as rank one ITO's on the operator space 
associated with ov~. 

From Theorem 1 of Part  I, we note that a~x ~) and r 1 can differ only by a scalar 
multiplier. Hence, the energy operator for a spin-3/2 octupole in an external field like 
(69) has the form 

W3(lm) = Z fqlq2q~(lm) TXqlTlq'~Tlq3 (78) 
qlq2q$ 

where t he f ' s  depend on numbers characterizing the multipole and on the structure of 
the external magnetic fieId. 

Generalizing on this procedure, we conclude that a 2L-pole quantum system in an 
external field like (59) has an energy operator of  the form 

qL 

w (tm) = [I (79) 
qlq2" * "qL q=ql 

By successive application of Theorem 10, the product of Tlq'S may be expanded in the 
form (39) and thus WL(Im) may be classified according to its multipolar components. 
Since t he f ' s  in (79) are numbers that can be manipulated by altering the field environ- 
ment (69), we can in principle generate a large class of energy observables having 
diverse multipole characteristics and from this class select a quorum of  observables each 
of which has already been physically identified as an interaction energy in a known 
applied field. I f  fields like (59) should fail to offer sufficient flexibility in manipulating 
the f ' s  in (70), more general external field structures constructed as series of terms like 
(69) could be used to obtain still more energy observables belonging to the system for 
which a quorum is sought. 

9. EXTENSION OF THE M E T H O D  TO INFINITE-DIMENSIONAL 
HILBERT SPACES WITH ONE CUTOFF OBSERVABLE 

Let E denote an observable with eigenvalues {en} and eigenvectors {[ n d,)[ d,~ = 
1,..., D~}; i.e., E [ n d , )  = e~ [ n d~), and D~ is the degree of  degeneracy of e~. 
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Definition 12. If  a physical system is so prepared that the probability for an 
E-measurement to yield any eigenvalue not included in some finite subset ~ of {e~} 
is zero, then E will be termed a cutoff observable for that system and preparation. 

To avoid cumbersome notation, we assume below that each e~ is nondegenerate, 
i.e., each D,~ = 1. This assumption does not affect the basic conclusion to be drawn 
concerning the structure of the density matrix in the presence of a cutoff observable. 
We assume further for notationaI convenience that the {e,} have been relabeled so that 

(g = {e,~ In = 1, 2,..., N} (80) 

If  the spectral expansion of the unknown density matrix is given by 

p = F, W~ I k ) (k  i (81) 
k 

then the probability that an E-measurement will yield the numerical result en is 

Tr(p l n ) ( n  1) = ~ W~ ] (n  l k)[ 2 (82) 
k 

But since E is a cutoff observable, (82) must vanish if e,~ is not an element of (Y; i.e., 

Wk t (n  l k) l  2 = O, n > N (83) 
k 

Because p is positive semidefinite, each Wk >~ 0; hence, the vanishing sum in (83) 
has every term nonnegative. Thus, (83) can be satisfied if and only if for each k such 
that W~ ~ 0, 

(n I k)  = 0, for each n > N (84) 

It follows that the matrix elements of p in the representation diagonal in E have 
the property 

(n  l p l n ' )  = ~ Wk(n I k ) ( k l n ' )  = 0 (85) 

if either e.  or e,¢ is not included in cg. 
Thus, if a physical system is known to have a cutoff observable E, then the only 

part of the density matrix left to be determined is the square submatrix in the E-repre- 
sentation which has row and column indices n, n' satisfying 

1 <~n, n ' ~ < N  (86) 

Geometrically, the situation may be described as follows. Let ~y,(cg) denote the 
subspace of Hilbert space spanned by {] n) I n = 1 .... , N}. The whole space o~ is the 
direct sum of ovg(cg) and its complement ~±(cg): 

= ~%f(cd) @ ~z(cd) (87) 

From (84), it follows that every I k)  actually appearing (i.e., W~ 4: 0) in the 
expansion (81) is orthogonal to ~ ' (W) .  Hence, because of (87), every [ k)  in (81) is 
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included in ~f'(~g). In short, the presence of a cutoff observable forces p to be a sum of 
projectors into the subspace ~f'(T). 

Let A be an arbitrary observable of a system with an infinite-dimensional Hilbert 
space and cutoff observable E. In a representation diagonal in E, we have 

(A) = Tr(pA)= ~ ~ (n[pln')(n'iAJn) (88) 

But, since (n I P I n ' )  --  0 if n or n' exceeds N, (88) becomes 

N N 

( A )  = ~ ~ (n I p l n ' ) (n '  J A I n)  (89) 

We summarize the main conclusions as follows: 

Theorem 15. The density matrix in a representation diagonal in a cutoff 
observable E with T = {e~ In = 1, 2 ..... N} has nonvanishing elements only in the 
N x N submatrix with row and column indices n, n' satisfying 1 ~ n, n' ~ N. 

Theorem 16. In a representation diagonal in a cutoff observable E with ~ = 
{e,~ l n = 1, 2 ..... N}, the only matrix elements of an observable A that contribute to 
the calculation of  <A) are in the N × N submatrix At with row and column indices 
n, n' satisfying 1 ~< n, n' ~< N. 

Theorems 15 and 16 make it possible to treat the state determination problem for 
a physical system with an infinite-dimensional Hilbert space by using the g-quorum 
method for ~ar ,  provided the system has been prepared so that it has a cutoff 
observable. A physical illustration of this procedure is given below. 

10. ILLUSTRATION: A G-QUORUM FOR A LINEAR HARMONIC 
OSCILLATOR WITH ENERGY CUTOFF 

Consider a linear harmonic oscillator, characterized by the Hamiltonian 

H = (p~/2m) + ½m~2x ~ (9o) 

where position x and momentum p satisfy 

[x, p] = ih (91) 

Suppose energy data have revealed that the probability is zero for finding the 
oscillator with any energy other than one of the three lowest energy levels. Then, H is 
a cutoff observable with fY = {(n q- ½) ho) I n = 0, 1, 2}. By Theorem 15, the only 
nonzero elements of  the unknown density matrix are {(n I p [ n')  I 0 <~ n, n' <~ 2}, 
where the {I n)} are eigenvectors of  H. Similarly, by Theorem 16, the only matrix 
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elements of an oscillator observable A that will contribute to (A) are those in the 
submatrix A~ whose elements are {{n l A ] n ' )  [ 0 <~ n, n' ~ 2}. Hence, the unknown 
elements of p may be determined if a g-quorum of Hermitian submatrices like A~ can 
be found. 

However, to identify the physical meaning of such a submatrix, it is also necessary 
to know the whole matrix A of which A~ is a part. Accordingly, we attack the problem 
by first considering infinite-dimensional matrices whose operational definitions are 
known, and then extracting the submatrices relevant to the mathematical problem at 
hand. 

In the energy representation, x and p have the following well-known matrices: 

x = (h/2moJ)(a* + a), p = i(mhoJ/2)(a* - -  a) (92) 

where 

( ° ° ° °  ) 
0 ~ 2  0 a* = x / l  0 0 0 (93) 

a = 0 0 v ' 3  ' 0 V ~  0 0 
0 0 0 0 0 V3 0 

The submatrices xo and Pc are easily found and expanded in terms of the special 
basis for the operator space associated with ~ : 

( h  ~n(  0 ~/i 0)  
xo t2--~! v'i 0 

0 ~/2 0 

- -  \ 2 - ~ 7  I 1 4- V2 1 4- V',2 

= _h~ i o - 

- -  - -  i (mh¢°~ 1/2 ~ 1 + V 2  
! V-6 

i - -  v'2 1 - -  C2 ) 
7"11 + V 6  "/'2--1 IV/6 7"21 

(94) 

T1--1 + "V/6 Tll "~- V6 '/'2--1 "~- 
1 - -  "V/2 "/'21 ~j Vg 

(95) 

Note that both xc and Pc are of multipolar type 2; the directions of their quadru- 
polar components are given below in the manner introduced in Section 6: 

xc~ : (0, 1, O, --1, O) (96) 

Pc2 : (0, 1, O, 1, O) (97) 

We can similarly analyze other observables until a g-quorum has been 
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constructed. The following observables round out the quadrupole portion of the 
quorum: 

(1 0  0=t (x2)c = (h/2mco) 0 3 
V72 o 5 /  

= (h/2mw){3roo -- 2 ~/~ rlo q- ~/~ %-2 -]- ~ r22} (98) 

°7) (p2)~ = (mhco/2) 3 
- -  72 0 

= (rnhw/2) {3roo -- 2 ~/~ TlO - -  ~ -~  "3-2 - -  V/~ 78-3} 

Hence, 

(x~)o2 or (p2)o2 : (1, 0, 0, 0, 1) 

(1°i) (H2)~ = (hw/2) 2 0 9 
\0 0 2 

= (hco/2) 2 (35/3) %0 -- 12 ~/g %0 q- (8/3 v'2) r2o} 

(H2)~2 : (0, 0, 1, 0, 0) 

,l° o_i) (xp q- px)~ = ih V72 \0 0 
1 0 

= ( ih/m) ~/~  {r2-2 - -  r~2} 

(xp + px)~2 : (1, O, O, O, --1) 

To interpret the operator xp + px, we note that 

;h dX 2 1 ih 
W = [x2, H] = ~ [x 2, p2] = m (xp -k px) 

(d/dt)(x z) = (1/m)(xp q- px )  

Similarly, it can be demonstrated that 

d(p2)/clt = --rmo2(xp + px )  

(99) 

(lOO) 

(101) 

(102) 

(103) 

(104) 

(105) 

(106) 

(107) 

Thus, there exist two methods for empirically determining (px  + xp). 
Now, comparison of (96), (97), (100), (102), and (104) immediately shows that the 

set {x~, p~, (x2)~ or (p~)o, (H2)~, (xp ÷ px)~} consists of five type-2 quadrupolar- 
Cartesian matrices; hence, we have found the quadrupole portion of  a g-quorum. 
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To complete the quorum, we need three type-1 matrices, which may be chosen as 

(xa)~x : (1,0, --1) 

(x~),~ : (o, 1, o, - 1 ,  o) 

But from (94), (96), we have 

x,x: (1 ,0 , - -1 )  

x~ : (0, 1, O, --1, O) 

(113) 

(114) 

Similarly, from 

(! ol (p3)~ = i(mho~/2)z/2 0 - -  a /2  

6 V 2  0 / 

= i V~(mh,o/2)~/~ ((1 + 2 V~) ~ H  + (1 + 2 ~/~) ~ 

+ (1 - 2 ~/~) ~-1 + (1 - 2 ~/~) ~'~d 

(p3)~ : (1, O, 1) 

(pZ),~ : (0, 1, 0, 1, 0) 

Thus, we can find a linear combination F(x )  of x and x 3 such that (F(x))o has no 
quadrupole component and has dipole direction (1, 0, --1). Such an F(x )  is defined by 

F ( x )  ~ (2moJ/21h)(3 - -  v"2) x 3 - -  x 

fF(x))ol : (1, o, - 1 )  

(115) 

(116) 

(117) 

(118) 

(119) 

(110) 

(111) 

(112) 

follows. H itself provides one type- 1 matrix: 

Ha = ½ho~ 3 
0 

= ½hoJ{3%0 -- 2 V/~ rl0 } (108) 

n~l : (0, 1, 0) (109) 

Two additional physically identifiable type-1 matrices may be constructed as 
functions of x and p, respectively. Consider x3: 

(xS)~ = (h /2mm)  ~/2 0 6 ~/2 

6 V 2  0 

= ~/~ (h/2mo~)~/~ {(1 + 2 ~/2) "1-~ -- (1 + 2 V~) ,~1 
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and (95), (97), we obtain a function G(p) such that (G(p))~ is type 1 with dipole 
direction (1, 0, 1): 

G(p) ~-- (2/21mhoJ)(3 -- ~/2)pa p (120) 

(G(p))~ : (1, O, 1) (121) 

Now, comparison of (109), (116), and (121) immediately shows that the set 
{H~, (F(x))~, (G(p))~} consists of three type-1 dipolar-Cartesian matrices; hence, we 
have the dipole portion of a g-quorum. 

A complete g-quorum is therefore 

{He, Fc, Q ,  (H2)o, x~, p~, (x~)~ or (p2)~, (dx2/dt)~ or (dp~/dt)~} (122) 

where the coefficients to be used in Eq. (60) are displayed respectively in Eqs. (108), 
(115), (120), (101), (94), (95), (98) or (99), and (103) with (106) or (107). 

Speaking in terms of observables instead of submatrices, we may summarize by 
stating that for a linear harmonic oscillator with energy cutoff at n = 2, the following 
set provides one example of a quorum of observables: 

{H, H 2, x, x 2, x 3, p, dx2/dt, p~} (123) 

Since some elements of (123) are functionally related, it is actually necessary to obtain 
measurement collectives of data only for {H, x, p} at the instant of interest (say t = 0) 
and for x during a time interval in the neighborhood of t = 0. Statistical analysis 
would then provide the eight mean values needed. 

11. TRANSFORMATION TO A HERMITIAN BASIS FOR 
OPERATOR SPACE 

The special basis {T~} consists of Hermitian tensor operators in the sense of 
Definition 2, but individual rkq'S other than -rk0's are not Hermitian operators. It is, 
however, possible to form in a systematic fashion (2k ÷ 1) Hermitian operators 
which span the same subspace as the components of any T~. 

For example, if we define 

eu oc i(~'1-1 + r11) (124) 
O'z ~ "710 

the three operators a are each Hermitian and orthogonal in operator space. Once 
real proportionality constants are selected for (124), the dipole term in the multipole 
expansion of an observable A may be written as 

1 

q ~ - I  

~= A"  n (125) 
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(The 3-vector A should not be confused with (N 2 -- 1)-dimensional complex vector A 
of Section 4.) 

Since a has Hermitian components and A is Hermitian, then A must be a real 
vector. I f  Y = ½, the components of n can be chosen to be the Pauli spin matrices, a 
convention adopted in a previous publication which dealt with state determination for 
two-dimensional Hilbert spaces. 

It  is not difficult to continue the "Hermitization" procedure indicated by (113) to 
higher-rank multipoles; similarly, higher-rank generalizations of (114) generate real 
coefficients that can be subscripted like rectangular components of higher-rank 
ten.sors: 

~ oc % _ ~  q- %,2 ,  a~u oc i(%,_~ - -  %,2), %z oc i (%,_ 1 -1- %a), 

O'z~ 0C T 2 . _ l  ~ T2,1 ~ (YZZ OC T2, 0 

(126) 

The following explicit Hermitian basis for J = 1 will be used in Section 12 to 
illustrate the multipolar properties of pure quantum states: 

1: 1 
o 

O" a : 

{ o) 
% =  (1/~/2) 0 1 , % =  (l /x/2)  0 i 

1 0 i ; 

o" z = 0 

O - -  

o'~8 : 
I ( o1) a ~  = 0 0 , 

0 0 

o-i) 
0 0 , 
0 0 

(ii 0) %~ = (1/%/2) 0 i , 
- - i  0 

~ = ( 1 / ~ / ~ )  0 - 

--1 

° 

GZZ = - - 2  

0 

In terms of this basis, the density matrix has the form 

(127) 

where a,/3 run over x, y, z. 
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It  will also prove useful to associate with p two second-rank tensors defined as 
follows: 

p eq 
pO ~ ~p~p:~ pu z p.p~] (128) 

~P~Px PzP~, p2 / 

[P~x - -  Pz, P~u P~x \ 
S :-- ~ p ~  --px~-- p= p~ ! (129) 

and 

Important  properties of O0 and S are given by 

T r o o  = O ' ( ~ p 2 q - p ~ + p 2  

T rS  = 0 

(130) 

(131) 

Tr S 2 213p~, + p ~  -/- 2 2 

Finally, the specific transformation, induced by the relation between ~r's and r's, 
from rectangular to spherical multipole components of p for J = 1 is easily worked 
out: 

I px_i : (1/ v/-J)(p~ q- ipu), p~o =- ~/~ pz, pil : --(1/ V/J)(p~-- ip~) 1 
P2-2 = (1/V3)(p~ q- ip~,), P2-i = (1/x/g)(p** + ip~,,) (133) 

pzo ---- V2  p=, p22 = --(1/V3)(;,~ -- ip~), p~ = (1/VJ)(p~ --  ip~O 

12. MULTIPOLAR CHARACTERISTICS OF PURE STATES 

Once a density matrix has been determined, it may be of  interest to know whether 
the state it represents describes a pure or mixed ensemble. A criterion, involving 
multipole components of  p, for  testing the statistical purity of  the density matrix is 
given by the following theorem. 

Theorem 17. 
system with Hilbert space ocfN, then p is a pure state if and only if 

21 2J  
~ * ' t % = ( 2 j +  1) 2, N = 2 J +  1 

/¢=1 

ProoL 

where 

If  p is the density matrix describing the preparation of  a physical 

(134) 

2at 

p = ~ 0~'Vk (136) 
k=0  

From (40) or (123), we have 

1 2£ 
P = (eJ  + 1) T0 + ~ ~ "  r~ (135) 
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Hence, 

2J 2J 7¢ 

= 2 Z  2 2 
le=0 /=0  q=--/e r=--l 

pkqpt~'r~qr,r (137) 

By a familiar theorem in quantum mechanics, p is a pure state if and only if 

Tr p2 _ 1 

(For a mixture, Tr pZ < 1.) 
Substituting (137) into (138) and using (30), we get 

Tr p2 __ 2 P~qPzr Tr(r~qrz~) = 2 Pkqpz,(--1) q (rk_q [ r t0 
lc~qr klqr 

2J k 

2 OkqP~(-- 1) q 8~ 8~_r(ZJ q- 11 = (2J q- 1) 2 Z 
l~qr /~=0 q~--le 

Thus, p is pure if and only if 

(138) 

p~qp~q = 1 

(139) 

2J  

2 P~* "Pk = 1/(2J + 1) (140) 
k=O 

But by Theorem 8b, P0 = 1/(2J -q- 1); so (140) becomes 

o r  

1 1 2s 1 
2J -t- 1 2 , / - I - ~  + 2 P~*" O~ = 2J  -I- 1 

k = l  

2s 2J  
2 0 e * ' P k - -  ( 2 J +  1) 3 
/c=l 

which completes the proof. 
In addition to Hermiticity and normalization, a further property required of the 

density matrix is positive-semidefiniteness (nonnegative eigenvalues). To see how this 
constraint is expressed in terms of  the multipole components of p, consider a repre- 
sentation in which p is a diagonal matrix with eigenvalues 

{WM] M = 2J, 2J  --  1 ..... --2J).  

From (42) and Theorem 9, we have 

<jMl~.kq[jM,>= [(2J + l)(2k_k l)]ll~(_l)_S+k_M( J M k J ) 
' q - - M  

(141) 

To expand the diagonal p, we need only those r's with some diagonal elements 
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( J M  [ -ckq]JM) @- O. If  M = M',  the 3-j symbol in (141) vanishes unless q = 0. Thus, 
for a diagonal p, we have 

2J 
p = ~ pk0rk0 (142) 

k=l 

Now, 
2J 

WM = Tr(p I J M ) f J M  l) = ~ pko(JM I ~'ko I J M )  
k=0 

Substituting (141), we obtain 

3, (k J J )  (143) WNI = (2 J  -~ l )  1/2 ( - -  1) J+M 2 ( - -  l)k (2k @- 1) I/2 01,o 0 - - M  M 
k=O 

There are (2J q- 1) linear equations like (143) which uniquely determine the 
(2J + 1) numbers {Pko}; i.e., each Pko is a function of the {WM}. 

Consider Ok* " Ok in the present representation: 

Ok* "Ok = P~o = [Pko({WM})] e (144) 

The positive-definiteness and normalization of p require that 

0 <~ WM ~< 1 (145) 

In light of (145), we conclude that [Pk0({ WM})] 2 must have an absolute maximum 
Bk and absolute minimum bk ; hence, the positive-definiteness of  p will generally be 
expressed by constraints of  the form 

bk ~ Ok* " Pk ~ Bk (146) 

(It can be shown that (146) is independent of  the representation chosen for p since all 
representations are related unitarily.) 

To illustrate (134), consider again the case J = 1. The condition (134) for p to be 
pure is then 

Pt*" 01 q- 03* " 02 = § (147) 

Using (133), we transform (147) to rectangular form to obtain 

1 2 2 2 2 ~(p2 ÷ p2  ÷ p2) q_ z[2(3p= ÷ p::  ÷ p:~ + p~ -1- p~)] = ~ (148) 

In terms of  the 3 × 3 tensors Oo and S defined in (128) and (129), (148) becomes, 
after using (130) and (132), 

~ T r o 0 + ½ Y r S  ~ =  

or  

2 Tr oo q- Tr S 2 = ~ (149) 

To illustrate (146) for this same example, consider a representation in which o 
is diagonal with eigenvalues { W~ [ n = 1, 2, 3}, where each W. satisfies 0 ~< W~ ~< 1. 
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Using the matrix representations of the {~-~} given in Section 6, we readily find that 

(o: o) p = W 2 = ½700 @ ( 1 / ' v / a ) ( w 1  - -  W3) 710 ~- (1/~/2)(½ - -  W2) "r2o 
0 

H e n c e ,  

= = - 

Since 0 ~< W~ ~< 1, it follows that 

0 ~< Pl* " P1 ~< 

Similarly, from (150), we find that 

= 1 1  p~* " p2 ~(x - -  W2) 2 

Thus, 

0 ~< p~" p~ ~ 

(150) 

(151) 

(152) 

(153) 

Transforming (152) and (154) to rectangular form, we get 

0 ~<TrS ~ < ~  

(154) 

(155) 

(156) 

Finally, the condition (149) for pure states together with inequalities (155) and 
(156) imply the following interesting restriction on the tensor S when P is pure: 

<~ Tr S~ ~ ~ (157) 

Similar rectangular forms of the general test for pure states given by Theorem 17 
could be developed for higher values of J. 

13. S U M M A R Y  

In Part I, we have developed the multipole algebra for classifying observables in 
such a way as to facilitate the search for a quorum of observables needed to determine 
the density matrix characterizing an ensemble prepared in some specified manner. 

In Part II, we described several examples in which the quorum of observables can 
be stated explicitly, and in addition, discussed general criteria for empirically 
distinguishing pure and mixed ensembles. However, there is a sense in which our 
theory of empirical state determination is still incomplete. We have regarded quorum 
observables as "physically identified" whenever they could be related to such familiar, 
classically motivated quantal concepts as position or energy. Yet, in actuality, such 
constructs are, in the quantum physics of microsystems, quite remote from direct 
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experience, the connection being only through complex operational definitions which 
are notably indirect. 

Thus, in Section 7, if  the spin-1 magnetic dipole were an atomic object, the 
direct measurement of  the angular momentum would not in fact be possible. And in 
Section 10, if  the harmonic oscillator were an atomic system, the direct measurement 
of  position, or of  momentum,  at any given time, would be a purely "gedanken" opera- 
tion, not an actual laboratory procedure. 

We believe that it should be possible to carry out our program for atomic objects 
where measurements must be made via suitable probing devices--in particular the 
interaction with radiation. Perhaps a hint of  this can be seen in our discussion of the 
spin-~- magnetic octupole in Section 8, but the full development of  this idea is reserved 
for a future paper. 
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