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Animals and humans make decisions based on their expected outcomes. Since relevant

outcomes are often delayed, perceiving delays and choosing between earlier vs. later

rewards (intertemporal decision-making) is an essential component of animal behavior.

The myriad observations made in experiments studying intertemporal decision-making and

time perception have not yet been rationalized within a single theory. Here we present a

theory—Training-Integrated Maximized Estimation of Reinforcement Rate (TIMERR)—that

explains a wide variety of behavioral observations made in intertemporal decision-making

and the perception of time. Our theory postulates that animals make intertemporal choices

to optimize expected reward rates over a limited temporal window which includes a past

integration interval—over which experienced reward rate is estimated—as well as the

expected delay to future reward. Using this theory, we derive mathematical expressions

for both the subjective value of a delayed reward and the subjective representation of

the delay. A unique contribution of our work is in finding that the past integration interval

directly determines the steepness of temporal discounting and the non-linearity of time

perception. In so doing, our theory provides a single framework to understand both

intertemporal decision-making and time perception.
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INTRODUCTION

Survival and reproductive success depends on beneficial decision-

making. Such decisions are guided by judgments regarding

outcomes, which are represented as expected reinforcement

amounts. As actual reinforcements are often available only

after a delay, measuring delays and attributing values to rein-

forcements that incorporate the cost of time is an essential

component of animal behavior (Stephens and Krebs, 1986;

Stephens, 2008). Yet, how animals perceive time and assess the

worth of delayed outcomes—the quintessence of intertemporal

decision-making—though fundamental, remains to be satisfac-

torily answered (Frederick et al., 2002; Kalenscher and Pennartz,

2008; Stephens, 2008). Rationalizing both the perception of time

and the valuation of outcomes delayed in time in a unified

framework would significantly improve our understanding of

basic animal behavior, with wide-ranging applications in fields

such as economics, ecology, psychology, cognitive disease, and

neuroscience.

In the past, many theories including Optimal Foraging Theory

(Stephens and Krebs, 1986; Stephens, 2008) (OFT), Discounted

Utility Theory (Samuelson, 1937; Frederick et al., 2002;

Kalenscher and Pennartz, 2008) (DUT), Ecological Rationality

Theory (Bateson and Kacelnik, 1996; Stephens and Anderson,

2001; Stephens, 2008) (ERT), as well as other psychological mod-

els (Frederick et al., 2002; Kalenscher and Pennartz, 2008; Peters

and Büchel, 2011; Van den Bos and McClure, 2013) have been

proposed as solutions to the question of intertemporal choice.

Of these, OFT, DUT, and ERT attempt to understand ultimate

causes of behavior through general optimization criteria, whereas

psychological models attempt to understand its proximate bio-

logical implementation. The algorithms specified by these prior

theories and models for intertemporal decision-making are all

defined by their temporal discounting function—the ratio of

subjective value of a delayed reward to the subjective value

of the reward when presented immediately. These algorithms

come in two major forms: hyperbolic (and hyperbolic-like) dis-

counting functions (e.g., OFT and ERT) (Stephens and Krebs,

1986; Frederick et al., 2002; Kalenscher and Pennartz, 2008;

Stephens, 2008), and exponential (and exponential-like, e.g., β-δ

Frederick et al., 2002; Peters and Büchel, 2011; Van den Bos and

McClure, 2013) discounting functions (e.g., DUT) (Samuelson,

1937; Frederick et al., 2002; Kalenscher and Pennartz, 2008).

Hyperbolic discounting functions have been widely considered

to be better fits to behavioral data than exponential functions

(Frederick et al., 2002; Kalenscher and Pennartz, 2008).

None of these theories and models can systematically explain

the breadth of data on intertemporal decision-making; we argue

that the inability of prior theories to rationalize behavior stems

from the lack of biologically-realistic constraints on general opti-

mization criteria (see next section). Further, while intertem-

poral decision-making necessarily requires perception of time,

theories of intertemporal decision-making and time perception

(Gibbon et al., 1997; Lejeune and Wearden, 2006) are largely

independent and do not attempt to rationalize both within a

single framework. The motivation for our present work was

to create a biologically-realistic and parsimonious theory of
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intertemporal decision-making and time perception which pro-

poses an algorithmically-simple decision-making process to (1)

maximize fitness and (2) to explain the diversity of behavioral

observations made in intertemporal decision-making and time

perception.

PROBLEMS WITH CURRENT THEORIES AND MODELS

Intertemporal choice behavior has been modeled using two dis-

similar approaches. The first approach is to develop theories

that explore ultimate (Alcock and Sherman, 1994) causes of

behavior through general optimization criteria (Samuelson, 1937;

Stephens and Krebs, 1986; Bateson and Kacelnik, 1996; Stephens

and Anderson, 2001; Frederick et al., 2002; Stephens, 2008).

In ecology, there are two dominant theories of intertemporal

choice, OFT and ERT. The statement of OFT posits that the

choice behavior of animals should result from a global maximiza-

tion of a “fitness currency” representing long-term future reward

rate (Stephens and Krebs, 1986; Stephens, 2008). However, how

animals could in principle achieve this goal is unclear, as they

face at least two constraints: (1) they cannot know the future

beyond the currently presented options, and (2) they have lim-

ited computational/memory capacity. Owing to these constraints,

prior algorithmic implementations of OFT assume that the cur-

rent trial structure repeats ad-infinitum. Therefore, maximizing

reward rates over the indefinite future can be re-written as max-

imizing reward rates over an effective trial (including all delays

in the trial) (Stephens and Krebs, 1986; Bateson and Kacelnik,

1996; Stephens and Anderson, 2001; Stephens, 2008). Thus, OFT

predicts a hyperbolic discounting function. ERT, on the other

hand, states that it is sufficient to maximize reward rates only

over the delay to the reward in the choice under consideration,

(i.e., locally) to attain ecological success (Bateson and Kacelnik,

1996; Stephens and Anderson, 2001; Stephens, 2008), also pre-

dicting a hyperbolic discounting function. In economics, DUT

(Samuelson, 1937; Frederick et al., 2002) posits that animals max-

imize long-term exponentially-discounted future utility so as to

maintain temporal consistency of choice behavior (Samuelson,

1937; Frederick et al., 2002).

The second approach, mainly undertaken by psychologists

and behavioral analysts, is to understand the proximate (Alcock

and Sherman, 1994) origins of choices by modeling behavior

using empirical fits to data collected from standard laboratory

tasks (Kalenscher and Pennartz, 2008). An overwhelming num-

ber of these behavioral experiments, however, contradict the

above theoretical models. Specifically, animals exhibit hyperbolic

discounting functions, inconsistent with DUT (Frederick et al.,

2002; Kalenscher and Pennartz, 2008; Stephens, 2008; Pearson

et al., 2010), and violate the postulate of global reward rate

maximization, inconsistent with OFT (Stephens and Anderson,

2001; Kalenscher and Pennartz, 2008; Stephens, 2008; Pearson

et al., 2010). Further, there are a wide variety of observa-

tions like (1) the variability of discounting steepness within and

across individuals (Frederick et al., 2002; Schweighofer et al.,

2006; Luhmann et al., 2008), and many “anomalous” behav-

iors including (2) “Magnitude Effect” (Frederick et al., 2002;

Kalenscher and Pennartz, 2008) (the steepness of discount-

ing becomes lower as the magnitude of the reward increases),

(3) “Sign Effect”(Frederick et al., 2002; Kalenscher and Pennartz,

2008) (gains are discounted more steeply than losses), and (4)

differential treatment of punishments (Loewenstein and Prelec,

1992; Frederick et al., 2002; Kalenscher and Pennartz, 2008), that

are not explained by ERT (nor OFT and DUT). It must also be

noted that none of the above theories are capable of explaining

how animals measure delays to rewards, nor do prior theories of

time perception (Gibbon et al., 1997; Lejeune and Wearden, 2006)

attempt to explain intertemporal choice. Though psychology and

behavioral sciences attempt to rationalize the above observa-

tions by constructing proximate models invoking phenomena like

attention, memory, and mood (Frederick et al., 2002; Kalenscher

and Pennartz, 2008; Van den Bos and McClure, 2013), ultimate

causes are rarely proposed. As a consequence, these models of

animal behavior are less parsimonious, and often ad-hoc.

In order to explain behavior, an ultimate theory must consider

appropriate proximate constraints. The lack of appropriate con-

straints might explain the inability of the above theories to

rationalize experimental data. By merely stating that animals

maximize indefinitely-long-term future reward rates or dis-

counted utility, the optimization criteria of OFT and DUT

requires animals to consider the effect of all possible future

reward-options when making the current choice (Stephens and

Krebs, 1986; Kalenscher and Pennartz, 2008). However, such a

solution would be biologically implausible for at least three rea-

sons: (1) animals cannot know all the rewards obtainable in the

future; (2) even if animals knew the disposition of all possible

future rewards, the combinatorial explosion of such a calculation

would present it with an untenable computation (e.g., in order to

be optimal when performing even 100 sequential binary choices,

an animal will have to consider each of the 2100 combinations);

(3) animals cannot persist for indefinitely long intervals without

food in the hope of obtaining an unusually large reward in the dis-

tant future, even if the reward may provide the highest long-term

reward rate (e.g., option between 11,000 units of reward in 100

days vs. 10 units of reward in 0.1 day). On the other hand, ERT,

although computationally-simple, expects an animal to ignore its

past reward experience while making the current choice.

To contend with uncertainties regarding the future, an ani-

mal could estimate reward rates based on an expectation of the

environment derived from its past experience. In a world that

presents large fluctuations in reinforcement statistics over time,

estimating reinforcement rate using the immediate past has an

advantage over using longer-term estimations because the corre-

lation between the immediate past and the immediate future is

likely high. Hence, our TIMERR theory proposes an algorithm

for intertemporal choice that aims to maximize expected reward

rate based on, and constrained by, memory of past reinforcement

experience. As a consequence, it postulates that time is subjec-

tively represented such that subjective representation of reward

rate accurately reflects objective changes in reward rate (see sec-

tion TIMERR Theory: Time Perception). In doing so, we are

capable of explaining a wide variety of fundamental observations

made in intertemporal decision-making and time perception.

These include hyperbolic discounting (Stephens and Krebs, 1986;

Stephens and Anderson, 2001; Frederick et al., 2002; Kalenscher

and Pennartz, 2008), “Magnitude”(Myerson and Green, 1995;
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Frederick et al., 2002; Kalenscher and Pennartz, 2008) and “Sign”

effects (Frederick et al., 2002; Kalenscher and Pennartz, 2008),

differential treatment of losses (Frederick et al., 2002; Kalenscher

and Pennartz, 2008), scaling of timing errors with interval dura-

tion (Gibbon, 1977; Gibbon et al., 1997; Matell and Meck, 2000;

Buhusi and Meck, 2005; Lejeune and Wearden, 2006), and, obser-

vations that impulsive subjects (as defined by abnormally steep

discounting) under-produce (Wittmann and Paulus, 2008) time

intervals and show larger timing errors (Wittmann et al., 2007;

Wittmann and Paulus, 2008) (see “Summary” for a full list). It

thereby recasts the above-mentioned “anomalies” not as flaws,

but as features of reward-rate optimization under experiential

constraints.

MOTIVATION BEHIND THE TIMERR ALGORITHM

To illustrate the motivation and reasoning behind our theory,

we consider a simple behavioral task. In this task, an animal

must make decisions on every trial between two randomly cho-

sen (among a finite number of possible alternatives) known

reinforcement-options. Having chosen an option on one trial,

the animal is required to wait the corresponding delay to obtain

the reward amount chosen. An example environment with three

possible reinforcement-options is shown in Figure 1A. We assert

that the goal of the animal is to gather the maximum total

reward over a fixed amount of time, or equivalently, to attain

the maximum total (global) reward rate over a fixed number of

trials.

Assuming a stationary reinforcement-environment in which it

is not possible to directly know the pattern of future reinforce-

ments, an animal may yet use its past reinforcement experience

to instruct its current choice. Provisionally, suppose also that an

animal can store its entire reinforcement-history in the task in its

memory. So rather than maximizing reward rates into the future

as envisioned by OFT, the animal can then maximize the total

reward rate that would be achieved so far (at the end of the cur-

rent trial). In other words, the animal could pick the option that

when chosen, would lead to the highest global reward rate over all

trials until, and including, the current trial, i.e.,

Pick option with the highest value for
R + ri

T + ti
(1)

where T is the total time elapsed in the session so far, R is the total

reward accumulated so far and (ri, ti) is the reward magnitude

and delay, respectively, for the various reinforcement-options on

the current trial. This ordered pair notation will be followed

throughout the paper.

Under the above conditions, this algorithm yields the highest

possible reward rate achievable at the end of any given num-

ber of trials. In contrast, previous algorithms for intertemporal

decision-making (hyperbolic discounting, exponential discount-

ing, two-parameter discounting), while being successful at fitting

behavioral data, fail to maximize global reward rates. For the

example reinforcement-environment shown in Figure 1A, sim-

ulations show that the algorithm in Equation (1) outperforms

other extant algorithms by more than an order of magnitude

(Figure 1B).

The reason why extant alternatives fare poorly is that they

do not account for opportunity cost, i.e., the cost incurred in

the lost opportunity to obtain better rewards than currently

available. In the example considered, two of the reinforcement-

options are significantly worse than the third (Figure 1C). Hence,

in a choice between these two options, it is even worth incur-

ring a small punishment ($−0.01) at a short delay for sooner

opportunities of obtaining the best reward ($5) (Figure 1C).

Previous models, however, pick the reward ($0.1) in favor

of the punishment since they do not have an estimate of

opportunity cost. In contrast, by storing the reinforcement

history, Equation (1) accounts for the opportunity cost, and

picks the punishment. Recent experimental evidence suggests

that humans indeed accept small temporary costs in order to

increase the opportunity for obtaining larger gains (Kolling et al.,

2012).

The behavioral task shown in Figure 1A is similar to stan-

dard laboratory tasks studying intertemporal decisions (Frederick

et al., 2002; Schweighofer et al., 2006; Kalenscher and Pennartz,

2008; Stephens, 2008). However, in naturalistic settings, ani-

mals commonly have the ability to forgo any presented option.

Further, the number of options presented on a given trial can

vary and could arise from a large pool of possible options. An

illustration of such a task is displayed in Figure 1D, showing

the outcomes of five past decisions. Decision 2 illustrates an

instance of incurring an opportunity cost. Decision 3 shows the

presentation of a single option that was forgone, leading to the

presentation of a better option in decision 4. Though the options

presented in decision 5 are those in decision 1, the animal’s

choice behavior is the opposite, as a result of changing esti-

mations of opportunity cost. Results of performance in such a

simulated task (with no punishments) are shown in Figure 1E,

again showing Equation (1) outperforming other models (see

Methods).

TIMERR THEORY: INTERTEMPORAL CHOICE

It is important to note that while the extent to which Equation

(1) outperforms other models depends on the reinforcement-

environment under consideration, its performance in a stationary

environment will be greater than or equal to previous decision

models. However, biological systems face at least three major

constraints that limit the appropriateness of Equation (1): (1)

their reinforcement-environments are non-stationary; (2) inte-

grating reinforcement-history over arbitrarily long intervals is

computationally implausible, and, (3) indefinitely long intervals

without reward cannot be sustained by an animal (while main-

taining fitness) even if they were to return the highest long-term

reward rate (e.g., choice between 100,000 units of food in 100

days vs. 10 units of food in 0.1 day). Hence, in order to be

biologically-realistic, TIMERR theory states that the interval over

which reinforcement-history is evaluated, the past-integration-

interval (Time; ime stands for in my experience), is finite. Thus,

the TIMERR algorithm states that animals maximize reward

rates over an interval including Time and the learned expected

delay to reward (t) [Equation (2), Figures 2A,B]. This modi-

fication renders the decision algorithm shown in Equation (1)

biologically-plausible.
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FIGURE 1 | A schematic illustrating the problem of intertemporal

decision-making and the rationale for our solution. (A) Flow chart of

a simple behavioral task, showing the possible reinforcement options.

(B) The performance of four decision-making agents using the four

decision processes as shown in the legend (see Methods). The

parameters of the three previous models were tuned to attain

maximum performance. The error bar shows standard deviation. Since

the decision rules of these models operate only on the current trial,

the corresponding performances have no variability and hence, their

standard deviations are zero. (C) Illustration of the reason for

performance failure, showing a choice between the two worst options.

The reward rate so far is much higher than the reward rates provided

by the two options under consideration. Since these models do not

include a metric of opportunity cost, they pick ($0.1, 100 s). However,

on an average, choosing ($-0.01, 1 s) will provide a larger reward at the

end of 100 s. (D) A schematic illustrating a more natural behavioral

task, with choices involving one or two options chosen from a total of

four known reinforcement-options. The choices made by the animal are

indicated by the bold line and are numbered 1–5. Here, we assume

that during the wait to a chosen reinforcement-option, other

reinforcement-options are not available (see Expected Reward Rate Gain

during the Wait in Appendix for an extension). Reinforcement-options

connected by dotted lines are unknown to the animal either because

they are in the future, or because of the choices made by the animal

in the past. For instance, deciding to pursue the brown option in the

second choice causes the animal to lose a large reward, the presence

of which was unknown at the moment of decision. (E) Performance of

the models in an example environment as shown in (D) (see Methods,

for details). Error bars for the previous models are not visible at this

scale. For the environment chosen here, a hyperbolic model (mean

reward rate = 0.0465) is slightly worse than exponential and β-δ

models (mean reward rate = 0.0490).

If the estimated average reward rate over the past integration

window of Time is denoted by aest, the TIMERR algorithm can be

written as:

Pick option with the highest value for
aestTime + ri

Time + ti
(2)

Therefore, the TIMERR algorithm acts as a temporally-

constrained, experience-based, solution to the optimization

problem of maximizing reward rate. It is thus a better imple-

mentation of the statement of OFT than prior implementa-

tions. It requires that only experienced magnitudes and times

of the rewards following conditioned stimuli are stored, there-

fore predicting that intertemporal decisions of animals will

not incorporate post-reward delays due to limitations in asso-

ciative learning (Kacelnik and Bateson, 1996; Stephens and

Anderson, 2001; Pearson et al., 2010; Blanchard et al., 2013)

consistent with prior experimental evidence showing the insen-

sitivity of choice behavior to post-reward delays (Stephens and

Anderson, 2001; Kalenscher and Pennartz, 2008; Stephens, 2008;

Pearson et al., 2010; Blanchard et al., 2013) (see Animals do

not Maximize Long-Term Reward Rates in Appendix for a

detailed discussion). It is important to note, however, that

indirect effects of post-reward delays on behavior (Blanchard

et al., 2013) can be explained as resulting from the implicit

effect of post-reward delays on past reward rate; the higher the

post-reward delays become, the lower will be the past reward

rate.

From the TIMERR algorithm, it is possible to derive the sub-

jective value of a delayed reward (Figure 2C)—defined as the

amount of immediate reward that is subjectively equivalent to the

delayed reward.

This is calculated by asserting that reward rate for (SV(r, t),

0) = reward rate for (r, t)
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FIGURE 2 | Solution to the problem of intertemporal choice as

proposed by TIMERR theory. (A) Past reward rate is estimated (aest)

by the animal over a time-scale of Time [Calculation of the Estimate of

Past Reward Rate (aest) in Appendix]. This estimate is used to evaluate

whether the expected reward rates upon picking either current option is

worth the opportunity cost of waiting. (B) The decision algorithm of

TIMERR theory shows that the option with the highest expected reward

rate is picked Equation (2), so long as this reward rate is higher than

the past reward rate estimate (aest). Such an algorithm automatically

includes the opportunity cost of waiting in the decision. (C) The

subjective values for the two reward options shown in (A) (time-axis

scaled for illustration) as derived from the decision algorithm Equation

(3) are plotted. In this illustration, the animal picks the green option. It

should be noted that even if the orange option were to be presented

alone, the animal would forgo this option since its subjective value is

less than zero. Zero subjective value corresponds to ERR = aest.

i.e.,

aest + SV(r, t)
Time

1 + 0
Time

=
aest + r

Time

1 + t
Time

where SV(r, t) is the subjective value of reward r delayed by time

t. Simplifying, the expression for SV(r, t) is given by

SV (r, t) =
r − aestt

1 + t
Time

(3)

where aest is an estimate of the average reward rate in the past over

the integration window Time with the reward option specified by

a magnitude r and a delay t.
Equation (3) presents an alternative interpretation of the algo-

rithm: the animal is estimating the net worth of pursuing each

delayed reward by subtracting the opportunity cost incurred by

forfeiting potential alternative reward options during the delay

to a given reward and normalizing by the explicit temporal cost

of waiting. This is because the numerator in Equation (3) rep-

resents the expected reward gain but subtracts this opportunity

cost, aestt, which corresponds to a baseline expected amount of

reward that might be acquired over t. The denominator is the

explicit temporal cost of waiting.

THE TEMPORAL DISCOUNTING FUNCTION

The temporal discounting function—the ratio of subjective

value to the subjective value of the reward when presented

immediately—is given by [based on Equation (3)]

D (r, t) =
SV (r, t)

r
=

1 − aest
r t

1 + t
Time

(4)

This discounting function is hyperbolic with an additional,

dynamical (changing with aest) subtractive term. The effects

of varying the parameters, viz. the past integration interval

(Time), estimated average reward rate (aest) and reward magni-

tude (r), on the discounting function are shown in Figure 3.

The steepness of this discounting function is directly gov-

erned by Time, the past integration interval (Figure 3A). In

other words, the longer one integrates over the past to esti-

mate reinforcement history, the higher the tolerance to delays

when considering future rewards, thus rationalizing abnor-

mally steep discounting (characteristic of impulsivity) as result-

ing from abnormally low values of Time. As opportunity costs

(aest) increase, delayed rewards are discounted more steeply

(Figure 3B). Also, as the magnitude of the reward increases

(Figure 3C), the steepness of discounting becomes lower, referred

to as the “Magnitude Effect” (Myerson and Green, 1995; Frederick
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FIGURE 3 | The dependence of the discounting function on its

parameters Equation (4). (A) Explicit temporal cost of waiting: As the past

integration interval (Time) increases, the discounting function becomes less

steep, i.e., the subjective value for a given delayed reward becomes higher

(aest = 0 and r = 20). (B) Opportunity cost affects discounting: As aest

increases, the opportunity cost of pursuing a delayed reward increases and

hence, the discounting function becomes steeper. The dotted line indicates

a subjective value of zero, below which rewards are not pursued, as is the

case when the delay is too high. (r = 20 and Time = 100). (C) “Magnitude

Effect”: As the reward magnitude increases, the steepness of discounting

decreases (Myerson and Green, 1995; Frederick et al., 2002; Kalenscher

and Pennartz, 2008) (Time = 100 and aest = 0.05). (D) “Sign Effect” and

differential treatment of losses: Gains (green and brown) are discounted

steeper than losses (cyan and orange) of equal magnitudes (Frederick et al.,

2002; Kalenscher and Pennartz, 2008) (Time = 100 and aest = 0.05). Note

that as the magnitude of loss decreases, so does the steepness of

discounting (Figure 4). In fact, for losses with magnitudes lower than aestT,

the discounting function will be greater than 1, leading to a differential

treatment of losses (Frederick et al., 2002; Kalenscher and Pennartz, 2008)

(see text, Figure 4).

et al., 2002; Kalenscher and Pennartz, 2008) in prior exper-

iments. Further, it is shown that gains are discounted more

steeply than losses of equal magnitudes in net positive environ-

ments (Figure 3D), as shown previously and referred to as the

“Sign Effect” (Frederick et al., 2002; Kalenscher and Pennartz,

2008). It must also be pointed out that the discounting func-

tion for a loss becomes steeper as the magnitude of the loss

increases, observed previously as the reversal of the “Magnitude

Effect” for losses (Hardisty et al., 2012) (Figure 4A). In fact,

when forced to pick a punishment in a net positive environ-

ment, low-magnitude (below aest × Time) losses will be preferred

immediately while higher-magnitude losses will be preferred

when delayed (Figure 4B), as has been experimentally observed

(Frederick et al., 2002; Kalenscher and Pennartz, 2008; Hardisty

et al., 2012) (for a full treatment of the effects of changes

in variables, see Consequences of the Discounting Function in

Appendix).

FIGURE 4 | “Magnitude Effect” and Differential treatment of losses in a

net positive environment. (A) The discounting function plotted for losses

of various magnitudes (as shown in Figure 3D; aest = 0.05 and Time = 100).

As the magnitude of a loss increases, the discounting function becomes

steeper. However, the slope of the discounting steepness with respect to

the magnitude is minimal for large magnitudes (100 and 1000; see

Consequences of the Discounting Function in Appendix). At magnitudes

below aestTime, the discounting function becomes an increasing function of

delay. (B) Plot of the signed discounting function for the magnitudes as

shown in (A), showing that for magnitudes lower than aestTime, a loss

becomes even more of a loss when delayed. Hence, at low magnitudes

(< aestTime), losses are preferred immediately. No curve crosses the dotted

line at zero, showing that at all delays, losses remain punishing.

TIMERR THEORY: TIME PERCEPTION

Attributing values to rewards delayed in time necessitates rep-

resentations of those temporal delays. These representations of

time are subjective, as it is known that time perception varies

within and across individuals (Gibbon et al., 1997; Matell and

Meck, 2000; Buhusi and Meck, 2005; Lejeune and Wearden, 2006;

Wittmann and Paulus, 2008), and that errors in representation of

time increase with the interval being represented (Gibbon et al.,

1997; Matell and Meck, 2000; Buhusi and Meck, 2005; Lejeune

and Wearden, 2006). While there are many models that address

how timing may be implemented in the brain (Gibbon, 1977;

Killeen and Fetterman, 1988; Matell and Meck, 2000; Buhusi and

Meck, 2005; Simen et al., 2011a,b), our aim in this section is to

present an “ultimate” theory of time perception, i.e., a theory of

the principles behind time perception.

Since TIMERR theory states that animals seek to maximize

expected reward rates, we posit that time is represented sub-

jectively (Figure 5A) so as to result in accurate representations

of changes in expected reward rate. In other words, subjective

time is represented so that subjective reward rate (subjective

value/subjective time) equals the true expected reward rate less
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FIGURE 5 | Subjective time mapping and simulations of performance

in a time reproduction task. (A) A schematic of the representation of the

reward-environment by two animals with different values of Time. Lower

values of Time generate steeper discounting (higher impulsivity), and hence,

smaller subjective values. (B) Subjective time mapping: The subjective time

mapping as expressed in Equation (6) is plotted for the two animals in (A).

Subjective time representation saturates at Time for longer intervals. This

saturation effect is more pronounced in the case of higher impulsivity,

thereby leading to a reduced ability to discriminate between intervals (here,

40 and 50 s). (C) Bias in time reproduction: A plot of reproduced median

intervals for a case of high impulsivity in a simulated time reproduction task

as generated by the simple accumulator model (see Methods; Figure 6) for

sample intervals ranging between 1 and 90 s. At longer intervals, there is an

increasing underproduction. The dashed line indicates perfect reproduction.

(D) The bias in timing (difference between reproduced interval and sample

interval) a 90 s sample interval is shown for different values of Time,

demonstrating that as impulsivity reduces, so does underproduction.

the baseline expected reward rate (aest). Hence, if the subjective

representation of time associated with a delay t is denoted by

ST(t),
SV (r, t)

ST (t)
=

( r

t
− aest

)

(5)

Combining Equation (5) with Equation (3), we get

ST (t) =
t

1 + t
Time

(6)

Such a representation has the property of being bounded

[ST(∞) = Time], thereby making it possible to represent very

long durations within the finite dynamic ranges of neuronal firing

rates. Plots of the subjective time representation of delays between

1 and 90 s are shown in Figure 5B for two different values of Time.

As mentioned previously (Figure 3A), a lower value of Time cor-

responds to steeper discounting, characteristic of more impulsive

decision-making. It can be seen that the difference in subjective

time representations between 40 and 50 s is smaller for a lower

Time (high impulsivity). Hence, higher impulsivity corresponds to

a reduction in the ability to discriminate between long intervals (a

decrease in the precision of time representation) (Figures 5A,B).

Internal time representation has been previously modeled

using accumulator models (Buhusi and Meck, 2005; Simen et al.,

2011a,b) that incorporate the underlying noisiness in informa-

tion processing. We used a simple noisy accumulator model (see

Methods, Figure 6A) that represents subjective time according

to Equation (6) to simulate a time interval reproduction task

(Buhusi and Meck, 2005; Lejeune and Wearden, 2006). In this

model, we assumed that the noise in the slope of the accu-

mulator was proportional to the square root of the signal and

that there is a constant read-out noise (see Methods for details).

Such noise in the accumulator slope (i.e., proportional to the

square root of the signal) occurs in spiking neuronal models that

assume Poisson statistics, having been used in prior accumulator

models (Simen et al., 2011b). The results of time interval repro-

duction simulations (see Methods) are shown in Figures 5C,D.

Lower values of Time correspond to an underproduction of time

intervals (i.e., decreased accuracy of reproduction), with the mag-

nitude of underproduction increasing with increasing durations

of the sample interval (Figure 5C). When attempting to repro-

duce a 90 s sample interval, the magnitude of underproduction

decreases with increases in Time, or equivalently, with decreas-

ing impulsivity (Figure 5D). These predictions are supported by

prior experimental evidence (Wittmann and Paulus, 2008).

ERRORS IN TIME PERCEPTION

Prior studies have observed that the error in representation of

intervals increases with their durations (Gibbon et al., 1997;

Matell and Meck, 2000; Buhusi and Meck, 2005; Lejeune and

Wearden, 2006). Such an observation is consistent with the

subjective time representation presented here (Figures 5A,B).

TIMERR theory predicts that the representation errors will be

larger when Time is smaller (higher impulsivity) (Figures 5A,B),

as observed experimentally (Wittmann et al., 2007; Wittmann

and Paulus, 2008). Prior studies investigating the relationship

between time duration and reproduction error have observed a

linear scaling (“scalar timing”) within a limited range (Gibbon

et al., 1997; Matell and Meck, 2000; Buhusi and Meck, 2005;

Lejeune and Wearden, 2006).

Calculating the error in reproduced intervals by the accu-

mulator model mentioned above cannot be done analytically.

However, we present an approximate analytical solution below.

Assuming that the representation of subjective time, ST(t), has a

constant infinitesimal noise of dST(t) associated with it, the noise

in representation of a true interval t, denoted as dt will obey

dST (t)

dt
=

d

dt

⎛

⎝

t
(

1 + t
Time

)

⎞

⎠ =
1

(

1 + t
Time

)2

If one assumes that the neural noise in representing ST(t) is lin-

early related to the signal, with a term proportional to the signal

in addition to a constant noise [i.e., dST(t) = kST(t) + c], then
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FIGURE 6 | Noisy accumulator model (see Methods). (A) The subjective

representation of time, as plotted in Figure 5B, is simulated using a noisy

accumulator model as described in Methods. The accumulated value is

stored at the interval being timed (here 90 s), stored in memory, and used

as a threshold for later time reproduction. The reproduced interval (as in

Figures 5C,D) is defined by the moment of first threshold-crossing. (B) A

plot of the scaling of noise in the accumulator with the signal. The y-axis is

the standard deviation of the accumulated signal at every ST (t) shown in

the x-axis. The standard deviation was calculated by running the

accumulator 2000 times. The near-linear relationship seen here is used to

calculate an approximate analytical solution for the error in the

representation of subjective time as shown in Equation (8). (C) Plot of the

coefficient of variation (Cv ) of reproduced intervals (measurement of

precision) with respect to the interval being reproduced shows a

near-constant value over a large range of durations for Time = 300 s. An

analytical approximation is expressed in Equation (8). Each data point is the

result of averaging over 2000 trials.

the corresponding error in real time is

dt = k
t

(

1 + t
Time

)

(

1 +
t

Time

)2

+ c

(

1 +
t

Time

)2

= k

(

t +
t2

Time

)

+ c

(

1 +
t

Time

)2

(7)

The coefficient of variation (error/central tendency) expected

from such a model is then

Cv ≈
dt

t
=

k
(

t + t2

Time

)

+ c
(

1 + t
Time

)2

t

This can be simplified as

Cv ≈ k

(

1 +
t

Time

)

+
c
(

1 + t
Time

)2

t
(8)

In the above expression, c can be thought of as a constant addi-

tive noise in the memory of subjective representation of time,

ST(t), whereas the noise proportional to the signal could result

from fluctuations in the slope of accumulation. In fact, for the

accumulator mentioned above (that exhibits a square root depen-

dence of the noise in slope with respect to the signal), the net

relationship between the noise of the signal and the signal itself,

is approximately linear (Figure 6B). Hence, our earlier assump-

tion is a good approximation to the more realistic, yet analytically

intractable, accumulator model considered above. The results of

numerical simulations on Cv are shown in Figure 6C, showing a

near-constant value for a large range of sample durations.

The above equation results in a U-shaped Cv curve. If the con-

stant additive noise (c) is small compared to the linear noise, the

second term will dominate only for very low time intervals. At

these very low time intervals, this will lead to a decrease in Cv as

durations increase from zero. At longer intervals, Cv will appear

to be a constant before a linearly increasing range. Importantly,

the slope of the linear range will depend on the value of Time.

Hence, though the accumulator model considered here predicts

an increase in Cv at long intervals, it nonetheless will appear con-

stant within a range determined by Time. For larger values of

Time, Cv will tend toward a constant. For the simulations shown

in Figure 6C with a Time of 300 s, Cv is near constant over a

very wide range of durations. While Cv is generally considered

to be a constant, experimental evidence examining a wide range

of sample durations analyzed across many studies (Gibbon et al.,

1997; Bizo et al., 2006) accords with the specific prediction of a

U-shaped coefficient of variation (spread/central tendency) for

the production times Equation (8). We do note, however, that

a more realistic model representing neural processing could lead

to quantitative deviations from the simple approximations pre-

sented here. Such involved calculations are beyond the scope of

this work. Nevertheless, the most important falsifiable prediction

of our theory regarding timing is that the error in time per-

ception will show quantitative deviations from Weber’s law in

impulsive subjects (with aberrantly low values of Time). It must

also be emphasized that the above equations only apply within an

individual subject when Time can be assumed to be a constant,

independent of the durations being tested. Pooling data across

different subjects, as is common, would lead to averaging across

different values of Time, and hence a flattening of the Cv curve.
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TEMPORAL BISECTION

Time perception is also studied using temporal bisection exper-

iments (Allan and Gibbon, 1991; Lejeune and Wearden, 2006;

Baumann and Odum, 2012) in which subjects categorize a sam-

ple interval as closer to a short (ts) or a long (tl) reference interval.

The sample interval at which subjects show maximum uncer-

tainty in classification as short or long is called the point of

subjective equality, or, the “bisection point.” The bisection point

is of considerable theoretical interest. If subjects perceived time

linearly with constant errors, the bisection point would be the

arithmetic mean of the short and long intervals. On the other

hand, if subjects perceived time in a scalar or logarithmic fashion

or used a ratio-rule under linear mappings, it has been pro-

posed that the bisection point would be at the geometric mean

(Allan and Gibbon, 1991). However, experiments studying tem-

poral bisection have produced ambiguous results. Specifically, the

bisection point has been shown to vary between the geometric

mean and the arithmetic mean and has sometimes even been

shown to be below the geometric mean, closer to the harmonic

mean (Killeen et al., 1997).

The bisection point as calculated by TIMERR theory is derived

below. The calculation involves transforming both the short and

long intervals into subjective time representations and expressing

the bisection point in subjective time (subjective bisection point)

as the mean of these two subjective representations. The bisection

point expressed in real time is then calculated as the inverse of the

subjective bisection point.

ST (ts) =
ts

1 + ts
Time

; ST (tl) =
tl

1 + tl
Time

Therefore, the bisection point in subjective time is given by

Subjective bisection point (SBP) =
ST (ts) + ST (tl)

2

=

ts

1+ ts
Time

+ tl

1+ tl
Time

2

The value of the bisection point expressed in real time is given by

the inverse of the subjective bisection point, viz.

Bisection point in real time =
SBP

1 − SBP
Time

=
Time

( ts + tl
2

)

+ tstl

Time +
( ts + tl

2

) (9)

From the above expression, it can be seen that the bisection

point can theoretically vary between the harmonic mean and

the arithmetic mean as Time varies between zero and infinity,

respectively.

Hence, TIMERR theory predicts that when comparing bisec-

tion points across individuals, individuals with larger values of

Time will show bisection points closer to the arithmetic mean

whereas individuals with smaller values of Time will show lower

bisection points, closer to the geometric mean. If Time was smaller

still, the bisection point would be lower than the geometric mean,

approaching the harmonic mean. This is in accordance with

the experimental evidence mentioned above showing bisection

points between the harmonic and arithmetic means (Allan and

Gibbon, 1991; Killeen et al., 1997; Baumann and Odum, 2012).

Further, we also predict that the steeper the discounting func-

tion, the lower the bisection point, as has been experimentally

confirmed (Baumann and Odum, 2012). Predictions similar to

ours have been made previously (Balci et al., 2011) regarding the

location of the bisection point by assuming variability in tempo-

ral precision. If one assumes that impulsive subjects show larger

timing errors, the previous model can also explain a reduction in

the bisection point for subjects showing steeper discounting func-

tions. However, it must be pointed out that the key contribution

of our work is in deriving this result. This relationship is not an

assumption in our work, but rather is an integral part of its con-

tribution [see Equation (8) for relationship between impulsivity

and Cv].

SUMMARY: PREDICTIONS OF TIMERR THEORY SUPPORTED

BY EXPERIMENTS

All the predictions mentioned below result from Equations (3)

and (6).

1. The discounting function will be hyperbolic in form

(Frederick et al., 2002; Kalenscher and Pennartz, 2008).

2. The discounting steepness could be labile within and across

individuals (Loewenstein and Prelec, 1992; Frederick et al.,

2002; Schweighofer et al., 2006; Luhmann et al., 2008; Van

den Bos and McClure, 2013).

3. Temporal discounting could be steeper when average delays

to expected rewards are lower (Frederick et al., 2002;

Schweighofer et al., 2006; Luhmann et al., 2008) [see Effects

of Plasticity in the Past Integration Interval (Time)].

4. “Magnitude Effect”: as reward magnitudes increase in a net

positive environment, the discounting function becomes less

steep (Frederick et al., 2002; Kalenscher and Pennartz, 2008)

(Figure 3C).

5. “Sign Effect”: rewards are discounted steeper than punish-

ments of equal magnitudes in net positive environments

(Frederick et al., 2002; Kalenscher and Pennartz, 2008).

6. The “Sign Effect” will be larger for smaller magnitudes

(Loewenstein and Prelec, 1992; Frederick et al., 2002) (see

Consequences of the Discounting Function in Appendix).

7. “Magnitude Effect” for losses: as the magnitudes of losses

increase, the discounting becomes steeper. This is in the

reverse direction as the effect for gains (Hardisty et al., 2012).

Such an effect is more pronounced for lower magnitudes

(Hardisty et al., 2012) (see Consequences of the Discounting

Function in Appendix).

8. Punishments are treated differently depending upon their

magnitudes. Higher magnitude punishments are preferred at

a delay, while lower magnitude punishments are preferred

immediately (Loewenstein and Prelec, 1992; Frederick et al.,

2002; Kalenscher and Pennartz, 2008) (Figure 4).

9. “Delay-Speedup” asymmetry: Delaying a reward that you

have already obtained is more punishing than speeding up
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the delivery of the same reward from that delay is reward-

ing. This is because a received reward will be included in the

current estimate of past reward rate (aest) and hence, will

be included in the opportunity cost (Frederick et al., 2002;

Kalenscher and Pennartz, 2008).

10. Time perception and temporal discounting are correlated

(Wittmann and Paulus, 2008).

11. Timing errors increase with the duration of intervals (Gibbon

et al., 1997; Matell and Meck, 2000; Buhusi and Meck, 2005;

Lejeune and Wearden, 2006).

12. Timing errors increase in such a way that the coefficient of

variation follows a U-shaped curve (Gibbon et al., 1997; Bizo

et al., 2006).

13. Impulsivity (as characterized by abnormally steep tempo-

ral discounting) leads to abnormally large timing errors

(Wittmann et al., 2007; Wittmann and Paulus, 2008).

14. Impulsivity leads to underproduction of time intervals, with

the magnitude of underproduction increasing with the dura-

tion of the interval (Wittmann and Paulus, 2008).

15. The bisection point in temporal bisection experiments will

be between the harmonic and arithmetic means of the refer-

ence durations (Allan and Gibbon, 1991; Killeen et al., 1997;

Baumann and Odum, 2012).

16. The bisection point need not be constant within and across

individuals (Baumann and Odum, 2012).

17. The bisection point will be lower for individuals with steeper

discounting (Baumann and Odum, 2012).

18. The choice behavior for impulsive individuals will be more

inconsistent than for normal individuals (Evenden, 1999).

This is because their past reward rate estimates will show

larger fluctuations due to a lower past integration interval.

19. Post-reward delays will not be directly included in the

intertemporal decisions of animals during typical labora-

tory tasks (Stephens and Anderson, 2001; Kalenscher and

Pennartz, 2008; Stephens, 2008; Pearson et al., 2010). Variants

of typical laboratory tasks may, however, lead to the inclu-

sion of post-reward delays in decisions (Stephens and

Anderson, 2001; Kalenscher and Pennartz, 2008; Stephens,

2008; Pearson et al., 2010). Post-reward delays can further

indirectly affect decisions as they affect the past reward rate

(Blanchard et al., 2013).

DISCUSSION

Our theory provides a simple algorithm for decision-making in

time. The algorithm of TIMERR theory, in its computational sim-

plicity, could explain results on intertemporal choice observed

across the animal kingdom (Stephens and Krebs, 1986; Frederick

et al., 2002; Kalenscher and Pennartz, 2008), from insects to

humans. Higher animals, of course, could evaluate subjective

values with greater sophistication to build better models of the

world including predictable statistical patterns of the environ-

ment and estimates of risks involved in waiting (Extensions

of TIMERR Theory in Appendix). It must also be noted that

other known variables influencing subjective value like satiety

(Stephens and Krebs, 1986; Doya, 2008), the non-linear utility

of reward magnitudes (Stephens and Krebs, 1986; Doya, 2008)

and the non-linear dependence of health/fitness on reward rates

(Stephens and Krebs, 1986) have been ignored. Such factors,

however, can be included as part of an extension of TIMERR the-

ory while maintaining its inherent computational simplicity. We

derived a generalized expression of subjective value that includes

such additional factors Equation (A7), capturing even more vari-

ability in observed experimental results (Frederick et al., 2002;

Kalenscher and Pennartz, 2008) (Non-Linearities in Subjective

Value Estimation to Generalized Expression for Subjective Value

in Appendix). It must also be noted that while we have ignored

the effects of variability in either delays or magnitudes, expla-

nations of such effects have previously been proposed (Gibbon

et al., 1988; Kacelnik and Bateson, 1996) and are not in con-

flict with our theory. Also, since the exclusion of post-reward

delays in decisions in TIMERR theory is borne out of lim-

itations of associative learning, it allows for the inclusion of

these delays in tasks where they can be learned. Presumably,

an explicit cue indicating the end of post-reward delays could

foster a representation and inclusion of these delays in deci-

sions. Accordingly, it has been shown in recent experiments

that monkeys include post-reward delays in their decisions when

they are explicitly cued (Pearson et al., 2010; Blanchard et al.,

2013).

In environments with time-dependent changes of reinforce-

ment statistics, animals should have an appropriately sized

past integration interval depending on the environment so as

to appropriately estimate opportunity costs [e.g., integrating

reward-history from the onset of winter would be highly mal-

adaptive in order to evaluate the opportunity cost associated with

a delay of an hour in the summer; also see Effects of Plasticity

in the Past Integration Interval (Time) in Appendix]. In keep-

ing with the expectation that animals can adapt past integration

intervals to their environment, it has been shown that humans

can adaptively assign different weights to previous decision out-

comes based on the environment (Behrens et al., 2007; Rushworth

and Behrens, 2008). As Equations (3) and (4) show (Figure 3A),

changes in Time would correspondingly affect the steepness of dis-

counting. This novel prediction has two major implications for

behavior: (1) the discounting steepness of an individual need not

be a constant, as has sometimes been implied in prior literature

(Frederick et al., 2002); (2) the longer the past integration inter-

val, the higher the tolerance to delays when considering future

rewards. In accordance with the former prediction, several recent

reviews have suggested that discounting rates are variable within

and across individuals (Loewenstein and Prelec, 1992; Frederick

et al., 2002; Schweighofer et al., 2006; Luhmann et al., 2008;

Van den Bos and McClure, 2013). The latter prediction states

that impulsivity (Evenden, 1999), as characterized by abnormally

steep discounting, could be the result of abnormally short win-

dows of past reward rate integration. This may explain the obser-

vation that discounting becomes less steep as individuals develop

in age (Peters and Büchel, 2011), should the longevity of memo-

ries increase over development. Past integration intervals could

also be related to and bounded by the span of working mem-

ory. In fact, recent studies have shown that working memory and

temporal discounting are correlated within subjects (Shamosh

et al., 2008; Bickel et al., 2011) and also that improving work-

ing memory capacity decreases the steepness of discounting in
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stimulant addicts (Bickel et al., 2011). Further, Equation (6) states

that changes in Time would lead to corresponding changes in sub-

jective representations of time. Hence, we predict that perceived

durations may be linked to experienced reward environments, i.e.,

“time flies when you’re having fun.”

It is important to point out that the TIMERR algorithm for

decision-making only depends on the calculation of the expected

reward rate, as shown in Figure 2B. While this algorithm is

mathematically equivalent to picking the option with the highest

subjective value Equation (3), the discounting of delayed rewards

results purely from the effect of those delays on the expected

reward rate. Hence, as has been previously proposed (Pearson

et al., 2010; Blanchard et al., 2013), we do not think of the dis-

counting steepness as a psychological constant of an individual.

Instead, we posit that apparent discounting functions are the con-

sequence of maximizing temporally-constrained expected reward

rates, and that abnormalities in temporal discounting result from

abnormal adaptations of Time.

Reward magnitudes and delays have been shown to be rep-

resented by neuromodulatory and cortical systems (Platt and

Glimcher, 1999; Shuler and Bear, 2006; Kobayashi and Schultz,

2008), while neurons integrating cost and benefit to represent

subjective values have also been observed (Kalenscher et al., 2005;

Kennerley et al., 2006). Recent reward rate estimation (aest) has

been proposed to be embodied by dopamine levels over long

time-scales (Niv et al., 2007). Interestingly, it has been shown that

administration of dopaminergic agonists (antagonists) leads to

underproduction (overproduction) (Matell et al., 2006) of time

intervals, consistent with a relationship between recent reward

rate estimation and subjective time representation as proposed

here. Average values of foraging environment have also been

shown to be represented in the anterior cingulate cortex (Kolling

et al., 2012). In light of these experimental observations neurobi-

ological models have previously proposed that decisions, similar

to our theory, result from the net balance between values of the

options currently under consideration and the environment as

a whole (Kennerley et al., 2006; Kolling et al., 2012). However,

these models do not propose that the effective interval (Time) over

which average reward rates are calculated directly determines the

steepness of temporal discounting.

While there have been previous models that connect time per-

ception to temporal decision making (Staddon and Cerutti, 2003;

Takahashi, 2006; Balci et al., 2011; Ray and Bossaerts, 2011),

TIMERR theory is the first unified theory of intertemporal choice

and time perception to capture such a wide array of experi-

mental observations including, but not limited to, hyperbolic

discounting (Stephens and Krebs, 1986; Stephens and Anderson,

2001; Frederick et al., 2002; Kalenscher and Pennartz, 2008),

“Magnitude” (Myerson and Green, 1995; Frederick et al., 2002;

Kalenscher and Pennartz, 2008) and “Sign” effects (Frederick

et al., 2002; Kalenscher and Pennartz, 2008), differential treat-

ment of losses (Frederick et al., 2002; Kalenscher and Pennartz,

2008), as well as correlations between temporal discounting,

time perception (Wittmann and Paulus, 2008), and timing

errors (Gibbon et al., 1997; Matell and Meck, 2000; Buhusi and

Meck, 2005; Lejeune and Wearden, 2006; Wittmann et al., 2007;

Wittmann and Paulus, 2008) (see “Summary” for a full list).

While the notion of opportunity cost long precedes TIMERR,

TIMERR’s unique contribution is in stating that the past inte-

gration interval over which opportunity cost is estimated directly

determines the steepness of temporal discounting and the non-

linearity of time perception. This is the major falsifiable predic-

tion of TIMERR. As a direct result, TIMERR theory suggests

that the spectra of aberrant timing behavior seen in cogni-

tive/behavioral disorders (Buhusi and Meck, 2005; Wittmann

et al., 2007; Wittmann and Paulus, 2008) (Parkinson’s disease,

schizophrenia, and stimulant addiction) can be rationalized as

a consequence of aberrant integration over experienced reward

history. Hence, TIMERR theory has major implications for the

study (see Implications for Intertemporal Choice in Appendix)

of decision-making in time and time perception in normal and

clinical populations.

METHODS

All simulations were run using MATLAB R2010a.

SIMULATIONS FOR FIGURE 1

Figure 1B: Each of the four decision-making agents ran a total of

100 trials. This was repeated 10 times to get the mean and stan-

dard deviation. Every trial consisted of the presentation of two

reinforcement-options randomly chosen from the three possible

alternatives as shown in Figure 1A.

Figure 1E: The following four possible reward-options were

considered, expressed as (r, t): (0.1, 100), (0.0001, 2), (5, 2),

(5, 150). The units are arbitrary. To create the reinforcement-

environment, a Poisson-process was generated for the availability-

times of each of the four options. These times were binned into

bins of size 1 unit, such that each time bin could consist of zero

to four reward-options. The rate of occurrence for each option

was set equally to 0.2 events/unit of time. For the three pre-

vious decision-making models, the parameters were tuned for

maximum performance by trial and error. Forgoing an avail-

able reward-option was not possible for these models since their

subjective values are always greater than zero for rewards.

SIMULATIONS FOR FIGURES 5, 6

An accumulator model described by the following equation was

used for simulations of a time reproduction task.

dST (t) =
dt

(

1 + t
Time

)2
+ σ

√

ST(t)dWt

where Wt is a standard Wiener process and σ is the magnitude of

the noise. σ was set to 10%. Without the noise term in the R.H.S,

this equation is consistent with the subjective time expression

shown in Equation (6) since integrating for ST(t) exactly yields

Equation (6). This equation can also be rewritten to be in terms

of ST(t) as below.

dST (t) =
(

1 −
ST(t)

Time

)2

dt + σ
√

ST(t)dWt

The above equation was integrated using the Euler-Maruyama

method. In this method, ST(t) is updated using the following

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 61 | 11

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Namboodiri et al. Theory: temporal decision-making and perception

equation for a random walk

ST (t + �t) = ST(t) +
(

1 −
ST(t)

Time

)2

�t

+σ
√

ST(t)
√

�t N(0, 1)

where N(0, 1) is the standard normal distribution. The step size

for integration, �t, was set so that there were 1000 steps for

every simulated duration in the time interval reproduction task

(Figures 5, 6).

Every trial in the time reproduction task consisted of two

phases: a time measurement phase and a time production phase.

During the time measurement phase, the accumulator inte-

grates subjective time until the expiration of the sample duration

(Figure 6A). The subjective time value at the end of the sample

duration is stored in memory after the addition of a constant

Gaussian noise as the threshold for time production, i.e.,

Threshold (t) = ST (t) + c N(0, 1)

During the time production phase, the accumulator integrates

subjective time until the threshold is crossed for the first time.

This moment of first crossing represents the action response

indicating the end of the sample duration, i.e.,

Reproduced interval = t : ST (t) ≥ Threshold (t)

For the simulations resulting in Figures 5C,D, 6, σ = 0.1 and c =
0.001. For Figure 5C, sample interval durations ranged between

1 and 90 s over bins of 1 s. A total of 2000 trials were performed

for each combination of sample duration and Time to calculate

the median production interval as shown in Figures 5C,D. While

calculating the moment of reproduction, the integration was car-

ried out up to a maximum time equaling 10 times the sample

duration.
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APPENDIX

RESULTS

Extensions of TIMERR theory

Alternative version (store reward rates evaluated upon the

receipt of reward in memory). An alternative version of TIMERR

theory could be appropriate for very simple life forms with lim-

ited computational resources that are capable of intertemporal

decision making (e.g., insects). Rather than representing both

the magnitude and delay to rewards separately and making deci-

sions based on real time calculations, upon the receipt of reward,

such animals could store subjective value directly in memory.

In such a case, the reward rate at the time of reward receipt

would be calculated over Time + t and converted to subjec-

tive value. The decision between reward options is then simply

described as picking the option with the highest stored subjec-

tive value. Mathematically, such a calculation is exactly equivalent

to the calculation presented in Extensions of TIMERR Theory in

Appendix.

While the advantage of this model is that it is computation-

ally less expensive, the disadvantages for the model are that (1)

subjective values in memory are not generalizable, i.e., the subjec-

tive value in memory for an option will fundamentally depend on

the reward environment in which it was presented; and (2) rep-

resentations of the reward delays could be useful for anticipatory

behaviors.

Evaluation of risk. Until now, we have assumed that a delayed

reward will be available for consumption, provided the animal

waits the delay, i.e., there are no explicit risks in obtaining the

reward. In many instances in nature, however, such an assump-

tion is not true. If the animal could build a model of the risks

involved in obtaining a delayed reward, it could do better by

including such a model in its decision making. Given informa-

tion about a delayed reward (r, t), if the animal could predict the

expected reward available for consumption after having waited

the delay [ER(r, t)], the subjective value of such a reward could be

written as

SV (r, t) =
ER (r, t) − aestt

1 + t
Time

(A1)

This is based on Equation (3).

It is important to note that this equation can still be expressed

in terms of subjective time as defined in the Main Text, viz.

SV (r, t) =
(

ER (r, t)

t
− aest

)

t

1 + t
Time

Generally speaking, building such risk models is difficult,

especially since they are environment-specific. However, there

could be statistical patterns in environments for which ani-

mals have acquired corresponding representations over evolution.

Specifically, decay of rewards arising from factors like natural

decay (rotting, for instance) or due to competition from other

foragers could have statistical patterns. During the course of travel

to a food source, competition poses the strongest cause for decay

since natural decay typically happens over a longer time-scale, viz.

days to months. In such an environment with competition from

other foragers, a forager could estimate how much a reward will

decay in the time it takes it to travel to the food source.

Suppose the forager sees a reward of magnitude r at time t = 0,

the moment of decision. The aim of the forager is to calculate how

much value will be left by the time it reaches the food source, and

to use this estimate in its current decision. Let us denote the time

taken by the forager to travel to the food source by t.
We assume that the rate of decay of a reward in competi-

tion is proportional to a power of its magnitude, implying that

larger rewards are more sought-after in competition and hence,

would decay at a faster rate. We denote the survival time of a typ-

ical reward by tsur and consider that after time tsur, the reward

is entirely consumed. If, as stated above, one assumes that tsur is

inversely related to a power α of the magnitude of a reward at any

time [r(t)], we can write that tsur = 1
kr(t)α

where k is a constant of

proportionality.

Hence, the rate of change of a value with initial magnitude r,
will be

dr (t)

dt
= −

r (t)

tsur
= −

(

kr (t)α
)

r (t)

Solving this differential equation for r(t),

r (t) =
r

(1 + kαrαt)
1/α

Here we set r(0) = r.

A forager could estimate the parameters k and α based on

the density of competition and other properties of the environ-

ment. In such a case, the subjective value of a delayed reward (r,

t) should be calculated as

SV (r, t) =

r

(1 + kαrαt)
1/α

− aestt

1 + t
Time

(A2)

The discounting function in this case is

D (r, t) =

1

(1 + kαrαt)
1/α

− aestt
r

1 + t
Time

(A3)

Such a discounting function can be thought of as a quasi-

hyperbolic discounting function, and is a more general form than

Equation (3) since k = 0 returns Equation (3).

Non-linearities in subjective value estimation. Animals do not

perceive rewards linearly (e.g., 20 L of juice is not 100 times more

valuable than 200 mL). Non-linear reward perception may reflect

the non-linear utility of rewards: too little is often insufficient

while too much is unnecessary. Further, the value of a reward

depends on the internal state of an animal (e.g., 200 mL of juice

is more valuable to a thirsty animal than a satiated animal). We

address such non-linearities as applied to TIMERR theory here.
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If the non-linearities and state-dependence of magnitude per-

ception can be expressed by a function f (r, state), then this

function can be incorporated into Equation (3) to give

SV (r, t) =
f (r, state) − aestt

1 + t
Time

(A4)

The introduction of such state-dependence and non-linearities

may account for the anomalous “preference for spread”

(Frederick et al., 2002; Kalenscher and Pennartz, 2008) and

“preference for improving sequences” (Frederick et al., 2002;

Kalenscher and Pennartz, 2008) seen in human choice behavior.

Expected reward rate gain during the wait. We have not yet

considered the possibility that animals could expect to receive

additional rewards during the wait to delayed rewards, i.e., while

animals expect to lose an average reward rate of aest during the

wait, there could be a different reward rate that they might, never-

theless, expect to gain. If we denote that this additional expected

reward rate is a fraction f of aest, then we can state that the net

expected loss of reward rate during the wait is (1 – f )aest. This fac-

tor can also be added to expressions of subjective value calculated

above in Equations (3), (A2), and (A4). Specifically, Equation (3)

becomes

SV (r, t) =
r −

(

1 − f
)

aestt

1 + t
Time

(A5)

Such a factor is especially important in understanding prior

human experiments. In abstract questions like “$100 now or $150

a month from now?” human subjects expect an additional reward

rate during the month and are almost certainly not making deci-

sions with the assumption that the only reward they can obtain

during the month is $150.

State-dependence of discounting steepness. In the basic version

of TIMERR theory, the time window over which the algorithm

aims to maximize reward rates is the past integration interval

(Time) plus the time to a delayed reward. However, non-linearities

in the relationship between reward rates and fitness levels [as

discussed in Effects of Plasticity in the Past Integration Interval

(Time) in Appendix] could lead to state-dependent consumption

requirements. For example, in a state of extreme hunger, it might

be appropriate for the decision rule to apply a very short time

scale of discounting so as to avoid dangerously long delays to

food. However, integrating past reward rates over such extremely

short timescales could compromise the reliability of the estimated

reward rate. Hence, as a more general version of TIMERR theory,

the window over which reward rate is maximized could incor-

porate a scaled down value of the interval over which past reward

rate is estimated, with the scaling factor governed by consumption

requirements. If such a scaling factor is represented by s(state),

Equation (3) would become

SV (r, t) =
r − aestt

1 + t
Times(state)

(A6)

Generalized expression for subjective value. Combining

Equations (A2), (A4)–(A6), we can write a more general

expression for the subjective value of a delayed reward, includ-

ing a model of risk along with additional reward rates, state

dependences, and non-linearities in the perception of reward

magnitude

SV (r, t) =

f (r, state)

(

1 + kαf (r, state)α t
)
1/α

−
(

1 − f
)

aestt

1 +
t

Times (state)

(A7)

Equation (A7) is a more complete expression for the subjective

value of delayed rewards. Such an expression could capture almost

the entirety of experimental results, considering its inherent flex-

ibility. However, it should be noted that even with as simple an

expression as Equation (3), many observed experimental results

can be explained.

DISCUSSION

Implications for intertemporal choice

Consequences of the discounting function. We rewrite Equation

(4) below followed by its implications for intertemporal choice

in environments with positive and negative past reward rate

estimates.

D (r, t) =
SV (r, t)

r
=

1 − aest
r t

1 + t
Time

In an environment with positive aest, the following predictions

can be made

1. “Magnitude Effect” for gains: as noted in the Main Text, as r
increases, the numerator increases in value, effectively mak-

ing the discounting less steep (Figure 3C). This effect has been

experimentally observed and has been referred to as the “mag-

nitude” effect (Frederick et al., 2002; Kalenscher and Pennartz,

2008). TIMERR theory makes a further prediction, however,

that the size of the “magnitude” effect will depend on the size

of aest and t. Specifically, as aest and t increase, so does the size

of the effect.

2. “Magnitude Effect” for losses/punishments: if r is negative

(i.e., loss/punishment), the discounting function will become

more steep as the magnitude of r increases (Figures 3D, 4).

Hence, in a rewarding environment (aest > 0), the “magni-

tude” effect for punishments is in the opposite direction as the

“magnitude” effect for gains.

3. “Sign Effect”: gains are discounted more steeply than pun-

ishments of equal magnitudes. A further prediction is that

this effect will be larger for smaller reward magnitudes. This

prediction has been proven experimentally (Loewenstein and

Prelec, 1992; Frederick et al., 2002).

4. Differential treatment of losses/punishments: As the “mag-

nitude” of the punishment decreases below aestTime(r > –

aestTime), the discounting function becomes a monotonically

increasing function of delay. This means that the punish-

ment would be preferred immediately when the magnitude of
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punishment is below this value. Above this value, a delayed

punishment would be preferred to an immediate punishment.

This prediction has experimental support (Frederick et al.,

2002; Kalenscher and Pennartz, 2008).

5. A reward of r delayed beyond t = r/aest will lead to a negative

subjective value. Hence, given an option between pursuing or

forgoing this reward, the animal would only pursue (forgo) the

reward at shorter (longer) delays.

When understanding the reversal of the “Magnitude Effect” for

losses, it is important to keep in mind that as |r|→ ∞, both losses

and gains approach the same asymptote.

D (r, t; |r| → ∞) =
1

1 + t
Time

Hence, as the magnitude of a loss increases, the size of

the “Magnitude Effect” becomes lower and harder to detect

(Figure 4).

In an environment with negative aest (i.e., net punishing envi-

ronment), all the predictions listed above would reverse trends.

Specifically,

1. “Magnitude Effect” for gains: as r increases, the discounting

becomes steeper

2. “Magnitude Effect” for losses: as the magnitude of a pun-

ishment increases, the discounting function becomes less

steep.

3. “Sign Effect”: Punishments are discounted more steeply than

gains of equal magnitudes.

4. Differential treatment of gains: as the magnitude of the gain

decreases below aestTime(r < –aestTime), it would be pre-

ferred at a delay. Beyond this magnitude, the gain would be

preferred immediately.

5. A punishment of magnitude r will be treated with positive

subjective value if it is delayed beyond t = r/aest.

Animals do not maximize long-term reward rates. In typical ani-

mal intertemporal choice experiments, in order to ensure that

different reward options do not lead to a marked difference

in overall experiment duration, a post-reward delay is intro-

duced for all options such that the net duration of each trial is

constant. In such experiments, a global-reward-rate-maximizing

agent should always choose the larger reward, irrespective of the

cue-reward delay, since the net time spent per trial in collecting

any reward equals the constant trial duration. However, a pre-

ponderance of experimental evidence shows that animals deviate

from such ideal behavior of maximizing reward rates over the

entire session (Stephens and Anderson, 2001; Kalenscher and

Pennartz, 2008; Stephens, 2008). Such experimental results are

typically interpreted to signify that animals do not, in fact, act

as reward-rate-maximizing agents (Stephens and Anderson, 2001;

Kalenscher and Pennartz, 2008; Stephens, 2008). TIMERR the-

ory proposes that even though animals are maximizing reward

rates, albeit under constraints of experience, post-reward delays

are not incorporated into their decision process due to limitations

of associative learning (Kacelnik and Bateson, 1996). As a conse-

quence, animal choice behavior in such laboratory tasks would

appear not to maximize global reward rates.

TIMERR theory, however, allows for the possibility that in a

variant of standard laboratory tasks that makes a post-reward

delay immediately precede another reward included in the choice

behavior would result in animals not ignoring post-reward delays.

Prior experiments evince this possibility (Stephens and Anderson,

2001). Specifically, post-reward delays are included in the decision

process by birds performing a patch leave-stay task that is eco-

nomically equivalent to standard laboratory tasks on intertem-

poral choice (Stephens and Anderson, 2001). Also, as mentioned

in the main text, TIMERR theory also allows for the inclusion of

these delays in tasks where they can be learned e.g., when they are

explicitly cued (Pearson et al., 2010; Blanchard et al., 2013).

Effects of plasticity in the past integration interval (Time)

The most important implication of the TIMERR theory is that the

steepness of discounting of future rewards will depend directly on

the past integration interval, i.e., the longer you integrate over the

past, the more tolerant you will be to delays, and vice-versa. In the

above sections, the past integration interval (Time) was treated as

a constant. However, the purpose of the past integration interval

is to reliably estimate the baseline reward rate expected through

the delay until a future reward. Further, since Time determines

the temporal discounting steepness, it will also affect the rate at

which animals obtain rewards in a given environment. Hence,

depending on the reinforcement statistics of the environment, it

would be appropriate for animals to adaptively integrate reward

history over different temporal windows so as to maximize rates

of reward.

In this section, we qualitatively address the problem of opti-

mizing Time. We consider that an optimal Time would satisfy four

criteria: (1) obtain rewards at magnitudes and intervals that max-

imize the fitness of an animal, which is accomplished partially

through (2) reliable estimation of past reward rates leading to

(3) appropriate estimations of opportunity cost for typical delays

faced by the animal with (4) minimal computational/memory

costs.

Before considering the general optimization problem for

Time, it is useful to consider an illustrative example. This

example ignores the last three criteria listed above and only

considers the impact of Time on the fitness of an animal.

Consider a hypothetical animal that typically obtains rewards

at a rate of 1 unit per hour. Suppose such an animal is pre-

sented with a choice between (a) 2 units of reward available

after an hour, and (b) 20 units of reward available after 15 h.

The subjective values of options “a” and “b” are calculated

below for four different values of Time, as per Equation (3).

Subjective Subjective Chosen

value of “a” value of “b” option

Time = ∞ h 1 5 b

Time = 10 h 0.91 2 b

Time = 2.5 h 0.71 0.71 Both equal

Time = 1 h 0.50 0.31 a
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As is apparent, larger Time biases the choice toward option “b.”

This is appropriate in order to maximize long-term reward rate

since the long term reward rate is higher for option “b,” as shown

below.

Reward rate having chosen option “b” = 20 units in 15 h =
20/15 units/h.

Reward rate having chosen option “a” = 2 units in 1 h + 14

units in the remaining 14 h = 16/15 units/h.

However, if we presume that this animal evolved so as to

require a minimum reward of 2 units within every 10 h in

order to function in good health, choosing option “b” would

be inappropriate. Hence, it is clear that for this hypotheti-

cal animal, Time should be much lower than 10 h. In sum-

mary, so as to meet consumption requirements, it is inap-

propriate to integrate past reward rate history over very long

times even if the animal has infinite computational/memory

resources. Keeping in mind the above example and the four cri-

teria listed for an optimal Time, we enumerate the following

disadvantages for setting inappropriately large or inappropriately

small Time.

Integrating over inappropriately large Time has at least four

disadvantages to the animal: (1) a very long Time is inappro-

priate given consumption requirements of an animal, as illus-

trated above; (2) the computational/memory costs involved in

this integration are high; (3) integrating over large time scales

in a dynamically changing environment could make the esti-

mate of past reward rate inappropriate for the delay to reward

(e.g., integrating over the winter and spring seasons as an esti-

mate of baseline reward rate expected over a delay of an hour

in the summer might prove very costly for foragers); (4) the

longer the Time, the harder it is to update aest in a dynamic

environment.

Integrating over inappropriately small Time, on the other hand,

presents the following disadvantages: (1) estimate of baseline

reward rate would be unreliable since integration must be carried

out over a long enough time-scale so as to appreciate the station-

ary variability in an environment; (2) estimate of baseline reward

rate might be highly inappropriate for the future delay (e.g., inte-

grating over the past 1 min might be very inappropriate when the

delay to a future reward is a day); (3) the animal would more

greatly deviate from global optimality [as is clear from Equation

(3)].

In light of the above discussion, we argue that the following

relationships should hold for Time. In each of these relationships,

all factors other than the one considered are assumed constant.

R1. Time-dependent changes in environmental reinforcement

statistics: if an environment is unstable, i.e., the reinforce-

ment statistics of the environment are time- dependent, we

predict that Time would be lower than the timescale of the

dynamics of changes in environmental statistics.

R2. Variability of estimated reward rate: if an environment is

stable and has very low variability in the estimated reward

rate it provides to an animal, integrating over a long Time

would not provide a more accurate estimate of past reward

rate than integrating over a short Time. Hence, in order to be

better at adapting to potential changes in the environment

and minimize computational/ memory costs, we predict

that in a stable environment, Time will reduce (increase)

as the variability in the estimated reward rate reduces

(increases).

R3. Mean of estimated reward rate: in a stable environment with

higher average reward rates, the benefit of integrating over

a long Time will be smaller when weighed against the com-

putational/memory cost involved. As an extreme example,

when the reward rate is infinity, the benefit of integrating

over long windows is infinitesimal. This is because the ben-

efit of integrating over a longer Time can be thought of as

the net gain in average reward rate over that achieved when

decisions are made with the lowest possible Time. If the

increase in average reward rate is solely due to an increase

in the mean (constant standard deviation) of reward mag-

nitudes, the proportional benefit of integrating over a large

Time reduces. If the increase in average reward rate is solely

due to an increase in frequency of rewards, the integra-

tion can be carried out over a lower time to maintain the

estimation accuracy. Hence, we predict that, in general, as

average reward rates increase (decrease), Time will decrease

(increase).

R4. Average delays to rewards: as the average delay between

the moment of decision and receipt of rewards increases

(decreases), Time should increase (decrease) correspond-

ingly. This is because reward history calculated over a low

Time might be inappropriate as an estimate of baseline

reward rate for the delays until future reward.

In human experiments, it is common to give abstract ques-

tionnaires to study preference (e.g., “which do you prefer: $100

now or $150 a month from now?”). In such tasks, setting Time

to be of the order of seconds or minutes might be very inap-

propriate to calculate a baseline expected reward rate over the

month to a reward (R4 above). Hence, we predict that Time might

increase so as to match the abstract delays to allow humans to

discount less steeply as these delays increase. Similarly, when the

choice involves delays of the order of seconds, integrating over

hours might not be appropriate and therefore, the discounting

steepness would be predicted to be higher in such experiments.

Thus, in prior experimental results (Loewenstein and Prelec,

1992; Frederick et al., 2002; Schweighofer et al., 2006; Luhmann

et al., 2008), Time might have changed to reflect the delays

queried.

Calculation of the estimate of past reward rate (aest)

It must be noted that even though the calculation of aest is

performed over a time-scale of Time, yet unspecified is the par-

ticular form of memory for past reward events. The simplest

form of a memory function is one in which rewards that were

received within a past duration of Time are recollected perfectly

while any reward that was received beyond this duration is com-

pletely forgotten. A more realistic memory function will be such

that a reward that was received will be remembered accurately

with a probability depending on the time in the past at which

it was received, with the dependence being a continuous and

monotonically decreasing function. For such a function, Time
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will be defined as twice the average recollected duration over

the probability distribution of recollection. The factor of two is

to ensure that in the simplest memory model presented above,

the longest duration at which rewards are recollected (twice the

average duration) is Time.

If we define local updating as updating aest based solely on

the memory of the last reward (both magnitude and time elapsed

since its receipt), the constraint of local updating when placed on

such a general memory function necessitates it to be exponential

in time. In this case, aest is updated as:

aest → aest + 2r
Time

; upon receipt of reward

aest → aest exp(− 2tlastreward
Time

); otherwise

where tlastreward is the time elapsed since the receipt of the last
reward.
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